Citation: A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq. Discrete-time predator-prey model with flip bifurcation and chaos control[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317
[1] | J. Beddington, C. Free, J. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 225 (1975), 58-60. |
[2] | X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solit. Fract., 32 (2007), 80-94. |
[3] | M. Zhao, L. Zhang, Permanence and chaos in a host-parasitoid model with prolonged diapause for the host, Comm. Nonlinear. Sci. Numer. Simulat., 14 (2009), 4197-4203. |
[4] | J. Yan, C. Li, X. Chen, L. Ren, Dynamic complexities in 2− dimensional discrete-time predatorprey systems with Allee effect in the prey, Discrete Dyn. Nat. Soc., 2106 (2016), 1-14. |
[5] | J. Zhao, Y. Yan, Stability and bifurcation analysis of a discrete predator-prey system with modified Holling-Tanner functional response, Adv. Differ. Equ., 2108 (2018), 402. |
[6] | Q. Fang, X. Li, Complex dynamics of a discrete predator-prey system with a strong Allee effect on the prey and a ratio-dependent functional response, Adv. Differ. Equ., 2108 (2018), 320. |
[7] | F. Kangalgi, S. Kartal, Stability and bifurcation analysis in a host-parasitoid model with Hassell growth function, Adv. Differ. Equ., 2108 (2018), 240. |
[8] | L. Li, J. Shen, Bifurcations and dynamics of a predator-prey model with double Allee effects and time delays, Int. J. Bifurcat. Chaos., 28 (2018), 1-14. |
[9] | G. Stápán, Great delay in a predator-prey model, Nonli. Analy. Theory Meth. Appl., 10 (1986), 913-929. |
[10] | L. Cheng, H. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 288-302. |
[11] | W. Liu, D. Cai, J. Shi, Dynamic behaviors of a discrete-time predator-prey bioeconomic system, Adv. Differ. Equ., 2018 (2018), 133. |
[12] | X. Liu, Y. Chu, Y. Liu, Bifurcation and chaos in a host-parasitoid model with a lower bound for the host, Adv. Differ. Equ., 2018 (2018), 31. |
[13] | S. M. Sohel Rana, Chaotic dynamics and control of discrete ratio-dependent predator-prey system, Discrete Dyn. Nat. Soc., 2017 (2017), 1-13. |
[14] | P. K. Santra, G. S. Mahapatra, G. R. Phaijoo, Bifurcation and chaos of a discrete predator-prey model with crowley-martin functional response incorporating proportional prey refuge, Discrete Dyn. Nat. Soc., 2020 (2020), 1-18. |
[15] | A. Mareno, L. Q. English, Flip and Neimark-Sacker bifurcations in a coupled logistic map system, Discrete Dyn. Nat. Soc., 2020 (2020), 1-14. |
[16] | A. Q. Khan, Bifurcation analysis of a discrete-time two-species model, Discrete Dyn. Nat. Soc, 2020 (2020), 1-12. |
[17] | W. Znegui, H. Gritli, S. Belghith, Design of an explicit expression of the Poincaré map for the pas-sive dynamic walking of the compass-gait biped model, Chaos Solit. Fract., 130 (2020),109436. |
[18] | C. Çelik, O. Duman, Allee effect in a discrete-time predatorprey system, Chaos Solit. Fract., 40 (2009), 1956-1962. |
[19] | A. Q. Khan, M. Alesemi, M. A. El-Moneam, E. S. A. Elgarib, Bifurcation analysis of a discretetime predator-prey model, Wulfenia, 26 (2019), 23-39. |
[20] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, New York, Springer-Verlag, . 1983. |
[21] | Y. A. Kuznetsov, Elements of applied bifurcation theorey, 3rd edition, Springer-Verlag, New York, 2004. |
[22] | J. H. E. Cartwright, Nonlinear stiffness Lyapunov exponents and attractor dimension, Phys. Lett. A, 264 (1999), 298-304. |
[23] | J. L. Kaplan, J. A. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 67 (1979), 93-108. |
[24] | S. N. Elaydi, An introduction to difference equations, Springer-Verlag, New York, USA, 1996. |
[25] | S. Lynch, Dynamical Systems with Applications Using Mathematica, Birkhäuser, Boston, Mass, USA, 2007. |