Citation: Abdul Qadeer Khan, Azhar Zafar Kiyani, Imtiaz Ahmad. Bifurcations and hybrid control in a 3×3 discrete-time predator-prey model[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6963-6992. doi: 10.3934/mbe.2020360
[1] | M. Braun, Differential Equations and Their Applications: An Introduction to Applied Mathematics, Springer-Verlage, New York, 1983. |
[2] | F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001. |
[3] | T. Räz, The volterra principle generalized, Philos. Sci., 84 (2017), 737-760. doi: 10.1086/693874 |
[4] | S. Ahmad, On the non-autonomous Lotka-Volterra competition equation, Proc. Am. Math. Soc., 117 (1993), 199-204. doi: 10.1090/S0002-9939-1993-1143013-3 |
[5] | X. Liu, A note on the existence of periodic solution in discrete predator-prey models, Appl. Math. Model., 34 (2010), 2477-2483. doi: 10.1016/j.apm.2009.11.012 |
[6] | X. Tang, X. Zou, On positive periodic solutions of Lotka-Voletrra competition systems with deviating arguments, Proc. Am. Math. Soc., 134 (2006), 2967-2974. doi: 10.1090/S0002-9939-06-08320-1 |
[7] | H. N. Agiza, E. M. ELabbasy, H. EL-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal. Real World Appl., 10 (2009), 116-129. doi: 10.1016/j.nonrwa.2007.08.029 |
[8] | A. G. M. Selvam, R. Janagaraj, P. Rathinavel, A discrete model of three species prey-predator system. Int. J. Innovative Res. Sci., 4 (2015), 18576-18584. |
[9] | A. M. Yousef, S. M. Salman, A. A. Elsadany, Stability and bifurcation analysis of a delayed discrete predator-prey model. Int. J. Bifurcat. Chaos, 28 (2018), 1-26. |
[10] | M. R. Sagayaraj, A. G. M. Selvam, R. Janagaraj, D. Pushparajan, Dynamical behavior in a three species discrete model of prey-predator interactions, Int. J. Comput. Sci. Math., 5 (2013), 11-20. |
[11] | E. A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2004. |
[12] | J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983. |
[13] | W. B. Zhang, Discrete Dynamical Systems, Bifurcations and Chaos in Economic, Elsevier, 2006. |
[14] | A. Q. Khan, T. Khalique, Bifurcations and chaos control in a discrete-time biological model. Int. J. Biomath., 13 (2020), 1-35. |
[15] | A. Wikan, Discrete Dynamical Systems: With an Introduction to Discrete Optimization Problems, Bookboon, 2013. |
[16] | D. Whitley, Discrete dynamical systems in dimensions one and two, Bull. London Math. Soc., 15 (1983), 177-217. doi: 10.1112/blms/15.3.177 |
[17] | M. G. Neubert, M. Kot, The subcritical collapse of predator populations in discrete-time predatorprey models, Math. Biosci., 110 (1992), 45-66. doi: 10.1016/0025-5564(92)90014-N |
[18] | M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11 (2012), 12-27. doi: 10.1016/j.ecocom.2012.01.002 |
[19] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theorey, 3rd edition, Springer-Verlag, New York, 2004. |
[20] | G. Wen, Criterion to identify hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. doi: 10.1103/PhysRevE.72.026201 |
[21] | S. Yao, New bifurcation critical criterion of Flip-Neimark-Sacker bifurcations for twoparameterized family of-dimensional discrete systems, Discrete Dyn. Nat. Soc., 2012 (2012), 1-12. |
[22] | G. Wen, S. Chen, Q. Jin, A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker, J. Sound Vib., 311 (2008), 212-223. doi: 10.1016/j.jsv.2007.09.003 |
[23] | C. Tunç, On the stability and boundedness of solutions to third order nonlinear differential equations with retarded argument, Nonlinear Dyn., 57 (2009), 97-106. doi: 10.1007/s11071-008-9423-6 |
[24] | C. Tunç, O. Tunç, A note on certain qualitative properties of a second order linear differential system, Appl. Math. Inf. Sci., 9 (2015), 953-956. |
[25] | C. Tunç, O. Tunç, On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order, J. Adv. Res., 7 (2016), 165-168. doi: 10.1016/j.jare.2015.04.005 |
[26] | L. G. Yuan, Q. G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Model., 39 (2015), 2345-2362. doi: 10.1016/j.apm.2014.10.040 |
[27] | E. M. Elabbasy, H. N. Agiza, H. El-Metwally, A. A. Elsadany, Bifurcation analysis, chaos and control in the Burgers mapping, Int. J. Nonlinear Sci., 4 (2007), 171-185. |
[28] | G. Chen, J. Q. Fang, Y. Hong, H. Qin, Controlling Hopf bifurcations: Discrete-time systems, Discrete Dyn. Nat. Soc., 5 (2000), 29-33. doi: 10.1155/S1026022600000364 |