We study upper and lower bounds for the pull-in voltage and the pull-in distance for the one-dimensional prescribed mean curvature problem arising in MEMS
$ \begin{equation*} \left \{\begin{array}{l} - \left( \frac{u^{ \prime } (x)}{\sqrt{1 +\left (u^{ \prime } (x)\right )^{2}}} \right)^{ \prime } = \frac{\lambda }{(1 -u)^{p}} , \ \ u <1 , \ \ -L <x <L, \\ u ( -L) = u (L) = 0, \end{array}\right . \end{equation*} $
where $ \lambda > 0 $ is a bifurcation parameter, and $ p, L > 0 $ are two evolution parameters. We further study monotonicity properties and asymptotic behaviors for the pull-in voltage and pull-in distance with respect to positive parameters $ p $ and $ L $.
Citation: Yan-Hsiou Cheng, Kuo-Chih Hung, Shin-Hwa Wang, Jhih-Jyun Zeng. Upper and lower bounds for the pull-in voltage and the pull-in distance for a generalized MEMS problem[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6814-6840. doi: 10.3934/mbe.2022321
We study upper and lower bounds for the pull-in voltage and the pull-in distance for the one-dimensional prescribed mean curvature problem arising in MEMS
$ \begin{equation*} \left \{\begin{array}{l} - \left( \frac{u^{ \prime } (x)}{\sqrt{1 +\left (u^{ \prime } (x)\right )^{2}}} \right)^{ \prime } = \frac{\lambda }{(1 -u)^{p}} , \ \ u <1 , \ \ -L <x <L, \\ u ( -L) = u (L) = 0, \end{array}\right . \end{equation*} $
where $ \lambda > 0 $ is a bifurcation parameter, and $ p, L > 0 $ are two evolution parameters. We further study monotonicity properties and asymptotic behaviors for the pull-in voltage and pull-in distance with respect to positive parameters $ p $ and $ L $.
[1] | Y. H. Cheng, K. C. Hung, S. H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS, Nonlinear Anal. Theory Methods Appl., 89 (2013), 284–298. https://doi.org/10.1016/j.na.2012.04.025 doi: 10.1016/j.na.2012.04.025 |
[2] | D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differ. Equ., 243 (2007), 208–237. https://doi.org/10.1016/j.jde.2007.05.031 doi: 10.1016/j.jde.2007.05.031 |
[3] | N. D. Brubaker, J. A. Pelesko, Non-linear effects on canonical MEMS models, Eur. J. Appl. Math., 22 (2011), 455–470. https://doi.org/10.1017/S0956792511000180 doi: 10.1017/S0956792511000180 |
[4] | N. D. Brubaker, J. A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal. Theory Methods Appl., 75 (2012), 5086–5102. https://doi.org/10.1016/j.na.2012.04.025 doi: 10.1016/j.na.2012.04.025 |
[5] | F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Differ. Equ., 249 (2010), 1674–1725. https://doi.org/10.1016/j.jde.2010.07.001 doi: 10.1016/j.jde.2010.07.001 |
[6] | H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. Theory Methods Appl., 70 (2009), 999–1010. https://doi.org/10.1016/j.na.2008.01.027 doi: 10.1016/j.na.2008.01.027 |
[7] | H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal. Theory Methods Appl., 74 (2011), 1234–1260. https://doi.org/10.1016/j.na.2010.09.063 doi: 10.1016/j.na.2010.09.063 |
[8] | H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, II, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3751–3768. https://doi.org/10.1016/j.na.2011.03.020 doi: 10.1016/j.na.2011.03.020 |
[9] | H. Pan, R. Xing, A note on the nonexistence of solutions for prescribed mean curvature equations on a ball, Nonlinear Anal. Theory Methods Appl., 74 (2011), 7437–7445. https://doi.org/10.1016/j.na.2011.07.063 doi: 10.1016/j.na.2011.07.063 |
[10] | H. Pan, R. Xing, Radial solutions for a prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. Theory Methods Appl., 75 (2012), 103–116. https://doi.org/10.1016/j.na.2011.08.010 doi: 10.1016/j.na.2011.08.010 |
[11] | H. Pan, R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to a MEMS model, Nonlinear Anal. Real World Appl., 13 (2012), 2432–2445. https://doi.org/10.1016/j.nonrwa.2012.02.012 doi: 10.1016/j.nonrwa.2012.02.012 |
[12] | H. Pan, R. Xing, Sub- and supersolution methods for prescribed mean curvature equations with Dirichlet boundary conditions, J. Differ. Equ., 254 (2013), 1464–1499. https://doi.org/10.1016/j.jde.2012.10.025 doi: 10.1016/j.jde.2012.10.025 |
[13] | H. Pan, R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models, Discrete Contin. Dyn. Syst., 35 (2015), 3627–3682. https://doi.org/10.3934/dcds.2015.35.3627 doi: 10.3934/dcds.2015.35.3627 |
[14] | H. Pan, R. Xing, Applications of total positivity theory to 1D prescribed curvature problems, J. Math. Anal. Appl., 428 (2015), 113–144. https://doi.org/10.1016/j.jmaa.2015.03.002 doi: 10.1016/j.jmaa.2015.03.002 |
[15] | H. Pan, R. Xing, Bifurcation results for a class of prescribed mean curvature equations in bounded domains, Nonlinear Anal. Theory Methods Appl., 171 (2018), 21–31. https://doi.org/10.1016/j.na.2018.01.010 doi: 10.1016/j.na.2018.01.010 |
[16] | F. Lin, Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 1323–1337. https://doi.org/10.1098/rspa.2007.1816 doi: 10.1098/rspa.2007.1816 |
[17] | N. D. Brubaker, J. I. Siddique, E. Sabo, R. Deaton, J. A. Pelesko, Refinements to the study of electrostatic deflections: theory and experiment, Eur. J. Appl. Math., 24 (2013), 343–370. https://doi.org/10.1017/S0956792512000435 doi: 10.1017/S0956792512000435 |
[18] | M. Mazars, Ewald methods for inverse power-law interactions in tridimensional and quasi-two-dimensional systems, J. Phys. A: Math. Theor., 43 (2010), 425002 (16 pp). https://doi.org/10.1088/1751-8113/43/42/425002 doi: 10.1088/1751-8113/43/42/425002 |
[19] | H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl., 155 (1989), 243–260. https://doi.org/10.1007/BF01765943 doi: 10.1007/BF01765943 |
[20] | C. Cowan, N. Ghoussoub, Estimates on pull-in distances in microelectromechanical systems models and other nonlinear eigenvalue problems, SIAM J. Math. Anal., 42 (2010), 1949–1966. https://doi.org/10.1137/090752857 doi: 10.1137/090752857 |
[21] | G. Flores, G. Mercado, J. A. Pelesko, N. Smyth, Analysis of the dynamics and touchdown in a model of electrostatic MEMS, SIAM J. Appl. Math., 67 (2006), 434–446. https://doi.org/10.1137/060648866 doi: 10.1137/060648866 |
[22] | N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal., 5 (2007), 1423–1449. https://doi.org/10.1137/050647803 doi: 10.1137/050647803 |
[23] | T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. https://doi.org/10.1512/iumj.1971.20.20001 doi: 10.1512/iumj.1971.20.20001 |
[24] | D. Bonheure, A. E. Lindsay, The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity, Eur. J. Appl. Math., 24 (2013), 631–656. https://doi.org/10.1017/S0956792513000077 doi: 10.1017/S0956792513000077 |
[25] | Z. Wang, L. Ruan, On a class of semilinear elliptic problems with singular nonlinearities, Appl. Math. Comput., 193 (2007), 89–105. https://doi.org/10.1016/j.amc.2007.03.056 doi: 10.1016/j.amc.2007.03.056 |