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Abstract: We study upper and lower bounds for the pull-in voltage and the pull-in distance for the
one-dimensional prescribed mean curvature problem arising in MEMS −

(
u′(x)√

1+(u′(x))2

)′
= λ

(1−u)p , u < 1, − L < x < L,

u(−L) = u(L) = 0,

where λ > 0 is a bifurcation parameter, and p, L > 0 are two evolution parameters. We further study
monotonicity properties and asymptotic behaviors for the pull-in voltage and pull-in distance with
respect to positive parameters p and L.

Keywords: prescribed mean curvature problem; global bifurcation diagram; positive solution; pull-in
voltage; pull-in distance; MEMS

1. Introduction

This paper is a continuation of Cheng, Hung and Wang [1]. In this paper, we study some structures
of bifurcation diagrams of positive solutions u ∈ C2(−L, L) ∩ C[−L, L] for the one-dimensional
prescribed mean curvature problem arising in electrostatic MEMS (Micro-Electro-Mechanical
Systems)

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022321


6815

 −
 u′(x)√

1 + (u′(x))2

′ = λ

(1 − u)p , u < 1, − L < x < L,

u(−L) = u(L) = 0,
(1.1)

where λ > 0 is a bifurcation parameter, and p, L > 0 are two evolution parameters. In particular,
we study upper and lower bounds, monotonicity properties and asymptotic behaviors for the pull-in
voltage and the pull-in distance. The singular nonlinearity in (1.1)

f (u) ≡
1

(1 − u)p , p > 0

satisfies
f (0) = 1, lim

u→1−
f (u) = ∞, and f ′(u), f ′′(u) > 0 on [0, 1). (1.2)

Notice that the improper integral of f over [0, 1) satisfies∫ 1

0
f (u)du =

{
∞ if p ≥ 1,

1
1−p < ∞ if 0 < p < 1.

The one-dimensional prescribed mean curvature problem −
 u′(x)√

1 + (u′(x))2

′ = λ f̃ (u), − L < x < L,

u(−L) = u(L) = 0,
(1.3)

and n-dimensional problem of it, with general nonlinearity f̃ (u) or with many different types
nonlinearities, like up (p > 0), up + uq (0 ≤ p < q < ∞), (1 + u)p (p > 0), exp(u), exp(u) − 1, exp

(
au

a+u

)
(a > 0), exp

(
au

a+u

)
− 1 (a > 0), au (a > 0), u − u3, and (1 − u)−p (p > 0 ) have been investigated

intensively since 1990, see, e.g., [1–15].
A solution u ∈ C2(−L, L) ∩ C[−L, L] of (1.3) with u′ ∈ C([−L, L], [−∞,∞]) is called classical if

|u′(±L)| < ∞, and it is called non-classical if u′(−L) = ∞ or u′(L) = −∞, see [8] . Notice that it can be
shown that (see [2, 8]), for (1.3),

(i) Any non-trivial positive solution u ∈ C2(−L, L) ∩ C[−L, L] is concave on (−L, L) if f̃ (u) > 0 for
u > 0, since the equation in (1.3) can be written in the equivalent form

u′′(x) = −λ(1 + u′2)3/2 f̃ (u) < 0 on (−L, L). (1.4)

(ii) A positive solution u ∈ C2(−L, L) ∩ C[−L, L] must be symmetric on [−L, L]. Thus u′(−L) =
−u′(+L).

In this paper for prescribed mean curvature problem (1.1), we simply consider classical positive
solutions u. For any fixed p, L > 0, we define the bifurcation diagram Cp,L of (1.1) by

Cp,L ≡
{
(λ, ∥uλ∥∞) : λ > 0 and uλ is a classical positive solution of (1.1)

}
.
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We say the bifurcation diagram Cp,L is ⊃-shaped (see e.g., Figure 1(i) depicted below) on the (λ, ∥u∥∞)-
plane if there exists λ∗ > 0 such that Cp,L consists of a continuous curve with exactly one turning point
at some point (λ∗, ∥uλ∗∥∞) where the bifurcation diagram Cp,L turns to the left.

Brubaker and Pelesko [3] studied existence and multiplicity of positive solutions of the
n-dimensional prescribed mean curvature problem −div

∇u(x)√
1 + |∇u(x)|2

=
λ

(1 − u)2 , u < 1, x ∈ ΩL,

u = 0, x ∈ ∂ΩL,

(1.5)

where λ > 0 is a bifurcation parameter andΩL ⊂ R
n (n ≥ 1) is a smooth bounded domain depending on

some parameter L > 0. Problem (1.5) with an inverse square type nonlinearity f (u) = (1−u)−p, p = 2 is
a derived variant of a canonical model used in the modeling of electrostatic Micro-Electro Mechanical
Systems (MEMS) device obeying the electrostatic Coulomb law with the Coulomb force satisfying the
inverse square law with respect to the distance of the two charged objects, which is a function of the
deformation variable (cf. [16, p. 1324].) The modeling of electrostatic MEMS device consists of a
thin dielectric elastic membrane with boundary supported at 0 below a rigid plate located at +1. In
(1.5), u is the unknown profile of the deflecting MEMS membrane, λ is the drop voltage between the
ground plate and the deflecting membrane, and the term |∇u|2 is called a fringing field (cf. [3]). When
a voltage λ is applied, the membrane deflects towards the ceiling plate and a snap-through may occur
when it exceeds a certain critical value λ∗, referred to as the “pull-in voltage”. (So if voltage λ exceeds
pull-in voltage λ∗, an equilibrium defection is no longer attainable and the lower surface will touch up
on the upper plate.) This creates a so-called “pull-in instability” which greatly affects the design and
manufacture of MEMS devices. Also, in the actual design of a MEMS device, typically, one of the
primary device design goals is to achieve the maximum possible stable steady-state deflection (that is,
∥uλ∗∥∞ (< 1), cf. Theorems 1.1–1.2 and Figures 1 and 2 below), referred to as the “pull-in distance”,
with a relatively small applied voltage. We refer to [3, 17] for detailed discussions on MEMS devices
modeling. Notice that the physically relevant dimensions are n = 1 and n = 2. In the case for n = 1,
ΩL is a rectangular strip with two opposite edges at x = ±L fixed (2L is the length of the strip) and the
remaining two edges free, the deflection u = u(x, y) may be assumed a function of x only. In the case
for n = 2, ΩL is a planar bounded domain with smooth boundary, and L is the characteristic length
(diameter) of the domain. In particular, ΩL could be a circular disk of radius L.

With general p > 0, (1.1) is a generalized MEMS problem under the assumption that the Coulomb
force satisfies the inverse p-th power law with respect to the distance of the two charged objects, where
p > 0 characterizes the force strength. See [18].

Brubaker and Pelesko [4] and Pan and Xing [11] studied global bifurcation diagrams and exact
multiplicity of positive (classical) solutions for the one dimensional problem of (1.5), −

 u′(x)√
1 + (u′(x))2

′ = λ

(1 − u)2 , u < 1, − L < x < L,

u(−L) = u(L) = 0.
(1.6)

Brubaker and Pelesko [4, Theorem 1.1] and Pan and Xing [11, Theorem 1.1] independently proved
that, for (1.6), which corresponds to the case p = 2 in (1.1) with L > 0, there exists a positive
number L∗ ≈ 0.34997 such that, on the (λ, ∥u∥∞)-plane, the bifurcation diagram C2,L consists of a
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(continuous) ⊃-shaped curve which emanates from the origin and has exactly one (left) turning point
at some point (λ∗, ∥uλ∗∥∞) when L ≥ L∗, and as L transitions from greater than or equal to L∗ to less
than L∗ the upper branch of the bifurcation diagram C2,L splits into two parts. See Figure 1 depicted
below and see [4, Theorem 1.1] and [11, Theorem 1.1] for details. In addition, for (1.6), Brubaker and
Pelesko [4, Theorem 1.1] proved that the pull-in voltage λ∗ = λ∗(L) satisfies

λ∗ < min
{
L−1, π

2

27 L−2
}
, (1.7)

and Pan and Xing [11, Theorem 1.1, part (4)] proved that the pull-in voltage λ∗(L) is a strictly
decreasing function of L > 0. Brubaker and Pelesko [4, Figure 1.2(b)] also gave numerical simulation
of the pull-in distance ∥uλ∗∥∞ for 0.1 ≤ L ≤ 0.8, which show that ∥uλ∗∥∞ is a strictly increasing
function of L ∈ [0.1, 0.8].

In following Theorems 1.1–1.2, Cheng, Hung and Wang [1, Theorems 2.1–2.3] extended and
improved the results of Brubaker and Pelesko [4, Theorem 1.1] and Pan and Xing [11, Theorem 1.1]
by generalizing the nonlinearity f (u) = (1 − u)−2 in (1.6) to f (u) = (1 − u)−p with general p ∈ (0,∞).
Theorems 1.1–1.2 show that p is a bifurcation parameter to prescribed mean curvature problem (1.1).
Note that this result remains hold for the standard MEMS problem

 −u′′(x) =
λ

(1 − u)p , u < 1, − L < x < L,

u(−L) = u(L) = 0;
(1.8)

see [19, Section 2]. The standard MEMS problem (1.8) and n -dimensional (generalized) problems of
it have been studied by numerous authors, see e.g., [20–22]. For semilinear problem (1.8) with any
p > 0 and L > 0, by applying (1.2) and Laetsch [23, Theorems 2.5, 2.9 and 3.2] , we obtain that, on
the (λ, ∥u∥∞) -plane, the bifurcation diagram of positive solutions consists of a (continuous) ⊃-shaped
curve which emanates from the origin, initially continues to the right, and making a left turn at some
point (λ∗, ∥uλ∗∥∞) which is a bifurcation point with neutral stability, then continues to the left, and
ends at (0, 1), cf. Figure 1(i). For semilinear problem (1.8) with p = 2 and L = 1, Ghoussoub and
Guoand [22, Theorem 1.1, part 4] proved that the pull-in voltage λ∗ ≤ 9/8 = 1.125. For semilinear
problem (1.8) with p = 2 and L = 1, the value of the pull-in voltage was numerically determined as
λ∗ ≈ 1.400016469/4 ≈ 0.350004 in [21, Theorem 2.2] (see also [24, FIGURE 2(a)] ), and the value of
the pull-in distance was numerically determined as ∥uλ∗∥∞ ≈ 0.38 in [24, FIGURE 2(a)]. Cowan and
Ghoussoub [20, Corollary 2.1, part 1] proved that, for Laplacian problem (1.8) with p > 0 and L = 1,
the pull-in distance

(1 >) ∥uλ∗∥∞ ≥
1

p + 1
.

This implies that

lim
p→0+
∥uλ∗∥∞ = 1 for (1.8) with L = 1. (1.9)
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Figure 1. Global bifurcation diagrams Cp,L of (1.1) with p ≥ 1. (i) L > L∗. (ii) L = L∗. (iii)
0 < L < L∗. This figure is from [1, Figure 1].

Theorem 1.1 (See Figure 1). Consider classical positive solutions u of (1.1) with p ≥ 1. There exists
L∗ = L∗(p) > 0 such that the following assertions (i)–(iii) hold:

(i) (See Figure 1(i).) If L > L∗, then there exists λ∗ > 0 such that (1.1) has exactly two positive
solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for 0 < λ < λ∗, exactly one positive solution uλ for λ = λ∗,
and no positive solution for λ > λ∗.

(ii) (See Figure 1(ii).) If L = L∗, then there exist 0 < λ̄ (= λ̄(p)) < λ∗ such that (1.1) has exactly two
positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for 0 < λ < λ̄ and λ̄ < λ < λ∗, exactly one positive
solution uλ for λ = λ̄, λ∗, and no positive solution for λ > λ∗.

(iii) (See Figure 1(iii).) If 0 < L < L∗, then there exist 0 < λ̂ < λ̌ < λ∗ such that (1.1 ) has exactly two
positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for 0 < λ < λ̂ and λ̌ < λ < λ∗, exactly one positive
solution uλ for λ̂ ≤ λ ≤ λ̌ and λ = λ∗, and no positive solution for λ > λ∗.

Theorem 1.2 (See Figure 2). Consider classical positive solutions u of (1.1) with 0 < p < 1. There
exist 0 < L∗ (= L∗(p)) < L∗ (= L∗(p)) such that the following assertions (i)–(iv) hold:

(i) (See Figure 2(i)–(ii).) If L > L∗, then there exist 0 < λ∗ < λ∗ such that (1.1) has exactly two
positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for λ∗ < λ < λ∗, exactly one positive solution uλ for
0 < λ ≤ λ∗ and λ = λ∗, and no positive solution for λ > λ∗.

(ii) (See Figure 2(iii).) If L = L∗, then there exist 0 < λ∗ < λ̄ (= λ̄(p)) < λ∗ satisfying λ∗ < 1 − p < λ̄
such that (1.1) has exactly two positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for λ∗ < λ < λ̄ and
λ̄ < λ < λ∗, exactly one positive solution uλ for 0 < λ ≤ λ∗ and λ = λ̄, λ∗, and no positive solution
for λ > λ∗.

(iii) (See Figure 2(iv).) If L∗ < L < L∗, then there exist 0 < λ∗ < λ̂ < λ̌ < λ∗ satisfying λ∗ < 1 − p < λ̂
such that (1.1) has exactly two positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for λ∗ < λ < λ̂ and
λ̌ < λ < λ∗, exactly one positive solution uλ for 0 < λ ≤ λ∗, λ̂ ≤ λ ≤ λ̌ and λ = λ∗, and no positive
solution for λ > λ∗.

(iv) (See Figure 2(v).) If 0 < L ≤ L∗, then there exist 0 < λ̌ < λ∗ satisfying 1 − p < λ̌ such that (1.1)
has exactly two positive solutions uλ, vλ with ∥uλ∥∞ < ∥vλ∥∞ for λ̌ < λ < λ∗, exactly one positive
solution uλ for 0 < λ ≤ λ̌ and λ = λ∗, and no positive solution for λ > λ∗.
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Figure 2. Global bifurcation diagrams Cp,L of (1.1) with 0 < p < 1. (i)–(ii) L > L∗. (iii)
L = L∗. (iv) L∗ < L < L∗. (v) 0 < L ≤ L∗. This figure is from [1, Figure 2].

The paper is organized as follows. Section 2 contains statements of the main results (Theorems
2.1–2.3). Section 3 contains several lemmas needed to prove Theorem 2.3. Section 4 contains the
proofs of the main results.

2. Main results

The main results in this paper are next Theorems 2.1–2.3 for the generalized MEMS problem (1.1),
in which we first study upper and lower bounds for the pull-in voltage λ∗ and the pull-in distance
∥uλ∗∥∞. We further study monotonicity properties and asymptotic behaviors of the pull-in voltage λ∗

and the pull-in distance ∥uλ∗∥∞ with respect to positive parameters p and L.

Theorem 2.1 (See Theorems 1.1–1.2 and Figures 1 and 2). Consider (1.1) with p > 0 and L > 0. Then
the pull-in voltage λ∗ = λ∗(p, L) satisfies the following assertions (i)–(iii):

(i) For p > 0 and L > 0,

2pp

(p + 1)p+1L2
[
1 + 4

(p+1)2L2

]3/2 ≤ λ∗(p, L) < min
{

L−1,
pp

4(p + 1)p+1π
2L−2

}
(2.1)
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≤ min
{
L−1, 1

4π
2L−2

}
.

(ii) For any fixed L > 0, λ∗(p, L) is a strictly decreasing function of p > 0, and

2

L2
[
1 + 4

L2

]3/2 ≤ lim
p→0+
λ∗(p, L) ≤ min

{
L−1, 1

4π
2L−2

}
,

lim
p→∞
λ∗(p, L) = 0.

(iii) For any fixed p > 0, λ∗(p, L) is a strictly decreasing function of L > 0, limL→0+ λ
∗(p, L) = ∞, and

limL→∞ λ
∗(p, L) = 0.

Remark 2.2. In (2.1) for (1.1) with p > 0, the upper bound min
{
L−1, pp

4(p+1)p+1π
2L−2

}
for λ∗(p, L) is

reduced to min
{
L−1, π

2

27 L−2
}

when p = 2; that is, our result for the upper bound for λ∗(p, L) generalizes
(1.7). In particular, when p = 2 and L = 1, then (2.1) is reduced to

0.171 ≈
8

13
√

13
≤ λ∗(2, 1) <

π2

27
≈ 0.366.

This suggests that (2.1) give suitable upper and lower bounds for the pull-in voltage λ∗(p, L) with
general p, L > 0.

Theorem 2.3 (See Theorems 1.1–1.2 and Figures 1–5). Consider (1.1) with p > 0 and L > 0. Then
the pull-in distance ∥uλ∗∥∞ = ∥uλ∗∥∞ (p, L) satisfies the following assertions (i)–(iv):

(i) For p > 1 and L > 0,

L̄(p, L) < ∥uλ∗∥∞ < Ū(p), (2.2)

where

L̄(p, L) ≡ min

1 −
[
1 +

1
3

(p − 1) L
] 1

1−p

,
1

9p + 1


=


1

9p + 1
if L ≥ L1(p) ≡

33−2p p
( 1+9p

p

)p
−27p−3

(p−1)(1+9p) ,

1 −
[
1 + 1

3 (p − 1) L
] 1

1−p if 0 < L < L1(p),

and (p, Ū(p)) is the unique positive solution pair of the equation

Γ(p, r) ≡ (p + 1)r + 2(1 − r)p − 2 = 0, p > 1, 0 < r < 1,

and Ū(p) satisfies

Ū(p) ≤ U(p) ≡


1 − 2e−2 (≈ 0.729) for 1 < p ≤ 1

1−2e−2 ≈ 1.371,
1/p for 1

1−2e−2 < p ≤ 2,
2/(p + 2) for p > 2;

(2.3)

see Figure 4.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6814–6840.



6821

(ii) For p = 1 and L > 0,

min
{

1 − e−
L
3 ,

1
10

}
< ∥uλ∗∥∞ < 1 − 2e−2 ≈ 0.729,

where

min
{

1 − e−
L
3 ,

1
10

}
=

{ 1
10 if L ≥ L2 ≡ 3 ln(10

9 ) ≈ 0.316,
1 − e−

L
3 if 0 < L < L2.

(iii) For 0 < p < 1 and L > 0,
L̂(p, L) < ∥uλ∗∥∞ < 1,

where

L̂(p, L) ≡ min

1 −
[
1 −

1
k

(1 − p) L
] 1

1−p

,
1

k2 p + 1

 , k = max {3, (1 − p)L}

=


1

p(1−p)2L2+1 if (1 − p)L ≥ 3,

min
{
1 −

[
1 − 1

3 (1 − p) L
] 1

1−p
, 1

9p+1

}
if 0 < (1 − p)L < 3.

(2.4)

(iv) (a) For fixed L > 0,
lim
p→∞
∥uλ∗∥∞ = 0. (2.5)

In addition, for fixed L ≥ 3,
lim
p→0+
∥uλ∗∥∞ = 1, (2.6)

and for fixed positive L < 3,

lim
p→0+
∥uλ∗∥∞ ≥

L
3
. (2.7)

(b) For fixed p > 0,
lim

L→0+
∥uλ∗∥∞ = 0. (2.8)

Remark 2.4. In particular, when p = 2, then in (2.2) we have that Ū(p = 2) = 1/2 and

L̄(p = 2, L) =
{ 1

19 ≈ 0.0526 if L ≥ L1(p = 2) = 1
6 ≈ 0.167,

L
L+3 if 0 < L < L1(p = 2) = 1

6 .

Hence, for L ≥ 1/6, the estimates give

0.0526 ≈
1

19
< ∥uλ∗∥∞ (p = 2, L) <

1
2
= 0.5,

and, for 0 < L < 1/6, the estimates give

(0,
1

19
) ∋

L
L + 3

< ∥uλ∗∥∞ (p = 2, L) <
1
2
= 0.5.

Our analytic result in (2.2) also agrees with some numerical simulations obtained by Brubaker and
Pelesko [4, Figure 1.2(b)–(d)] for p = 2 and 0.1 ≤ L ≤ 0.8.
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Remark 2.5. We conjecture that, for any fixed L > 0, limp→0+ ∥uλ∗∥∞ = 1; cf. (2.6)–(2.7) and (1.9).
In addition, for any fixed p > 0 and λ∗ = λ∗(L), ∥uλ∗∥∞ is a strictly increasing function of L > 0.
Note that, when p = 2, our numerical simulation shows that limL→∞ ∥uλ∗∥∞ = ζ ≈ 0.388 for some ζ,
cf. [4, Figure 1.2(b)] and (2.8). Further investigations are needed.

2

4

6

8

10

p
0

2

4

L

0.00

0.05

0.10

L

Figure 3. The graph of L̄(p, L) with p ∈ (1, 10) and L ∈ (0, 5).

U HpL

U
-

HpL

H2,1�2L

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

Figure 4. Graphs of Ū(p) and U(p) with p ∈ (1, 15). Note that Ū(2) = U(2) = 1
2 and

limp→∞ Ū(p) = limp→∞U(p) = limp→∞
2

p+2 = 0.
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Figure 5. The graph of L̂(p, L) with p ∈ (0, 1) and L ∈ (0, 30).

3. Lemmas

To prove the upper and lower bounds for ∥uλ∗∥∞ in Theorem 2.3(i)–(iii) for (1.1) with p > 0, we need
the following Lemmas 3.1–3.6. We first establish sufficient conditions on r and p such that ∥uλ∗∥∞ < r
for all L > 0. To this purpose, we recall the time map formula Tp,λ(r) for (1.1) as follows:

Tp,λ(r) =
∫ r

0

1 + λF(u) − λF(r)√
1 − [1 + λF(u) − λF(r)]2

du, r = ∥u∥∞ ∈ I; (3.1)

where

F(u) ≡
∫ u

0
f (t)dt =

∫ u

0

1
(1 − t)p dt =


1 − (1 − u)1−p

1 − p
if p > 0 and p , 1,

− ln(1 − u) if p = 1,
(3.2)

and I is the domain of Tp,λ(r). Notice that the domain I of Tp,λ(r) depends on the value p. We have
that:

(I) If p ≥ 1, F : [0, 1) → [0,∞) is strictly increasing, and hence F−1 is well defined on [0,∞). Then
for any λ > 0, the domain I of Tp,λ(r) is

(0, F−1(
1
λ

)].

(II) If 0 < p < 1, F : [0, 1]→ [0, 1
1−p ] is strictly increasing, and hence F−1 is only defined on [0, 1

1−p ].
Then for any λ > 0, the domain I of Tp,λ(r) is{

(0, F−1( 1
λ
)] if λ > 1 − p,

(0, 1) if 0 < λ ≤ 1 − p.

See [1, p. 286].
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Observe that positive solutions uλ for (1.1) correspond to

∥uλ∥∞ = r and Tp,λ(r) = L. (3.3)

Thus, studying of the exact number of positive solutions of (1.1) for any fixed λ > 0 is equivalent to
studying the shape of the time map Tp,λ(r) on its domain I. Moreover, we observe that

T ′p,λ(r)

=

∫ 1

0

[1 + λF(rs) − λF(r)]
{
1 − [1 + λF(rs) − λF(r)]2

}
+ λ

[
rs f (rs) − r f (r)

]{
1 − [1 + λF(rs) − λF(r)]2

}3/2 ds

=

∫ 1

0

Ψ(λ, r, s){
1 − [1 + λF(rs) − λF(r)]2

}3/2 ds, (3.4)

where

Ψ(λ, r, s)
≡ [1 + λF(rs) − λF(r)]

{
1 − [1 + λF(rs) − λF(r)]2

}
+ λ

[
rs f (rs) − r f (r)

]
. (3.5)

See [1, (3.2)].
First, we have the next lemma which shows that Tp,λ(r) for (1.1) has exactly one critical point, a

local maximum, on its domain.

Lemma 3.1 ( [1, Lemma 3.2]). Consider Tp,λ(r) for (1.1). The following assertions (i)–(iii) hold:

(i) For fixed p ≥ 1, Tp,λ(r) has exactly one critical point, a local maximum, on (0, F−1(1/λ)) for any
λ > 0.

(ii) For fixed p ∈ (0, 1), Tp,λ(r) has exactly one critical point, a local maximum, on (0, F−1(1/λ)) for
any λ > 1 − p.

(iii) For fixed p ∈ (0, 1), Tp,λ(r) has exactly one critical point, a local maximum, on (0, 1) for any
0 < λ ≤ 1 − p.

In the following Lemma 3.2 with p > 1, and Lemma 3.3 with p = 1, we prove that T ′p,λ(r) < 0 for
λ ∈ (0, 1/F(r)), where r satisfies some conditions stated below. Thus ∥uλ∗∥∞ < r for L > 0 by applying
Theorem 1.1.

Lemma 3.2. Suppose that 0 < r < 1 and p > 1. Then T ′p,λ(r) < 0 for λ ∈ (0, 1/F(r)) if (p, r) satisfies
Γ(p, r) = (p + 1)r + 2(1 − r)p − 2 = 0.

Lemma 3.3. Suppose that p = 1. Then T ′1,λ(1 − 2e−2) < 0 for λ ∈ (0, 1/F(1 − 2e−2)).

Proof of Lemma 3.2. For p > 1, we have that f (u) = (1 − u)−p and F(u) = 1−(1−u)1−p

1−p . Hence, by (3.5),
we compute that

Ψ(λ, r, s) = λΦ(λ, r, s) (3.6)
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where

Φ(λ, r, s)

≡
1

(p − 1)3

[
(1 − r)1−p − (1 − rs)1−p

]3
λ2 −

3
(p − 1)2

[
(1 − r)1−p − (1 − rs)1−p

]2
λ

+
2

p − 1

[
(1 − r)1−p − (1 − rs)1−p

]
+

[
rs(1 − rs)−p − r(1 − r)−p] . (3.7)

For any fixed positive r, s < 1, Φ̃(λ) ≡ Φ(λ, r, s) is a quadratic polynomial in λ. To prove this lemma,
by (3.1)–(3.6), for p > 1, it suffice to prove that Φ̃(λ) < 0 on [0, 1/F(r)] which follows by proving that
Φ̃(λ) is convex on [0, 1/F(r)], Φ̃(0) < 0 and Φ̃(1/F(r)) < 0.

(I) First, we consider the leading coefficient of the quadratic polynomial Φ̃(λ). Let

a1(s) ≡ (1 − r)1−p − (1 − rs)1−p.

We have that a1(1) = 0 and

a′1(s) = (1 − p) r (1 − rs)−p < 0 for p > 1 and 0 < r, s < 1.

Hence, a1(s) > 0 for 0 < r, s < 1. So Φ̃(λ) is convex on [0, 1/F(r)].
(II) Secondly, we let

a2(s) ≡ (1 − p) (1 − r)p(1 − rs)pΦ̃(0)
= − (2 − r − rp) (1 − rs)p + (2 − rs − rsp) (1 − r)p.

We find that a2(1) = 0, and

a2(0) = (p + 1)r + 2(1 − r)p − 2 = 0

by the assumption. On the other hand, since

a′2(s) = rp (2 − r − rp) (1 − rs)p−1 − (r + rp) (1 − r)p

and
a′′2 (s) = −p (p − 1) r2 (2 − r − rp) (1 − rs)p−2,

we find that

(1 − rs)a′′2 (s) + r (p − 1) a′2(s) = −
(
p2 − 1

)
r2(1 − r)p

< 0 for p > 1 and 0 < r, s < 1.

That is, for s ∈ (0, 1), we find that a′′2 (s) < 0 whenever a′2(s) = 0. Hence a2(s) > 0 for s ∈ (0, 1).
This implies that Φ̃(0) < 0.
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(III) Thirdly, we obtain that

a3(s) ≡ (p − 1) Φ̃(1/F(r))

=
1[

(1 − r)1−p − 1
]2

[
(1 − r)1−p − (1 − rs)1−p

]3

−
3

(1 − r)1−p − 1

[
(1 − r)1−p − (1 − rs)1−p

]2

− (2 − rs − rsp) (1 − rs)−p + (2 − r − rp) (1 − r)−p.

We have that a3(1) = 0 and a3(0) = −r (p − 1) (1 − r)−p < 0 for p > 1 and 0 < r < 1. Moreover,
we compute that

ϕ1(s) ≡
(1 − rs)p

r
a′3(s)

=
3(1 − p)[

(1 − r)1−p − 1
]2 (1 − rs)2−2p −

6(1 − p)[
(1 − r)1−p − 1

]2 (1 − rs)1−p

−
3(1 − p)

[
(1 − r)2−2p − 2(1 − r)1−p

]
[
(1 − r)1−p − 1

]2 + p (rsp + rs − 2) (1 − rs)−1 + p + 1.

Then we compute that ϕ1(0) = 2(p − 1) > 0 and

ϕ1(1) =
(p − 1)

[
(p + 1)r − 1

]
1 − r

. (3.8)

We claim that ϕ1(1) > 0 if (p, r) satisfies Γ(p, r) = (p + 1) r + 2 (1 − r)p
− 2 = 0.We next give a

proof of this claim. First, it is easy to see that

Φ̂ ≡ {(p, r) : p > 1, 0 < r < 1, (p + 1) r + 2 (1 − r)p
− 2 ≥ 0}

∩ {(p, r) : p > 1, 0 < r < 1, (p + 1) r − 1 ≥ 0} , ∅ (3.9)

since (p, r) = (2, 1/2) ∈ Φ̂. Now, suppose (p, r) satisfies (p + 1) r − 1 = 0. We find that

(p + 1) r + 2 (1 − r)p
− 2 = 2 (1 − r)p

− 1 = 2
(

p
p + 1

)p

− 1 < 0

since 2
(

p
p+1

)p
− 1 = 0 when p = 1 and it is a strictly decreasing function of p ≥ 1. So, in addition

to (3.9), for p > 1, 0 < r < 1, we obtain that (p + 1) r − 1 > 0 if (p + 1) r + 2 (1 − r)p
− 2 ≥ 0; i.e.,

{(p, r) : p > 1, 0 < r < 1, (p + 1) r + 2 (1 − r)p
− 2 ≥ 0}

⊆ {(p, r) : p > 1, 0 < r < 1, (p + 1) r − 1 > 0} . (3.10)

So, by (3.8) and (3.10), ϕ1(1) > 0 if (p, r) satisfies (p + 1) r + 2 (1 − r)p
− 2 = 0.

We also compute that, if p ≥ 3
2 ,

(1 − rs)
r
ϕ′′1 (s) + (1 − 2p)ϕ′1(s)
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= −
6 (p − 1)3 r[

(1 − r)1−p
− 1

]2 (1 − rs)−p − rp (p − 1) (2p − 3) (1 − rs)−2 < 0 for s ∈ (0, 1).

So we find that ϕ′′1 (s) < 0 whenever ϕ′1(s) = 0. This implies that ϕ1(s) = (1−rs)p

r a′3(s) > 0 for
s ∈ (0, 1) (Observe ϕ1(0) > 0 and ϕ1(1) > 0). Therefore, a3(s) < 0 for s ∈ (0, 1), and hence

Φ̃(1/F(r)) < 0 if p ≥
3
2
.

(IV) If 1 < p < 3
2 , we claim that

(1 − rs)
r
ϕ′′1 (s) + (1 − 2p)ϕ′1(s) < 0 for s ∈ (0, 1).

We next give a proof of this claim. We compute that

ϕ2(s) ≡
(1 − rs)2

r (p − 1)

[
(1 − rs)

r
ϕ′′1 (s) + (1 − 2p)ϕ′1(s)

]
= p (3 − 2p) −

6 (p − 1)2[
(1 − r)1−p − 1

]2 (1 − sr)2−p . (3.11)

Then

ϕ2(1) = p (3 − 2p) −
6 (p − 1)2[

(1 − r)1−p − 1
]2 (1 − r)2−p (3.12)

and

ϕ′2(s) =
6r (p − 1)2 (2 − p)[

(1 − r)1−p − 1
]2 (1 − sr)1−p > 0. (3.13)

So, if (p, r) satisfies

p (3 − 2p) −
6 (p − 1)2[

(1 − r)1−p − 1
]2 (1 − r)2−p

≤ 0,

then
(1 − rs)

r
ϕ′′1 (s) + (1 − 2p)ϕ′1(s) ≤ 0 for s ∈ (0, 1).

Next, we have that, for 1 < p < 3
2 ,

{(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), (p + 1) r + 2 (1 − r)p
− 2 = 0}

⊊

(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), p (3 − 2p) −
6 (p − 1)2[

(1 − r)1−p − 1
]2 (1 − r)2−p

≤ 0
 ;

(3.14)
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see Figure 6. (Note that we can provide an analytic proof for (3.14) but we omit it here since it is
too tedious.) If p ∈ (1, 3/2), then

(1 − rs)2

r (p − 1)

{
(1 − rs)

r
ϕ′′1 (s) + (1 − 2p)ϕ′1(s)

}
< 0 for s ∈ (0, 1)

by (3.11)–(3.14). So we find that ϕ′′1 (s) < 0 whenever ϕ′1(s) = 0. This implies that ϕ1(s) =
(1−rs)p

r a′3(s) > 0 for s ∈ (0, 1) (Observe ϕ1(0) > 0 and ϕ1(1) > 0). Therefore, a3(s) < 0 for
s ∈ (0, 1), and hence

Φ̃(1/F(r)) < 0 if 1 < p <
3
2
.

We conclude that, by above parts (I)–(IV), Φ̃(λ) is convex on [0, 1/F(r)], Φ̃(0) < 0 and Φ̃(1/F(r)) <
0. So Φ̃(λ) < 0 on [0, 1/F(r)] for p > 1. By (3.4)–(3.7), T ′p,λ(r) < 0 for λ ∈ (0, 1/F(r)) if p > 1,
r ∈ (0, 1), and (p, r) satisfies Γ(p, r) = (p + 1)r + 2(1 − r)p − 2 = 0.

The proof of Lemma 3.2 is complete.

1.0 1.1 1.2 1.3 1.4 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. The curve {(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), (p + 1) r + 2 (1 − r)p
− 2 = 0} ⊊

The region
{
(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), p (3 − 2p) − 6(p−1)2

[1−(1−r)1−p]2 (1 − r)2−p
≤ 0

}
.

Note that the curve {(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), (p + 1) r + 2 (1 − r)p
− 2 = 0}

emanates from the point (1, r2) with r2 ≈ 0.715 and the curve{
(p, r) : p ∈ (1, 3/2), r ∈ (0, 1), p (3 − 2p) − 6(p−1)2

[1−(1−r)1−p]2 (1 − r)2−p = 0
}

emanates from

the point (1, r3) with 0.715 ≈ r2 < r3 ≈ 0.724.

Proof of Lemma 3.3. For p = 1, we have that f (u) = 1
1−u and F(u) = − ln(1 − u), and (3.5) can be

reduced to
Ψ(λ, r, s) = λΘ(λ, r, s), (3.15)

where

Θ(λ, r, s) ≡ [ln(1 − rs) − ln(1 − r)]3 λ2 − 3 [ln(1 − rs) − ln(1 − r)]2 λ
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+2 [ln(1 − rs) − ln(1 − r)] −
r (1 − s)

(1 − r) (1 − rs)
. (3.16)

Let r0 ≡ 1 − 2e−2 (≈ 0.729), since ln(1 − r0s) − ln(1 − r0) > 0 for s ∈ (0, 1), Θ̃(λ) ≡ Θ(λ, r0, s) is a
convex quadratic polynomial in λ. In the following, we will prove that

Θ̃(0) = 2 [ln(1 − r0s) − ln(1 − r0)] −
r0 (1 − s)

(1 − r0) (1 − r0s)
< 0 for s ∈ (0, 1)

and

Θ̃(1/F(r0)) =
1

[ln(1 − r0)]2 [ln(1 − r0s)]3
− ln (1 − r0s) −

r0 (1 − s)
(1 − r0) (1 − r0s)

< 0 for s ∈ (0, 1).

Let
θ1(s) ≡ 2 [ln(1 − r0s) − ln(1 − r0)] −

r0 (1 − s)
(1 − r0) (1 − r0s)

.

Then θ1(0) = −2 ln(1 − r0) − r0
1−r0
≈ −0.0808 < 0, θ1(1) = 0,

θ′1(s) =
−2r0

1 − r0s
+

r0

(1 − r0s)2

and

θ′′1 (s) =
−2r2

0

(1 − r0s)2 +
2r2

0

(1 − r0s)3 .

We compute that

sr2
0θ
′
1(s) + (1 − r0s)2 θ′′1 (s) =

r3
0 s

(1 − r0s)2 > 0.

This implies that θ′′1 (s) > 0 whenever θ′1(s) = 0. Thus, θ1(s) < 0 for all s ∈ (0, 1) and then Θ̃(0) < 0 for
s ∈ (0, 1).

On the other hand, let

θ2(s) ≡
1

[ln(1 − r0)]2 [ln(1 − r0s)]3
− ln (1 − r0s) −

r0 (1 − s)
(1 − r0) (1 − r0s)

.

Then θ2(0) = −r0
1−r0

(≈ −2.695) < 0, θ2(1) = 0,

θ′2(s) = −
3r0

[ln(1 − r0)]2 (1 − r0s)
[ln(1 − r0s)]2 +

r0 (2 − r0s)
(1 − r0s)2

and

θ′′2 (s) = −
3r2

0

[ln(1 − r0)]2 (1 − r0s)2 [ln(1 − r0s)]2

+
6r2

0

[ln(1 − r0)]2 (1 − r0s)2 [ln(1 − r0s)] +
r2

0 (3 − r0s)

(1 − r0s)3 .
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We compute that θ′2(1) = r0

(1−r0)2 (2r0 − 1) (≈ 4.566) > 0, and

r0θ
′
2(s) − (1 − r0s) θ′′2 (s) = −

r2
0

(1 − r0s)2

{
6 (1 − r0s)

[ln(1 − r0)]2 [ln(1 − r0s)] + 1
}
. (3.17)

Furthermore, let

θ3(s) ≡
6 (1 − r0s)

[ln(1 − r0)]2 [ln(1 − r0s)] + 1. (3.18)

Then θ3(0) = 1 > 0, θ3(1) = 6(1−r0)
ln(1−r0) − 1 (≈ −0.243) < 0, and

r0θ
′
3(s) + [ln(1 − r0s)] (1 − r0s)θ′′3 (s) = −

6r2
0

[ln(1 − r0)]2 < 0.

This implies that θ′′3 (s) > 0 whenever θ′3(s) = 0. Then there exists s0 ∈ (0, 1) such that

θ3(s)


> 0 on (0, s0),
= 0 when s = s0,

< 0 on (s0, 1).
(3.19)

By (3.17)–(3.19), we obtain that θ′′2 (s) > 0 (resp. θ′′2 (s) = 0, θ′′2 (s) < 0) whenever θ′2(s) = 0 and
s ∈ (0, s0) (resp. s = s0, s ∈ (s0, 1)). We next show that θ2(s) < 0 for all s ∈ (0, 1). Observe θ2(0) < 0,
θ2(1) = 0 and θ′2(1) > 0. Assume θ2(s) ≥ 0 for some s ∈ (0, 1), then there exist 0 < s1 < s2 < 1 such
that θ2(s1) ≥ 0 is a local maximum of θ2(s) and θ2(s2) < 0 is a local minimum of θ2(s). Thus θ′′2 (s1) ≤ 0
and θ2(s2) ≥ 0, which contradicts to (3.17)–(3.19). So θ2(s) < 0 for all s ∈ (0, 1).

Finally, by the above analyses with r0 = 1 − 2e−2, Θ̃(λ) is convex on [0, 1/F(r0)], Θ̃(0) < 0 and
Θ̃(1/F(r0)) < 0. So Θ̃(λ) < 0 on [0, 1/F(r0)]. By (3.4), (3.5), (3.15) and (3.16), T ′1,λ(r0) < 0 for
λ ∈ (0, 1/F(r0)).

The proof of Lemma 3.3 is complete.
In the following Lemma 3.4 with p > 1, Lemma 3.5 with p = 1, and Lemma 3.6 with 0 < p < 1,

we prove that T ′p,λ(rp) > 0 for λ ∈ (0, 1/L], where rp is defined below. Thus ∥uλ∗∥∞ > rp for L > 0 by
applying Theorems 1.1–1.2.

Lemma 3.4. Consider p > 1. Then T ′p,λ(rp) > 0 for λ ∈ (0, 1/L], where

rp ≡ min

1 −
[
1 +

1
3

(p − 1) L
] 1

1−p

,
1

9p + 1

 .
Lemma 3.5. Consider p = 1. Then T ′1,λ(r1) > 0 for λ ∈ (0, 1/L], where r1 ≡ min

{
1 − e−

L
3 , 1

10

}
.

Lemma 3.6. Consider 0 < p < 1. Then T ′p,λ(rp) > 0 for λ ∈ (0, 1/L], where

rp ≡ L̂(p, L) = min

1 −
[
1 −

1
k

(1 − p) L
] 1

1−p

,
1

k2 p + 1

 , k = max {3, (1 − p)L} .
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Proof of Lemma 3.4. For p > 1, we have that f (u) = (1 − u)−p and F(u) = (1−u)1−p−1
p−1 . Let λ = q

L with
q ∈ (0, 1]. Hence by (3.5), we compute that

G(q, r, s) ≡ (p − 1)3 L3Ψ(
q
L
, r, s)

= q3
[
(1 − r)1−p − (1 − rs)1−p

]3
− 3q2 (p − 1) L

[
(1 − r)1−p − (1 − rs)1−p

]2

+2q (p − 1)2 L2
[
(1 − r)1−p − (1 − rs)1−p

]
−q (p − 1)3 L2 [

r(1 − r)−p − rs(1 − rs)−p] . (3.20)

Assume that M > 1 is a given number. Then, for 0 < r, s < 1 satisfying 1
1−r ≤ M, by applying Cauchy’s

Mean Value Theorem, it is easy to check that

0 < r(1 − r)−p − rs(1 − rs)−p ≤

(
pM

p − 1
− 1

) [
(1 − r)1−p − (1 − rs)1−p

]
.

Therefore,

G(q, r, s) ≥ q
[
(1 − r)1−p − (1 − rs)1−p

]
G̃(q, r, s), (3.21)

where

G̃(q, r, s)

≡ q2
[
(1 − r)1−p − (1 − rs)1−p

]2

−3q (p − 1) L
[
(1 − r)1−p − (1 − rs)1−p

]
+ (p − 1)2 L2 (p + 1 − pM) . (3.22)

Note that 0 < (1 − r)1−p − (1 − rs)1−p < (1 − r)1−p − 1 ≤ Mp−1 − 1. Let

gM(z) ≡ z2 − 3 (p − 1) Lz + (p − 1)2 L2 (p + 1 − pM) . (3.23)

We aim to find a number M0 > 1 such that gM0(z) > 0 for 0 ≤ z ≤ Mp−1
0 − 1. This implies that

G̃(q, r, s) > 0 for 0 < q ≤ 1, 0 < r, s < 1

with 1
1−r ≤ M0. Since g′M(0) = −3 (p − 1) L < 0 and gM is convex on (0,∞), we only need to prove that

g′M0
(Mp−1

0 − 1) ≤ 0 and gM0(Mp−1
0 − 1) ≥ 0 for some M0 > 1. We have that

g′M(z) = 2z − 3 (p − 1) L

and

g′M0
(Mp−1

0 − 1) = 2Mp−1
0 − 2 − 3 (p − 1) L ≤ 0 if and only if M0 ≤

[
1 +

3
2

(p − 1) L
] 1

p−1

. (3.24)

Thus we choose M0 ≡ min
{[

1 + 1
3 (p − 1) L

] 1
p−1
, 1 + 1

9p

}
. Then

gM0(Mp−1
0 − 1) = (Mp−1

0 − 1)2 − 3 (p − 1) L(Mp−1
0 − 1) + (p − 1)2 L2 (p + 1 − pM0)
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=

[
8
3

(p − 1) L − (Mp−1
0 − 1)

] [
1
3

(p − 1) L − (Mp−1
0 − 1)

]
+ (p − 1)2 L2

(
p +

1
9
− pM0

)
≥ (p − 1)2 L2

(
p +

1
9
− pM0

)
≥ 0. (3.25)

So g′M0
(Mp−1

0 − 1) ≤ 0 and gM0(Mp−1
0 − 1) ≥ 0 by (3.24) and (3.25).

Finally, we choose

rp ≡ 1 −
1

M0
= min

1 −
[
1 +

1
3

(p − 1) L
] 1

1−p

,
1

9p + 1

 .
Then we obtain that T ′p,λ(rp) > 0 for λ ∈ (0, 1/L] by (3.4), (3.5), and (3.20)–(3.25). Observe that
rp ∈ (0, F−1( 1

λ
)) for λ ∈ (0, 1/L].

The proof of Lemma 3.4 is complete.
Proof of Lemma 3.5. For p = 1, we have that f (u) = (1 − u)−1 and F(u) = − ln(1 − u). Let λ = q

L with
q ∈ (0, 1]. Hence by (3.5), we compute that

J(q, r, s) ≡ L3Ψ(
q
L
, r, s)

= q3 [ln(1 − rs) − ln(1 − r)]3
− 3q2L [ln(1 − rs) − ln(1 − r)]2

+2qL2 [ln(1 − rs) − ln(1 − r)] − qL2
[ r
1 − r

−
rs

1 − rs

]
. (3.26)

Assume that M > 1 is a given number. Then, for 0 < r, s < 1 satisfying 1
1−r ≤ M, by applying Cauchy’s

Mean Value Theorem, it is easy to check that

0 <
r

1 − r
−

rs
1 − rs

≤ M [ln(1 − rs) − ln(1 − r)] .

Therefore,
J(q, r, s) ≥ q [ln(1 − rs) − ln(1 − r)] J̃(q, r, s), (3.27)

where

J̃(q, r, s) ≡ q2 [ln(1 − rs) − ln(1 − r)]2
− 3qL [ln(1 − rs) − ln(1 − r)] + L2 (2 − M) . (3.28)

Note that 0 < ln(1 − rs) − ln(1 − r) < ln 1
1−r ≤ ln M. Let

jM(z) ≡ z2 − 3Lz + L2 (2 − M) . (3.29)

We aim to find a number M0 > 1 such that jM0(z) > 0 for 0 ≤ z ≤ ln M0. This implies that

J̃(q, r, s) > 0 for 0 < q ≤ 1, 0 < r, s < 1

with 1
1−r ≤ M0. Since j′M(0) = −3L < 0 and jM is convex on (0,∞), we only need to prove that

j′M0
(ln M0) ≤ 0 and jM0(ln M0) ≥ 0 for some M0 > 1. We have that

j′M(z) = 2z − 3L
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and
j′M0

(ln M0) = 2 ln M0 − 3L ≤ 0 if and only if M0 ≤ e
3
2 L. (3.30)

Thus we choose M0 ≡ min
{
e

L
3 , 10

9

}
. Then

jM0(ln M0) = (ln M0)2 − 3L(ln M0) + L2 (2 − M0)

=

(
8
3

L − ln M0

) (
1
3

L − ln M0

)
+ L2

(
10
9
− M0

)
≥ L2

(
10
9
− M0

)
≥ 0. (3.31)

So j′M0
(ln M0) ≤ 0 and jM0(ln M0) ≥ 0 by (3.30) and (3.31).

Finally, we choose

r1 ≡ 1 −
1

M0
= min

{
1 − e−

L
3 ,

1
10

}
.

Then we obtain that T ′1,λ(r1) > 0 for λ ∈ (0, 1/L] by (3.4), (3.5), and (3.26)–(3.31). Observe that
r1 ∈ (0, F−1( 1

λ
)) for λ ∈ (0, 1/L].

The proof of Lemma 3.5 is complete.
Proof of Lemma 3.6. For 0 < p < 1, we have that f (u) = (1 − u)−p and F(u) = 1−(1−u)1−p

1−p . Let λ = q
L

with q ∈ (0, 1]. Hence by (3.5), we compute that

H(q, r, s) ≡ (1 − p)3 L3Ψ(
q
L
, r, s)

= q3
[
(1 − rs)1−p − (1 − r)1−p

]3
− 3q2 (1 − p) L

[
(1 − rs)1−p − (1 − r)1−p

]2

+2q (1 − p)2 L2
[
(1 − rs)1−p − (1 − r)1−p

]
−q (1 − p)3 L2 [

r(1 − r)−p − rs(1 − rs)−p] . (3.32)

Assume that M > 1 is a given number. Then, for 0 < r, s < 1 satisfying 1
1−r ≤ M, by applying Cauchy’s

Mean Value Theorem, it is easy to check that

0 < r(1 − r)−p − rs(1 − rs)−p ≤

(
pM

1 − p
+ 1

) [
(1 − rs)1−p − (1 − r)1−p

]
.

Therefore,
H(q, r, s) ≥ q

[
(1 − rs)1−p − (1 − r)1−p

]
H̃(q, r, s), (3.33)

where

H̃(q, r, s)

≡ q2
[
(1 − rs)1−p − (1 − r)1−p

]2

−3q (1 − p) L
[
(1 − rs)1−p − (1 − r)1−p

]
+ (1 − p)2 L2 (p + 1 − pM) . (3.34)

Note that 0 < (1 − rs)1−p − (1 − r)1−p < 1 − (1 − r)1−p ≤ 1 − Mp−1. Let

hM(z) ≡ z2 − 3 (1 − p) Lz + (1 − p)2 L2 (p + 1 − pM) . (3.35)
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We aim to find a number M0 > 1 such that hM0(z) > 0 for 0 ≤ z ≤ 1 − Mp−1
0 . This implies that

H̃(q, r, s) > 0 for 0 < q ≤ 1, 0 < r, s < 1

with 1
1−r ≤ M0. Since h′M(0) = −3 (1 − p) L < 0 and hM is convex on (0,∞), we only need to prove that

h′M0
(1 − Mp−1

0 ) ≤ 0 and hM0(1 − Mp−1
0 ) ≥ 0 for some M0 > 1. We have that

h′M(z) = 2z − 3 (1 − p) L

and

h′M0

(
1 − Mp−1

0

)
= 2 − 2Mp−1

0 − 3 (1 − p) L.

Thus we choose

M0 ≡ min


[
1 −

1
k

(1 − p) L
] 1

p−1

, 1 +
1

k2 p

 with k = max {3, (1 − p)L} .

Then

hM0

(
1 − Mp−1

0

)
=

(
1 − Mp−1

0

)2
− 3 (1 − p) L

(
1 − Mp−1

0

)
+ (1 − p)2 L2 (p + 1 − pM0)

=

[
1
k

(1 − p) L −
(
1 − Mp−1

0

)] [
(3 −

1
k

) (1 − p) L −
(
1 − Mp−1

0

)]
+ (1 − p)2 L2

(
1
k2 −

3
k
+ p + 1 − pM0

)
≥ (1 − p)2 L2

(
1
k2 −

3
k
+ p + 1 − pM0

)
≥ (1 − p)2 L2

(
1
k2 + p − pM0

)
≥ 0 (3.36)

and

h′M0
(1 − Mp−1

0 ) = 2 − 2Mp−1
0 − 3 (1 − p) L ≤

(
2
k
− 3

)
(1 − p) L < 0. (3.37)

In (3.36) and (3.37), notice p − 1 < 0 and hence Mp−1
0 ≥ 1 − 1

k (1 − p) L.
Finally, we choose

rp ≡ 1 −
1

M0
= min

1 −
[
1 −

1
k

(p − 1) L
] 1

1−p

,
1

k2 p + 1

 with k = max {3, (1 − p)L} .

Then we obtain that T ′p,λ(rp) > 0 for λ ∈ (0, 1/L] by (3.4), (3.5), and (3.32)–(3.37). Observe that
rp ∈ (0, F−1( 1

λ
)) for λ ∈ (0, 1/L].

The proof of Lemma 3.6 is complete.
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4. Proofs of main results

Proof of Theorem 2.1.

(I) We prove Theorem 2.1(i). First, for p > 0, the upper bound min
{
L−1, pp

4(p+1)p+1π
2L−2

}
for λ∗(p, L)

in (2.1) can be obtained by slightly modifying the proof of the upper bound for λ∗ for p = 2 in
(1.7) in [4, Theorem 1.1]; we omit the proof. Also, it is easy to see that

min
{
L−1, pp

4(p+1)p+1π
2L−2

}
≤ min

{
L−1, 1

4π
2L−2

}
since pp

(p+1)p+1 is a strictly decreasing function of p > 0 and limp→0+
pp

(p+1)p+1 = 1.
We then prove the lower bound for λ∗ in (2.1) by modifying the proof of Wang and Ruan [25, Ineq.
(2.10)] and by Pan and Xing [12, Theorem 3.1]. We first take the function

w(x) ≡
1

p + 1

(
1 −

x2

L2

)
< 1 for x ∈ (−L, L),

which satisfies w(x) > 0 on (−L, L) and w(±L) = 0. We then compute that, for x ∈ (−L, L),

−w′′(x) =
2

(p + 1)L2 =
2
[
1 − 1

(p+1)

]p

(p + 1)L2

1[
1 − 1

(p+1)

]p

≥
2pp

(p + 1)p+1L2

1[
1 − 1

(p+1)

(
1 − x2

L2

)]p

=
2pp

(p + 1)p+1L2

1
[1 − w(x)]p

=
2pp

(p + 1)p+1L2

[
1 + (w′(x))2

]3/2

[1 − w(x)]p
1[

1 + (w′(x))2]3/2

=
2pp

(p + 1)p+1L2

[
1 + (w′(x))2

]3/2

[1 − w(x)]p
1[

1 + 4x2

(p+1)2L4

]3/2

≥
2pp

(p + 1)p+1L2

[
1 + (w′(x))2

]3/2

[1 − w(x)]p
1[

1 + 4L2

(p+1)2L4

]3/2

=
2pp

(p + 1)p+1L2
[
1 + 4

(p+1)2L2

]3/2

[
1 + (w′(x))2

]3/2

[1 − w(x)]p .

So for
λ =

2pp

(p + 1)p+1L2
[
1 + 4

(p+1)2L2

]3/2 ,

w(x) is a supersolution of (1.1) on (−L, L) as (1.1) can be written in the equivalent form

−u′′(x) = λ

[
1 + (u′(x))2

]3/2

[1 − u(x)]p on (−L, L);
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see (1.4) with f̃ (u) = 1
(1−u)p . Since w0(x) ≡ 0 is a subsolution of (1.1) on (−L, L) and f (0) = 1 >

w(x) > w0(x) = 0 on (−L, L), by applying Pan and Xing [12, Theorem 3.1] obtained by the lower
and upper solution method, there exists a (classical) solution w̃(x) ∈ C2[−L, L] of (1.1) satisfying
0 < w̃(x) ≤ w(x) on (−L, L). This proves that

2pp

(p + 1)p+1L2
[
1 + 4

(p+1)2L2

]3/2 ≤ λ
∗(p, L).

(II) We prove Theorem 2.1(ii). Consider L > 0 be fixed. For any fixed λ > 0, r ∈ I and 0 < u < r, in
Tp,λ(r) in (3.1), the integrand 1+λF(u)−λF(r)√

1−[1+λF(u)−λF(r)]2
is strictly decreasing in p > 0 since

F(r) − F(u) =
∫ r

u

1
(1 − t)p dt

is increasing in p > 0. So Tp,λ(r) is a strictly decreasing function of p > 0. Hence λ∗(p, L) is
a strictly decreasing function of p > 0. The rest of part (ii) follow from part (i) and by simple
calculus with the fact that limp→0+

pp

(p+1)p+1 = 1 and limp→∞
pp

(p+1)p+1 = 0.
(III) We prove Theorem 2.1(iii). Consider fixed p > 0. Let

hp(λ) ≡

 sup
{
Tp,λ(r) : r ∈ (0, F−1( 1

λ
)]
}
, if (p ≥ 1, λ > 0) or (0 < p < 1, λ > 1 − p),

sup
{
Tp,λ(r) : r ∈ (0, 1)

}
if 0 < p < 1, 0 < λ ≤ 1 − p.

See [1, (1.9) and (1.11)]. By [1, Lemma 3.3(ii)], hp(λ) is a continuous, strictly decreasing function
of λ > 0, limλ→0+ hp(λ) = ∞ and limλ→∞ hp(λ) = 0. Thus we obtain that

hp(λ∗(p, L)) = L for all L > 0; (4.1)

see [1, Proofs of Theorems 2.1 and 2.2]. Moreover, we obtain that λ∗(p, L) is a strictly decreasing
function of L > 0, limL→0+ λ

∗(p, L) = ∞ and limL→∞ λ
∗(p, L) = 0.

The proof of Theorem 2.1 is complete.
Proof of Theorem 2.3.

In (3.3), positive solutions uλ for (1.1) correspond to

∥uλ∥∞ = r and Tp,λ(r) = L.

Thus, studying of the exact number of positive solutions of (1.1) for any fixed λ > 0 is equivalent to
studying the shape of the time map Tp,λ(r) on its domain I. Moreover, Tp,λ(r) has exactly one critical
point, a local maximum, on its domain I by Lemma 3.1. Hence we have that:

(i) If there exists r∗ > 0 such that T ′p,λ(r
∗) < 0 for λ ∈ (0, 1/F(r∗)), then ∥uλ∗∥∞ < r∗ and hence r∗ is

an upper bound of ∥uλ∗∥∞.
(ii) If there exists r∗ > 0 such that T ′p,λ(r∗) > 0 for λ ∈ (0, 1/L], then ∥uλ∗∥∞ > r∗ and hence r∗ is a

lower bound of ∥uλ∗∥∞. Observe λ∗(p, L) < 1/L by Theorem 2.1(i).

We are now in a position to prove Theorem 2.3(i)–(iii).

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6814–6840.



6837

(I) We prove the upper bounds for ∥uλ∗∥∞ in Theorem 2.3(i)–(iii).
(A) For p > 1 and r = Ū(p), by Lemma 3.2, we have that T ′p,λ(r) < 0 for λ ∈ (0, 1/F(r)), and
hence

∥uλ∗∥∞ < r = Ū(p) ( ≤ U(p))

for L > 0 by applying (3.3) and Lemma 3.1. See also Theorem 1.1. It is easy to check that Ū(p)
is bounded above by U(p) in (2.3) for p > 1, we omit the proof.
(B) For p = 1, similarly, we have that ∥uλ∗∥∞ < 1 − 2e−2 ≈ 0.729 for L > 0 by applying (3.3),
Lemmas 3.1 and 3.3. See also Theorem 1.1.
(C) For 0 < p < 1, it is trivial that ∥uλ∗∥∞ < 1 for L > 0.
By above (A)–(C), we obtain the upper bounds for ∥uλ∗∥∞ in Theorem 2.3(i)–(iii).

(II) We prove the lower bounds for ∥uλ∗∥∞ in Theorem 2.3(i)–(iii).
(A) For p > 1 and

rp ≡ L̄(p, L) ≡ min

1 −
[
1 +

1
3

(p − 1) L
] 1

1−p

,
1

9p + 1

 ,
by Lemma 3.4, we have that T ′p,λ(rp) > 0 for λ ∈ (0, 1/L]. Hence

L̄(p, L) < ∥uλ∗∥∞

for L > 0 by applying (3.3) and Lemma 3.1. See also Theorem 1.1.
(B) For p = 1 and

r1 ≡ min
{

1 − e−
L
3 ,

1
10

}
,

by Lemma 3.5, we have that T ′1,λ(r1) > 0 for λ ∈ (0, 1/L]. Hence

min
{

1 − e−
L
3 ,

1
10

}
< ∥uλ∗∥∞

for L > 0 by applying (3.3) and Lemma 3.1. See also Theorem 1.1.
(C) For 0 < p < 1 and

rp ≡ L̂(p, L) = min

1 −
[
1 −

1
k

(1 − p) L
] 1

1−p

,
1

k2 p + 1

 , k = max {3, (1 − p)L} ,

by Lemma 3.6, we have that T ′p,λ(rp) > 0 for λ ∈ (0, 1/L]. Hence

min

1 −
[
1 −

1
k

(1 − p) L
] 1

1−p

,
1

k2 p + 1

 < ∥uλ∗∥∞
for L > 0 by applying (3.3) and Lemma 3.1. See also Theorem 1.2.
By above (A)–(C) in this part (II), we obtain the lower bounds for ∥uλ∗∥∞ in Theorem 2.3(i)–(iii).

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6814–6840.



6838

(III) We prove Theorem 2.3(iv). Assertion (2.5) follows immediately by (2.2)–(2.3) and since

lim
p→∞
∥uλ∗∥∞ ≤ lim

p→∞
U(p) = lim

p→∞

2
p + 2

= 0.

In addition, (2.6) and (2.7) follow easily by (2.4).
We then prove (2.8). For any fixed L > 0, by (4.1), we obtain that hp(λ∗) = hp(λ∗(L)) = L. Since
∥uλ∗∥∞ ∈ (0, F−1( 1

λ∗
)) = (0, F−1( 1

λ∗(L) )), we have that

0 ≤ lim
L→0+
∥uλ∗∥∞ ≤ lim

L→0+
F−1(

1
λ∗(L)

)

= F−1
(

lim
L→0+

1
λ∗(L)

)
= F−1(0) (since limL→0+ λ

∗(L) = ∞ by Theorem 2.1(iii))
= 0.

Thus limL→0+ ∥uλ∗∥∞ = 0. So (2.8) holds.

The proof of Theorem 2.3 is complete.
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