The leader-following consensus (LFC) issue is investigated in this paper for multi-agent systems (MASs) subject to actuator saturation with semi-Markov switching topologies (SMST). A new consensus protocol is proposed by using a semi-Markov process to model the switching of network topologies. Compared to the traditional Markov switching topologies, the SMST is more general and practical because the transition rates are time-varying. By using the local sector conditions and a suitable Lyapunov-Krasovskii functional, some sufficient conditions are proposed such that the leaderfollowing mean-square consensus is locally achieved. Based on the derived sufficient conditions, an optimization problem is analyzed to determine the consensus feedback gains and to find a maximal estimate of the domain of consensus attraction (DOCA) of a closed-loop model. At the end, a numerical case is presented to verify the performance of the design method.
Citation: Jiangtao Dai, Ge Guo. A leader-following consensus of multi-agent systems with actuator saturation and semi-Markov switching topologies[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 4908-4926. doi: 10.3934/mbe.2024217
The leader-following consensus (LFC) issue is investigated in this paper for multi-agent systems (MASs) subject to actuator saturation with semi-Markov switching topologies (SMST). A new consensus protocol is proposed by using a semi-Markov process to model the switching of network topologies. Compared to the traditional Markov switching topologies, the SMST is more general and practical because the transition rates are time-varying. By using the local sector conditions and a suitable Lyapunov-Krasovskii functional, some sufficient conditions are proposed such that the leaderfollowing mean-square consensus is locally achieved. Based on the derived sufficient conditions, an optimization problem is analyzed to determine the consensus feedback gains and to find a maximal estimate of the domain of consensus attraction (DOCA) of a closed-loop model. At the end, a numerical case is presented to verify the performance of the design method.
[1] | J. Wang, Z. Zhou, C. Wang, Z. Ding, Cascade structure predictive observer design for consensus control with applications to UAVs formation flying, Automatica, 121 (2020), 109200. https://doi.org/10.1016/j.automatica.2020.109200 doi: 10.1016/j.automatica.2020.109200 |
[2] | X. Chen, H. Yu, F. Hao, Prescribed-time event-triggered bipartite consensus of multiagent systems, IEEE Trans. Cybern., 52 (2022), 2589–2598. https://doi.org/10.1109/TCYB.2020.3004572 doi: 10.1109/TCYB.2020.3004572 |
[3] | L. An, G. H. Yang, Distributed secure state estimation for cyber-physical systems under sensor attacks, Automatica, 107 (2019), 526–538. https://doi.org/10.1016/j.automatica.2019.06.019 doi: 10.1016/j.automatica.2019.06.019 |
[4] | X. Li, H.Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010 |
[5] | X. Li, H.Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Modell., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051 |
[6] | J. Jeong, Y. Lim, A. Parivallal, An asymmetric Lyapunov-Krasovskii functional approach for event-triggered consensus of multi-agent systems with deception attacks, Appl. Math. Comput., 439 (2023), 127584. https://doi.org/10.1016/j.amc.2022.127584 doi: 10.1016/j.amc.2022.127584 |
[7] | D. Li, L. Su, H. Shen, J. Wang, Leader-following consensus of semi-Markov jump nonlinear multi-agent systems under hybrid cyber-attacks, J. Frankl. Inst., 360 (2023), 5878–5891. https://doi.org/10.1016/j.jfranklin.2023.03.017 doi: 10.1016/j.jfranklin.2023.03.017 |
[8] | R. Wang, Adaptive output-feedback time-varying formation tracking control for multi-agent systems with switching directed networks, J. Frankl. Inst., 357 (2020), 551–568. https://doi.org/10.1016/j.jfranklin.2019.11.077 doi: 10.1016/j.jfranklin.2019.11.077 |
[9] | J. Yang, G. Cao, W. X. Chen, W. D. Zhang, Finite-time formation control of second-order linear multi-agent systems with relative state constraints: A barrier function sliding mode control approach, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 1253–1256. https://doi.org/10.1109/TCSII.2021.3098031 doi: 10.1109/TCSII.2021.3098031 |
[10] | Y. Tian, S. Tian, H. Li, Q. Han, X. Wang, Event-triggered security consensus for multi-agent systems with Markov switching topologies under DoS attacks, Energies, 15 (2022), 5353. https://doi.org/10.3390/en15155353 doi: 10.3390/en15155353 |
[11] | J. Shao, W. X. Zheng, L. Shi, Y. Cheng, Leader-follower flocking for discrete-time Cucker-Smale models with lossy links and general weight functions, IEEE Trans. Autom. Control, 66 (2020), 4945–4951. https://doi.org/10.1109/TAC.2020.3046695 doi: 10.1109/TAC.2020.3046695 |
[12] | J. Wang, Y. Wang, H. Yan, J. Cao, H. Shen, Hybrid event-based leader-following consensus of nonlinear multiagent systems with semi-Markov jump parameters, IEEE Syst. J., 16 (2020), 397–408. https://doi.org/10.1109/JSYST.2020.3029156 doi: 10.1109/JSYST.2020.3029156 |
[13] | J. L. Liu, T. T. Yin, D. Yue, H. R. Karimi, J. D. Cao, Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks, IEEE Trans. Cybern., 51 (2021), 162–173. https://doi.org/10.1109/TCYB.2020.2970556 doi: 10.1109/TCYB.2020.2970556 |
[14] | N. H. A. Nguyen, S. H. Kim, Leader-following consensus for multi-agent systems with asynchronous control modes under nonhomogeneous Markovian jump network topology, IEEE Access, 8 (2020), 203017–203027. https://doi.org/10.1109/ACCESS.2020.3036447 doi: 10.1109/ACCESS.2020.3036447 |
[15] | J. Fu, Y. Lv, T. Huang, Distributed anti-windup approach for consensus tracking of second-order multi-agent systems with input saturation, Syst. Control Lett., 130 (2019), 1–6. https://doi.org/10.1016/j.sysconle.2019.06.002 doi: 10.1016/j.sysconle.2019.06.002 |
[16] | C. Gao, Z. Wang, X. He, Q. L. Han, On consensus of second-order multiagent systems with actuator saturations: A generalized-Nyquist-criterion-based approach, IEEE Trans. Cybern., 52 (2020), 9048–9058. https://doi.org/10.1109/TCYB.2020.3025824 doi: 10.1109/TCYB.2020.3025824 |
[17] | B. Wang, W. Chen, B. Zhang, Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback, Automatica, 103 (2019), 363–373. https://doi.org/10.1016/j.automatica.2019.02.002 doi: 10.1016/j.automatica.2019.02.002 |
[18] | C. Deng, G. H. Yang, Consensus of linear multiagent systems with actuator saturation and external disturbances, IEEE Trans. Circuits Syst. II Express Briefs, 64 (2017), 284–288. https://doi.org/10.1109/TCSII.2016.2551549 doi: 10.1109/TCSII.2016.2551549 |
[19] | L. Ding, W. X. Zheng, G. Guo, Network-based practical set consensus of multi-agent systems subject to input saturation, Automatica, 89 (2018), 316–324. https://doi.org/10.1016/j.automatica.2017.12.001 doi: 10.1016/j.automatica.2017.12.001 |
[20] | J. Jiang, Y. Jiang, Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies, Automatica, 113 (2020), 108804. https://doi.org/10.1016/j.automatica.2020.108804 doi: 10.1016/j.automatica.2020.108804 |
[21] | G. Wen, W. X. Zheng, On constructing multiple Lyapunov functions for tracking control of multiple agents with switching topologies, IEEE Trans. Autom. Control, 64 (2018), 3796–3803. https://doi.org/10.1109/TAC.2018.2885079 doi: 10.1109/TAC.2018.2885079 |
[22] | X. Cao, Y. Li, Positive consensus for multi-agent systems with average dwell time switching, J. Frankl. Inst., 358 (2021), 8308–8329. https://doi.org/10.1016/j.jfranklin.2021.08.024 doi: 10.1016/j.jfranklin.2021.08.024 |
[23] | X. Cao, C. Zhang, D. Zhao, Y. Li, Guaranteed cost positive consensus for multi-agent systems with multiple time-varying delays and MDADT switching, Nonlinear Dyn., 107 (2022), 3557–3572. https://doi.org/10.1007/s11071-021-07157-w doi: 10.1007/s11071-021-07157-w |
[24] | H. Shen, X. Hu, J. Wang, J. Cao, W. Qian, Non-fragile H∞ synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation, IEEE Trans. Neural Networks Learn. Syst., 34 (2021), 2682–2692. https://doi.org/10.1109/TNNLS.2021.3107607 doi: 10.1109/TNNLS.2021.3107607 |
[25] | F. Li, S. Xu, B. Zhang, Resilient asynchronous H∞ control for discrete-time Markov jump singularly perturbed systems based on hidden Markov model, IEEE Trans. Syst., Man, Cybern., Syst., 50 (2018), 2860–2869. https://doi.org/10.1109/TSMC.2018.2837888 doi: 10.1109/TSMC.2018.2837888 |
[26] | B. Li, G.Wen, Z. Peng, S. Wen, T. Huang, Time-varying formation control of general linear multi-agent systems under Markovian switching topologies and communication noises, IEEE Trans. Circuits Syst. II Express Briefs, 68 (2021), 1303–1307. https://doi.org/10.1109/TCSII.2020.3023078 doi: 10.1109/TCSII.2020.3023078 |
[27] | H. Guo, M. Meng, G. Feng, Mean square leader-following consensus of heterogeneous multi-agent systems with Markovian switching topologies and communication delays, Int. J. Robust Nonlinear Control, 33 (2023), 355–371. https://doi.org/10.1002/rnc.6456 doi: 10.1002/rnc.6456 |
[28] | K. Liang, W. He, J. Xu, F. Qian, Impulsive effects on synchronization of singularly perturbed complex networks with semi-Markov jump topologies, IEEE Trans. Syst., Man, Cybern., Syst., 52 (2022), 3163–3173. https://doi.org/10.1109/TSMC.2021.3062378 doi: 10.1109/TSMC.2021.3062378 |
[29] | D. Zhao, F. Gao, J. Cao, X. Li, X. Ma, Mean-square consensus of a semi-Markov jump multi-agent system based on event-triggered stochastic sampling, Math. Biosci. Eng., 20 (2023), 14241–14259. https://doi.org/10.3934/mbe.2023637 doi: 10.3934/mbe.2023637 |
[30] | H. Shen, Y. Wang, J. Xia, J. H. Park, Z. Wang, Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: An event-triggered control scheme, Nonlinear Anal. Hybrid. Syst., 34 (2019), 92–107. https://doi.org/10.1016/j.nahs.2019.05.003 doi: 10.1016/j.nahs.2019.05.003 |
[31] | X. Xiao, X. Wu, X. Hou, Y. He, Almost sure exponential consensus of linear and nonlinear multi-agent systems under semi-markovian switching topologies and application to synchronization of chaos systems, IEEE Access, 11 (2023), 126775–126781. https://doi.org/10.1109/ACCESS.2023.3331745 doi: 10.1109/ACCESS.2023.3331745 |
[32] | R. Sakthivel, A. Parivallal, N. Huy Tuan, S. Manickavalli, Nonfragile control design for consensus of semi‐Markov jumping multiagent systems with disturbances, Int. J. Adapt. Control Signal Process., 35 (2021), 1039–1061. https://doi.org/10.1002/acs.3245 doi: 10.1002/acs.3245 |
[33] | H. Shen, M. Xing, H. Yan, J. Cao, Observer-based L2-L∞ control for singularly perturbed semi-Markov jump systems with an improved weighted TOD protocol, Sci. China Inf. Sci., 65 (2022), 199204. https://doi.org/10.1007/s11432-021-3345-1 doi: 10.1007/s11432-021-3345-1 |
[34] | F. Li, W. X. Zheng, S. Xu, Stabilization of discrete-time hidden semi-Markov jump singularly perturbed systems with partially known emission probabilities, IEEE Trans. Autom. Control, 67 (2021), 4234–4240. https://doi.org/10.1109/TAC.2021.3113471 doi: 10.1109/TAC.2021.3113471 |
[35] | J. Dai, G. Guo, Exponential consensus of non-linear multi-agent systems with semi-Markov switching topologies, IET Control Theory Appl., 11 (2017), 3363–3371. https://doi.org/10.1049/iet-cta.2017.0562 doi: 10.1049/iet-cta.2017.0562 |
[36] | J. Dai, G. Guo, Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies, Inf. Sci., 459 (2018), 290–301. https://doi.org/10.1016/j.ins.2018.04.054 doi: 10.1016/j.ins.2018.04.054 |
[37] | C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0163-9 |
[38] | Z. Hu, X. Mu, Impulsive consensus of stochastic multi-agent systems under semi-Markovian switching topologies and application, Automatica, 150 (2023), 110871. https://doi.org/10.1016/j.automatica.2023.110871 doi: 10.1016/j.automatica.2023.110871 |
[39] | M. G. da Silva, S. Tarbouriech, Antiwindup design with guaranteed regions of stability: An LMI-based approach, IEEE Trans. Autom. Control, 50 (2005), 106–111. https://doi.org/10.1109/TAC.2004.841128 doi: 10.1109/TAC.2004.841128 |
[40] | J. Huang, Y. Shi, Stochastic stability and robust stabilization of semi-Markov jump linear systems, Int. J. Robust Nonlinear Control, 23 (2013), 2028–2043. https://doi.org/10.1002/rnc.2862 doi: 10.1002/rnc.2862 |
[41] | D. Zhang, L.Yu, Fault-tolerant control for discrete-time switched linear systems with time-varying delay and actuator saturation, J. Optim. Theory Appl., 153 (2012), 157–176. https://doi.org/10.1007/s10957-011-9955-7 doi: 10.1007/s10957-011-9955-7 |
[42] | Y. Cai, H. Zhang, Z. Gao, L. Yang, Q. He, Adaptive bipartite event-triggered time-varying output formation tracking of heterogeneous linear multi-agent systems under signed directed graph, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 7049–7058. https://doi.org/10.1109/TIE.2017.2772196 doi: 10.1109/TIE.2017.2772196 |
[43] | D. Zhang, Z. Xu, H. R. Karimi, Q. G. Wang, L. Yu, Distributed H∞ output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications, IEEE Trans. Ind. Electron., 65 (2017), 4145–4155. https://doi.org/10.1109/TIE.2017.2772196 doi: 10.1109/TIE.2017.2772196 |