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Abstract: The leader-following consensus (LFC) issue is investigated in this paper for multi-agent 
systems (MASs) subject to actuator saturation with semi-Markov switching topologies (SMST). A new 
consensus protocol is proposed by using a semi-Markov process to model the switching of network 
topologies. Compared to the traditional Markov switching topologies, the SMST is more general and 
practical because the transition rates are time-varying. By using the local sector conditions and a 
suitable Lyapunov-Krasovskii functional, some sufficient conditions are proposed such that the leader-
following mean-square consensus is locally achieved. Based on the derived sufficient conditions, an 
optimization problem is analyzed to determine the consensus feedback gains and to find a maximal 
estimate of the domain of consensus attraction (DOCA) of a closed-loop model. At the end, a numerical 
case is presented to verify the performance of the design method. 

Keywords: actuator saturation; domain of consensus attraction; leader-following consensus; multi-
agent systems; semi-Markov switching topologies 

 

1. Introduction  

Distributed coordinated control of MASs has drawn vast attention in the past two decades because 
of its broad applications in unmanned aerial vehicles [1], unicycle-like nonholonomic robots [2], 
distributed sensor networks [3–5] and so on. Among these, consensus is often recognized as one of the 
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most fundamental problems, whose aim is to establish a distributed protocol where all agents in the 
system agree on the same final state only through local information exchange [6]. In recent years, for 
MASs with or without leaders, consensus related issues have been studied by a large number of 
scholars from various perspectives [7–10]. Overall analysis indicates that the research focus in this 
area is primarily on the issue of leader-following consensus, and many models have been proposed to 
address this issue [11–13]. The main purpose of LFC-related research is to determine an optimized 
consensus protocol, enabling all followers to track the leader’s status, thereby helping to reduce energy 
consumption and control costs [14].  

In practical control systems, the actuator saturation phenomenon occurs frequently because of 
physical limitations and safety constraints, which may lead to closed-loop system instability or poor 
performance due to high sensitivity to system parameters. Therefore, studying the consensus problem 
of MASs with actuator saturation is of significant value. The following is a brief description of this 
research. Recently, a series of progress has been made for the research regarding the consensus of this 
type of multi-agent system. For example, [15] selected second-order MASs with input saturation and 
general directed communication graphs for research and analyzed its consensus. A distributed anti-
windup strategy was implemented to mitigate the effects of systems with multiple saturated inputs. [16] 
developed a frequency-domain approach to deal with the global consensus problem for a class of 
general second-order MASs subject to actuator saturations. The consensus criterion with actuator 
saturation was established for the first time using the generalized Nyquist method. It should be noted 
that the above literature considers second-order MASs. This potentially limits their applicability to 
higher-order or different types of dynamical systems. For MASs with general linear dynamics, [17] 
conducted research on uncertain MASs with input saturation via a meta-morphic low gain feedback 
approach, and analyzed the corresponding semi-global robust tracking consensus. Based on the convex 
hull algorithm, [18] studied linear MASs with actuator saturation and external disturbances, and 
discussed the optimization modes of consensus control under different conditions. To overcome the 
limitation that the leader-following error cannot be applied globally, [18] used the neighbor’s tracking 
error as an invariant ellipsoid to estimate the consensus attraction domain. Using generalized sector 
bounded conditions, [19] studied the network-based practical set consensus of MASs subject to input 
saturation. They provided an optimization algorithm to design the consensus controller gain and 
estimate the region of attraction. However, these results have considered consensus with actuator 
saturation only for fixed topology. Therefore, investigating consensus with actuator saturation and 
switching topology is one of the primary motivations. 

Owing to the constraint of obstacles, communication zone and transmission delay,etc, the 
communication network of MASs is generally time-varying. Therefore, the consensus for multi-agent 
systems with time-varying topology attracts a great deal of attention. For example, [20] considered the 
leader-following consensus of linear time-varying multi-agent systems under switching topologies, 
and showed that the protocol using local information had better robustness under a certain degree of 
link failure. [21] developed an approach to solve the distributed consensus tracking problem for linear 
MASs with directed switching topologies. [22] considered the positive consensus for a class of MASs 
with average dwell time (ADT) switching. [23] investigated the guaranteed cost positive consensus for 
linear MASs with multiple time-varying delays and mode-dependent average dwell time (MDADT). 
It should be emphasized that most existing literature usually assumes that switching ways follow some 
specific rules, such as ADT or MDADT [21–23]. However, in real systems, numerous disturbances 
and random abrupt changes can occur, including time delays and connection failures, among others. 
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These disturbances may result in random switching patterns. To describe these switching mechanisms, 
Markov processes were introduced in [24,25]. In recent years, the consensus of MASs with Markov 
switching topology has attracted a great deal of attention. [26,27] analyzed the consensus of multiple 
types of MASs and established models. Theoretical analysis shows that the dwell time in this type of 
switching topology follows an exponential distribution in the continuous time domain. However, 
research has found that in practical situations, dwell time may obey more general probability 
distribution, such as Weibull or Gaussian distributions. However, Markov processes cannot be used to 
characterize these random switching topologies [28,29]. To overcome this shortcoming, semi-Markov 
processes are used to model general stochastic time-varying communication topologies [30–32], where 
the sojourn-time can follow Weibull, Gaussian distributions, among others [33,34]. Owing to the 
relaxed restrictions on the probability distributions, semi-Markov switching topologies have 
significantly wider applicability than traditional Markov switching topologies. Yet, research on the 
consensus of MASs with SMST has been relatively scarce [35,36]. In particular, the leader-following 
consensus within systems featuring actuator saturation and semi-Markov switching topologies has not 
been studied to data, which inspired the current study. 

We addresse the LFC problem of MASs with actuator saturation and SMST. The main objective 
is to reveal the effect of semi-Markov switching topologies and actuator saturation on consensus. First, 
a novel consensus protocol is proposed. Second, with this protocol and the sector bound condition, the 
consensus issue is transformed into the stability issue of nonlinear semi-Markov jump systems. Then, 
by introducing Lyapunov-Krasovskii functional and using the sector bounded condition, three 
sufficient conditions are obtained, which can be cast in optimization problems for the purpose of 
enlarging estimates of the DOCA. Our work includes three points.  

1) A new consensus protocol based on SMST is put forward. Compared with conventional Markov 
switching topologies, the restriction that dwell time must follow an exponential distribution is removed. 
The SMST considered here is more general and can be used to describe more time-varying topologies.  

2) A multiple Lyapunov functions approach is introduced to reduce conservatism, where each 
individual Lyapunov function is dependent on the system mode. This means that the matrices in the 
multiple Lyapunov functions have more freedom than those in a single common Lyapunov matrix. 

3) In order to provide a more accurate and realistic description of the dynamics of MASs, both 
actuator saturation and switching topology factors were taken into account during the research process. 

This research includes the following sections. In Section 2, some research on graph theory and 
problem formulation is presented. The major findings are presented in Section 3. Section 4 deals with 
the estimate of the DOCA. Finally, an example is offered in Section 5 to verify the performance of the 
theoretical results. 

2. Preliminaries and problem formulations 

2.1. Notations and graph theory 

Throughout this paper, let nR  and m nR   be thendimensional Euclidean space and the m n  
real matrix space, respectively. 

nI  denotes an n-order identity matrix, 0 m n
 represents a zero matrix with m rows and n columns, 

and 0 n
  denotes an n  dimensional zero vector. 0P ( 0)P   means that P   is positive definite 

(semi-definite) and symmetric. 
1 2{ , ,diag P P , }nP   stands for a block-diagonal matrix whose 
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diagonal elements are 
1 2, , , nP P P . For a symmetric matrix Q , 

min ( )Q  and 
m a x ( )Q  indicate the 

smallest and the largest eigenvalues of matrix Q , respectively. TQ  is the transposition of the matrix 

Q . A B  is Kronecker product of matrices A  and B . In a matrix,   is used to represent the 
term that is induced by symmetry. { ( )}E X t   denotes the mathematical exception of the random 

variable ( )X t  . x   is the Euclidean norm of vector x . The symbol { }XHe   represents TX X  . 

Given the vectors in
ix R  , 1, 2, , ,i m    we use 

1 2{ , , , }mco l x x x   to denote the column vector 

1 2[ ]T T T T
mx x x . 

In this paper, ( , , )      is a directed graph, corresponding to the information interaction 

between agents. 1 2{ , , , }Nv v v    and    denote the set of N follower agents and directed edges, 

respectively. ( )ij N Na    represents the relevant weighted adjacency matrix. ij    refers to that 

iv   can receive data from jv  , and 0ija   , otherwise 0ija   . In this case, jv   is said to be a 

neighbor of 
iv , and the neighbor index of 

iv  is represented by { | }i ijN j    . The degree matrix 

of    in this paper is marked as 1 2{ , , , }Ndiag d d d    and 
id

i
ijj N

a


  . Hence, the Laplacian 

matrix of  is described as L    , or ( )ij N NL l   with 
ii i j N ijl a   and 

ij ijl a  , for i j . 

In order to facilitate the following research, a directed graph   is applied to characterize the 
communication topology between followers and a leader agent (labeled by 

0v ), where   is based 
on graph  , 

0v  and relevant edges from 
0v  to the other nodes in  . The adjacency matrix of 

 is a diagonal matrix 
1 2{ , , , }Nd ia g b b b  , where 0ib   under condition of 

0v  is a neighbor 
of node 

iv and or else 0ib  . For more graph theory, please refer to [37]. 

2.2. Semi-Markov switching topologies 

The SMST in this paper is represented a ( ( ))t  ( , ( ( )), ( ( )))t t     , where ( ( ))t   

{ (1), (2), , ( )}s   , ( ) : {1, 2, , }t R s      stands for the semi-Markov switching signal. For 
any ,  ( )  and ( )L   represent the adjacency matrix and Laplacian matrix, respectively. The 
probability transitions of the semi-Markov switching signal ( )t  is as follows: 

( ) ( ), ,
Pr{ ( ) | ( ) }

1 ( ) ( ), ,

h h o h
t h t

h h o h




  
   

  
 

       
              (2.1) 

in which ( )o h   is the higher order infinitesimal of h  as h approaches zero, ( ) 0h    denotes the 

transition rate from mode   at time t  to mode   at time t h , and 
1,

( ) ( )
s

h h 
  

 
 

   . 

Remark 1. The ( )h  in Eq (2.1) is a function of the sojourn-time h, in which h represents the 

time duration between this jump and the next jump. The term o(h) is the higher order infinitesimal of 

h as h approaches zero, which means that as h approaches 0, the limit of o(h)/h is 0. When ( )h  

is equal to a constant, SMST becomes Markov switching topologies. Therefore, Markov switching 
topologies can be regarded as a special case of SMST. 
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2.3. Problem formulations 

Consider a leader-following MASs with the following dynamic model: 

0 0

( ) ( ) ( ( )), 1, 2, , ,

( ) ( )
i i ix t Ax t Bsat u t i N

x t Ax t

  
 

 


                  (2.2)  

in which 0
nx R  represents the leader agent state, ( ) n

ix t R  and ( ) p
iu t R  are the ith follower 

agent state and control input, respectively, A  and B  refer to matrices with constant coefficients, 

( )isat u  1 2( ( ), ( ), , ( ))T
i i ipsat u sat u sat u is a saturation function with 0( ) ( )min{| |, }ij ij ijsat u sign u u v , 

where
0 0v   is the known saturation level. 

Next, the consensus protocol with SMST is considered in present research. 

0( ) ( ( )) ( ( ))[ ( ) ( )] ( ( ))( ( ) ( )) ,
i

i ij i j i i
j N

u t K t a t x t x t b t x t x t  


       
  
         (2.3) 

where ( )t  is the semi-Markov switching signal, the feedback gain matrix ( ( ))K t  is calculated 

subs-equently, ( ( ))ija t  is the ( , ) thi j  element of the relevant adjacency matrix ( ( ))t  , 

( ( )) 0ib t   is the coupling weight, which satisfies ( ( )) 0ib t   if the data of the leader is available 

to the ith follower agent, or else, ( ( )) 0ib t  . 

Denoting the error state of ith by 
0( ) ( ) ( )i it x t x t   , 1, 2, ,i N   then (2.3) are rewritten as 

( ) ( ( )) ( ( ))[ ( ) ( )] ( ( )) ( ) .
i

i ij i j i i
j N

u t K t a t t t b t t     


      
  
                (2.4) 

Substituting (2.4) into (2.2) yields  

( ) ( ) ( ( )) ( ( ))[ ( ) ( )] ( ( )) ( ) .
i

i i ij i j i i
j N

t A t Bsat K t a t t t b t t       


          
         (2.5) 

Let
1 2( ) { ( ), ( ), , ( )}Nt col t t t     . For ( ) , ,t     Eq (2.5) are expressed in matrix form as 

( ) ( ) ( ) ( ) ( ( ( ) ( )) ( ))N Nt I A t I B sat H K t                         (2.6) 

where ( ) ( ) ( )H L     , 
1 2( ) { ( ), ( ), , ( )}Nd ia g b b b     , and ( )L  is the Laplace matrix. 

Through the above analysis, the mean-square consensus issue of MASs (2.2) with consensus 
protocol (2.3) are transformed into the mean-square stability problem of semi-Markov switching 
system (2.6). Similar to [30], we give the following Definition 1. 
Definition 1. The local LFC of MASs (2.2) with SMST is said to be achieved when for any 

0  
and any (0)  , there is a protocol (2.3) such that the states of agents satisfy 

0lim ( ) ( ) 0,it
E x t x t


  1, 2, , ,i N                        (2.7) 
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where
1(0) col{ (0), , (0)}N     , and (0), 0,1,2, , ,jx j N    represents the initial state of jth agent. 

The set is called the DOCA in mean square sense of the MASs (2.2). 

Remark 2. From Definition 1, it can be seen that the DOCA of the origin is : { (0) :N nR 

0lim ( ) ( ) 0, 1, 2, ,it
E x t x t i N


    . In general, it is very difficult to find the exact DOCA. However, 

one can determine a set   as large as possible, such that   is contained in the DOCA. In the sequel, 

the estimate of the DOCA is defined as follows:  (0) : (0)NnR       , where     , 

scalar 0   that will be maximized in what follows. 
In order to facilitate the following discussion, we define a decentralized deadzone nonlinearity: 

( ) ( )v v sat v                                 (2.8) 

and a polyhedral set: 

0 0 ( ) ( ) 0( ) { , : }Np Np
i iS v v R w R v v w v       .               (2.9) 

Using the Eq (2.8), the system (2.6) are described as 

( ) ( ) ( ) ( ( ) ( )) ( ) ( ) ( )N Nt I A t H BK t I B v                      (2.10) 

where ( ( ) ( )) ( )v H K t      , 1, 2, , s   . 

Initially, we propose the following assumption and lemma, which can be applied in the proof of 
our main results. 
Assumption 1 [38]. Every communication topology i , i , has a directed spanning tree with the 
root node 0. 
Lemma 1 [39]. Consider the function ( )v  defined in (2.8). If v and w  belong to 

0( )S v , then
( )v  satisfies the following inequality: 

( ) ( ( ) ) 0Tv T v w                                  (2.11) 

for any diagonal positive definite matrix Np NpT R  . 

3. Consensus with SMST and actuator saturation 

Theorem 1. Under Assumption 1, for any initial condition belonging to the set 

 2
max(0) : max ( ( )) 1Nn

NR I P 
   


     


, 

the local consensus for the MASs (2.2) with consensus protocol (2.3) can be achieved under conditons 
that there has a diagonal matrix 0,T    matrices ( ) 0,P   1, 2, , ,s     and matrices ,G   ( )K   
such that the following matrix inequalities hold: 

1 2( ) ( )
0,

2T

   
   

                           (3.1) 
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2
0

( )
0,

T
N jI P G

v

 
  

 1,2, , ,j Np    ,                  (3.2) 

where 1
1

( ) ( )( ( )) He{ ( ( ) ) ( ) ( ( ) ( ))},
s

N Nh I P I P A H P BK


      


        

2( ) [ ( ) ( )] ( ( ) )T T T
NG H K T I P B         . 

Proof. By setting ( ( ) ( )) ( )v H K t       , ( )w v G t     , where G   represents a matrix of 

suitable dimension. According to Lemma 1, if ( )t  belongs to the following set  

0 0 0( , ) { ( ) ; ( ) },Np
jS G v t R v G t v       1,2, ,j Np                 (3.3) 

then, we have 

( ) ( ( ) ( )) 0Tv T v v G t       ,                          (3.4) 

where jG  is the jth row of G . Define a set of ellipsoids as 

 ( ( )) ( ) : ( )( ( )) ( ) 1 ,Nn T
NP t R t I P t          

where ( ),P     , are positive definite matrices. The ellipsoids ( ( )),P     , are included 
in set (3.3) if the inequality (3.2) holds. Hence, ( )v   satisfies the sector condition (3.4) for any 

( ) ( ( )),t P      . 
Establish Lyapunov functional candidate as 

( ( ), ( ), ) ( )( ( ( ))) ( ),T
NV t t t t I P t t                            (3.5) 

where ( ( )) 0P t  . Define the weak infinitesimal operator   of ( ( ), ( ), )V t t t   as 

0

1
( ( ), ( ), ) lim { { ( ( ), ( ), ) | ( ),V t t t E V t t t t    


       


( )} ( ( ), ( ), )}t V t t t      (3.6) 

For ( )t  ,   , using total probability formula and conditional expectation formula, we have 

0 1,

1
( ( ), ( ), ) lim Pr{ ( ) | ( ) } ( )( ( )) ( )

s
T

NV t t t t t t I P t
  

        
  


            

  

Pr{ ( ) | ( ) } ( )( ( )) ( ) ( )( ( )) ( )T T
N Nt t t I P t t I P t         


          


 

0 1,

( ( ) ( ))1
lim ( )( ( )) ( )

1 ( )

s
T

N

q F h F h
t I P t

F h
  

   

  
  

  
      

  

1 ( )
( )( ( )) ( ) ( )( ( )) ( )

1 ( )
T T

N N

F h
t I P t t I P t

F h




     
  

        
        (3.7) 
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where h is sojourn-time, q  is the probability intensity from mode   to mode  , and ( )F h
 

is the relevant distribution function of h of the system staying in mode  . If   is infinitely close 
to 0, then ( )t    are expressed as  

( ) ( ) ( ) ( )t t t o                                  (3.8) 

Applying the property of the cumulative probability distribution function [40], we get 

0

( ) ( )
lim ( )

(1 ( ))

F h F h
h

F h
 







 


 
,

0

( ) ( )
lim 0

1 ( )

F h F h

F h
 




 



 and 

0

1 ( )
lim 1

1 ( )

F h

F h





 



 (3.9) 

where ( )h  means corresponding jumping from mode  . 
Substituting Eqs (3.8) and (3.9) into (3.7), we obtain 

2

0 1,

( ( ) ( ))1
( ( ), ( ), ) lim ( )( ( )) ( ) ( )( ( ))

1 ( )

s
T T

N N

q F h F h
V t t t t I P t t I P

F h
  

   

      
  

  
        

      

21 ( )
( ) ( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( )

1 ( )
T T T

N N N

F h
t t I P t t I P t t I P t

F h




                    
    

( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( )T T T T
N N N Nt I P t t I P t t I P t t I P t                   

   

0 1,

( ( ) ( )) 1 ( )
lim ( )( ( )) ( ) ( ) ( ( )) ( )

(1 ( )) 1 ( )

s
T T

N N

q F h F h F h
t I P t t I P t

F h F h
   

    

     
  

            
   

( ) ( )
( )( ( )) ( ) ( )( ( )) ( )

(1 ( ))
T T

N N

F h F h
t I P t t I P t

F h
 



     
         

  

1,

( ) ( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( ) ( ) ( )
s

T T T T
N N Nq h t I P t t I P t t I P t h t  

  

           
 

          

( ( )) ( )NI P t    

Define ( ) ( )h q h   
 
for    and 

1,

( ) ( )
s

h h 
  

 
 

   , then it can be obtained that 

1

( ( ), ( ), ) ( ) ( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( ).
s

T T T
N N NV t t t h t I P t t I P t t I P t



           


         (3.10) 

Thus, combining (3.10) with (3.4), we obtain 

1

( ( ), ( ), ) ( ) ( )( ( )) ( ) ( )( ( )) ( ) ( )( ( )) ( )
s

T T T
N N NV t t t h t I P t t I P t t I P t



           


           
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2 ( ) ( ( ) ( ))Tv T v v G t       . 

Based on the matrix inequalities (3.1) and (3.2), the following inequalities can be derived 

( ( ), ( ), ) 0V t t t   .                          (3.11) 

Thus, we have  

( ( ), ( ), ) ( ) ( )TV t t t t t                              (3.12) 

for a sufficiently small 0  . Integrating both sides of the inequality (3.12) from 0 to t yields the 
following inequality: 

   0 0
{ ( ( ), ( ))} ( (0), (0)) ( ( ), ( )) ds ( ) ( ) ds

t t TE V t t V E V s s E s s              . 

Then 

   
0

1 1
( ) ( ) ds ( (0), (0)) { ( ( ), ( ))} ( (0), (0)) (0) (0)

t T TE s s V E V t t V         
 

     , 

where  max

1
max ( )NI P


 
 

    
. 

Taking the limit as fT   gives 

 0
lim ( ) ( ) ds (0) (0)

f

f

T T T

T
E s s   


  , 

which indicates that lim ( ) ( ) 0
f

T

T
s s 


 . Accordingly, Eq (2.7) holds. 

From (3.5) and (3.11), it follows that 

( )( ( )) ( ) ( ) (0) (0)( ( )) (0)T T
N Nt I P t V t V I P           

Hence, for any initial condition (0 )  in ,  it can be infered that ( )( ( )) ( ) 1T
Nt I P t    . 

This ensures that all the trajectories of ( )t   which starts from the set    always remain in the 

domain ( ( ))P  . As a consequence, the result derived using the sector condition is valid. Based on 
above analysis, if conditions (3.1) and (3.2) are satisfied, one obtains ( ( ), ( ), ) 0, 0V t t t t      for 

all initial condition belonging to the set  . Thus, Under Assumption 1, for any initial condition in set 

,  the local consensus for the MASs (2.2) with consensus protocol (2.3) can be obtained. 

It should be emphasized that the above result concerning the consensus is valid only in a local 
sense. If the matrix A in the MASs (2.2) is Hurwitz, the global consensus issue can be addressed by 
considering 0G  . The following corollary gives a sufficient condition for the MASs (2.2) to meet 
the requirement of global consensus. 
Corollary 1. Suppose that under Assumption 1, the global consensus for the MASs (2.2) with 
consensus protocol (2.3) can be achieved under conditions that there has a diagonal matrix 0,T 
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matrices ( ) 0,P    1, 2, , ,s   and matrices ( )K  such that the following matrix inequalities hold: 

1 2
ˆ ˆ( ) ( )

0,
2T

   
 

  
   , 

where  1
1

ˆ ( ) ( )( ( )) ( ( ) ) ( ) ( ( ) ( )) ,
s

N Nh I P I P A H P BK


      


       He  

2
ˆ ( )  [ ( ) ( )] ( ( ) )T T

NH K T I P B     . 

In the next theorem, we will design a consensus controller to ensure that the local consensus for 
the MASs (2.2) can be reached. 
Theorem 2. Under Assumption 1, if there exists a diagonal matrix 0T   , matrices ( ) 0 ,P  

 

  , and ( ),G  ( ) ,K   such that the matrix inequalities (3.13) and (3.14) hold: 

1 2

2

( ) ( ) ( , )

2 0 0,

( )

h

T

  



   
    
    

 




                      (3.13) 

2
0

( ) ( )
0,

T
N jI P G

v

  
 

 


  1,2, , ,j Np     ,          (3.14) 

where  

 1( ) ( )( ( )) ( ( )) ( ) ( ( )) ,N Nh I P I AP H BK           He     

2( ) [ ( ) ( ) ( )] ( ) ,T T T
NG H K I B T          

 1( , ) ( , ) ( ),h h       

1 1( ) diag{( ( )), ,( ( ))} ,N N sI P I P        

1 , 1 , 1 ,( , ) ( ) ( ) ( ) ( ) ,sh h h h h           
      

2( ) diag{( (1)), ,( ( 1)),N NI P I P     
 1( ( 1)), ,( ( ))} .N N sI P I P s      

Then, under Definition 1, for any initial condition in the set 

  1 2
max(0) : max ( ( )) 1 ,Nn

NR I P 
   


     




              (3.15) 

the local consensus for the MASs (2.2) with consensus protocol (2.3) can be reached. Moreover, the 
consensus feedback gains can be given by  

1( ) ( ) ( ) ,K K P      1, 2, , .s    

Proof. Defining matrix variables  
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1( ) ( ) ,P P 
 

1 ,T T    ( ) ( ) ,NG G I P   
 

( ) ( ) ( )K K P    . 

Pre- and post-multiplying (3.1) with  

1 1{ ( ), },Ndiag I P T   

we can yield  

1 0 2( ) ( ) ( )
0,

2T

      
   

 
  

that is,  

11 2
2

( , )( ) ( )
( ) ( , ) 0 0,

02
Th

h
T

 
                  

 
           (3.16) 

where 

 1( ) ( )( ( )) ( ( )) ( ) ( ( )) ,N Nh I P I AP H BK           He  

2( ) [ ( ) ( ) ( )] ( ) ,T T T
NG H K I B T          

    0
1,

( ) ( ) ( ) ( ) ( )
s

N N Nh I P I P I P
  

    
 

       . 

The inequality (3.16) is equivalent to the inequality (3.13) using the Schur complement. Pre- and 

post-multiplying the matrix inequalities (3.2) by { ( ), }N N ndiag I P I I  , we can get (3.14), and the 

proof is finished. 

Due to the fact that ( )h   is time-varying, the inequality (3.13) is very hard to treat. 

Subsequenty, based on the bounds of the transition rate, the following Theorem 3 is proposed to 

determine the solvable conditions. 

Theorem 3. Under Assumption 1, if there has a diagonal matrix 0T  , matrices ( ) 0 ,P     , 

and matrices ( ), ( ),G K    such that (3.14) and the following LMIs hold: 

1 2

2

( ) ( ) ( )

2 0 0,

( )

T

  



   
    
    






                         (3.17) 

 
1 2

2

( ) ( ) ( )

2 0 0,

( )

T

  



   
    
    






                         (3.18) 
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where  

 1( ) ( )( ( )) ( ( )) ( ) ( ( )) ,N Nh I P I AP H BK           He  
 

 1( ) ( ) ( ( )) ( ( )) ( ) ( ( )) ,N Nh I P I AP H BK            He  
 

1( ) ( ) ( ),      1 , 1 , 1 ,( ) ,s           
    

 

1( ) ( ) ( ),     
 

1 , 1 , 1 ,( ) ,s           
      

2 1( ), ( )  
 
and 

2 ( )  are defined as in Theorem 2. 

Then, under Definition 1, for all initial condition in set  , the local consensus for the MASs (2.2) 

with (2.3) can be reached. Moreover, the consensus feedback gains can be given by  

1( ) ( ) ( ) ,K K P    
 1, 2, , .s    

Proof. The proof of Theorem 3 is similar to Theorem 2 in [40], which is omitted here. 
Remark 3. In Theorem 3, a consensus controller to ensure the local consensus of the MASs (2.2) 
with (2.3) is designed based on the linear matrix inequality (LMI) form. From (3.14), (3.17) and (3.18), 
we noticed that there are (2 )Np s LMIs and 3 1s  matrix variables. By analytical calculation, the 
number of decision variables in Theorem 3 is [ ( 1 2 ) 2] ( 1)ns n p N p N ns    , where , ,N s n  and
p  denote the number of follower agents, semi-Markov switching topologies, the dimension of the 

agent state vector and control input vector, respectively. Obviously, as , ,N s n  and p  increase, the 
computational complexity increases accordingly. 

Subsequently, a less conservative result can be obtained in Corollary.  
Corollary 2. Under Assumption 1, if there exists a diagonal matrix 0T  , matrices ( , ) 0,P k   and 

matrices ( , ),G k ( , ),K k   , 1, 2, , ,k    such that the LMIs (3.19), (3.20) and (3.21) hold: 

1 2

2

( , ) ( , ) ( , )

2 0 0,

( , )

k k k

T

k

  



   
    
    






                  (3.19) 

1 2

2

( , ) ( , ) ( , )

2 0 0,

( , )

k k k

T

k

  



   
    
    






                  (3.20) 

2
0

( , ) ( , )
0,

T
N jI P k G k

v

  
 

 


                     (3.21) 

 1,2, , ,j Np    , 1, 2, , ,k     

where  
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 1 ,( , ) ( )( ( , )) ( ( , )) ( ) ( ( , )) ,k N Nk h I P k I AP k H BK k           He    

 1 ,( , ) ( )( ( , )) ( ( , )) ( ) ( ( , )) ,k N Nk h I P k I AP k H BK k           He    

2( , ) [ ( , ) ( ) ( , )] ( ) ,T T T
Nk G k H K k I B T            

1( , ) ( , ) ( , ),k k k       

1, 1, 1, ,( , ) ,k k k s kk          
      1( , ) ( , ) ( , ),k k k       

1, 1, 1, ,( , ) ,k k k s kk          
      1( , ) diag{( ( , )),Nk I P k     

1 2,( ( , ))} , ( , ) diag{( (1, )), ,( ( 1, )),( ( 1, )),N s N N NI P k k I P k I P k I P k               

1,( ( , ))} .N sI P s k     

Then, under Definition 1, for all initial condition in set 

  1 2
max( , ) (0) : max ( ( , )) 1 ,Nn

Nk R I P k 
    


     




      (3.22) 

the local consensus for the MASs (2.2) with (2.3) can be reached. Moreover, the consensus feedback 
gains are determined by 

1( , ) ( , ) ( , ),K k K k P k       , 1, 2, , .k   � 

4. Estimation of domain of consensus attraction 

Next, we will discuss the estimation and optimization of the domain of consensus attraction  . 

By solving the inequality (3.19), (3.20) and (3.21), we can get a set of feedback matrices ( , )K k ,

  , 1, 2, ,k  �  , and a consensus attraction domain ( , )k  . However, we are more interested 

in finding a set of solutions such that the set of admissible initial conditions is as large as possible. In 

the following, an optimization procedure is proposed to maximize the set of the initial conditions, i.e., 

to find a maximal estimate of the DOCA. According to the Corollary 2, an optimization problem of 

the estimate of that were stated as follows: 

min
0  subject to 

0

(a)  LMIs  ,  and (3.21) hold(3.19) (3.20)

(b) 0.
( , )

,

Nn Nn

Nn N

I I

I I P k







      
               (4.1) 
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Similar to the literature [41], the scalars 
0   are introduced to bound the items 

1
max( ( , ))NI P k    in (3.22) for getting a maximal estimate of the DOCA for system (2.6). In fact, 

the satisfaction of LMI (b) implies that 
1

max ( ( , ))NI P k  
0  . Combining this inequality with 

(3.22), we obtain that 

2 1
max max 01 (max ( ( ( , )))) 1 .NI P k   

  
  

Therefore, if we minimize
0 , then we maximize the bound 

01  and thus
max tends to be larger. 

In other words, by solving the optimal problem (4.1), we can obtain a maximal estimate of the 

consensus attraction domain. 

5. Numerical example 

In this part, a practical example on the position tracking of multiple wheeled mobile robots [42,43] 
is provided to prove the validity of the proposed algorithm. 

Consider the following MASs (2.2), including four followers and a leader: 

0 0

( ) ( ) ( ( )), 1, 2,3, 4,

( ) ( )
i i ix t Ax t Bsat u t i

x t Ax t

  
 




 

whose system matrices are given as  

0 1 0

0 0 ,

0
i

i i

A c

d a

 
   
   

0

0 ,

i

B

b

 
   
  

1
3

2

3

( )

( ) ( ) ,

( )

i

i i

i

x t

x t x t R

x t

 
   
  

0,1, 2, 3, 4,i   

where the system parameter [ ]i i i i if a b c d are selected as [2 10 1 10]if  . 
It is assumed that the communication topology of MASs (2.2) is semi-Markov switching and has 

three modes{ (1), (2), (3)}   . For convenience, the communication topology graph is omitted here. 
In fact, it is also easy to get this graph from the following matrix. The corresponding Laplacian matrix 
and leader adjacency matrix are given directly as follows: 

0 0 0 0

1 1 0 0
(1) ,

0 1 1 0

1 0 0 1

L

 
  
 
  

1 1 0 0

0 0 0 0
(2) ,

1 0 1 0

0 0 1 1

L

 
 
 
 
  

1 0 1 0

0 0 0 0
(3) ,

0 0 0 0

1 0 0 1

L

 
 
 
 
  

 

(1) {1,1, 0, 0},diag (2) {1,1, 0, 0},diag (3) {0,1,1, 0}.diag  

The transition rates in that are time-varying, and we can assume that they have the following 
upper and lower bounds: 

11 12 13 21 22( ) ( 7 .4, 1 .3), ( ) (0 .5, 3), ( ) (0 .8, 4 .5), ( ) (0 .6 , 3 .8), ( ) ( 9, 1 .6 ),h h h h h              

23 31 32 33( ) (1, 5), ( ) (1 .6, 5 .6 ), ( ) (0 .7 , 7 ), ( ) ( 12, 2 ).h h h h          
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By solving optimization (33) with 0 100v   , we can obtain min 0.8892    and consensus 
feedback matrices  

     1 2 375.7 26.5 3.3 , 61.0 21.3 2.7 , 88.1 30.7 3.9K K K   . 

Thus, the corresponding estimation of the DOCA is
m ax m in1 1 .0605   . The initial states of 

every agent as following as
0 1 2 3(0) (0, 0, 0) , (0) (8, 2, 3) , (0) ( 8, 5, 8) , (0) ( 7, 4, 5) ,T T T Tx x x x          

4 (0) (3, 5, 7)Tx  . According to the above analysis and assumptions, we can plot the tracking error 

trajectories between the leader and the followers (see Figure (1)). The control input of four follower 
agents is also shown below (see Figure (2)). 

Figure 1. The tracking error trajectories. 

 

Figure 2. The control input of four followers. 

As we can see from Figure 1, under the consensus protocol with SMST (2.3), the tracking errors 
approach zero asymptotically which means that the local consensus for the MASs (2.2) with consensus 
protocol (2.3) can be obtained. The semi-Markov switching signal is presented in Figure 3.  
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Figure 3. The semi-Markov switching signal. 

6. Conclusions 

We researched the consensus issue for MASs subject to actuator saturation with SMST. By 
constructing a suitable mode-dependent Lyapunov-Krasovskii functional, some sufficient conditions 
were presented to confirm that the LFC can be locally achieved in mean-square sense. Then, with the 
derived sufficient condition, the design issue of the consensus controller was converted into an 
optimization problem aiming at enlarging the estimation the DOCA of the origin. Then, a numerical 
example was presented to verify the performance of the design method. In future work, there are 
problems that need to be solved, such as consensus of singular MASs with SMST, cooperative control 
of fractional order MASs with SMST, and so on. 
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