Skin cutaneous melanoma (SKCM) is one of the most malignant skin cancers and remains a health concern worldwide. Pyroptosis is a newly recognized form of programmed cell death and plays a vital role in cancer progression. We aim to construct a prognostic model for SKCM patients based on pyroptosis-related genes (PRGs). SKCM patients from The Cancer Genome Atlas (TCGA) were divided into training and validation cohorts. We used GSE65904 downloaded from GEO database as an external validation cohort. We performed Cox regression and the least absolute shrinkage and selection operator (LASSO) regression to identify prognostic genes and built a risk score. Patients were divided into high- and low-risk groups based on the risk score. Differently expressed genes (DEGs), immune cell infiltration and immune-related pathways activation were compared between the two groups. We established a model containing 4 PRGs, i.e., GSDMA, GSDMC, AIM2 and NOD2. The overall survival (OS) time was significantly different between the 2 groups. The risk score was an independent predictor for prognosis in both the uni- and multi-variable Cox regressions. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that DEGs were enriched in immune-related pathways. Most types of immune cells were highly expressed in the low risk group. All immune pathways were significantly up-regulated in the low-risk group. In addition, low-risk patients had a better response to immune checkpoint inhibitors. Our novel pyroptosis-related gene signature could predict the prognosis of SKCM patients and their response to immune checkpoint inhibitors.
Citation: Zehao Niu, Yujian Xu, Yan Li, Youbai Chen, Yan Han. Construction and validation of a novel pyroptosis-related signature to predict prognosis in patients with cutaneous melanoma[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 688-706. doi: 10.3934/mbe.2022031
[1] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[2] | Qiang Li, Lili Ma . 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058 |
[5] | Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237 |
[6] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
[7] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[8] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[9] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
Skin cutaneous melanoma (SKCM) is one of the most malignant skin cancers and remains a health concern worldwide. Pyroptosis is a newly recognized form of programmed cell death and plays a vital role in cancer progression. We aim to construct a prognostic model for SKCM patients based on pyroptosis-related genes (PRGs). SKCM patients from The Cancer Genome Atlas (TCGA) were divided into training and validation cohorts. We used GSE65904 downloaded from GEO database as an external validation cohort. We performed Cox regression and the least absolute shrinkage and selection operator (LASSO) regression to identify prognostic genes and built a risk score. Patients were divided into high- and low-risk groups based on the risk score. Differently expressed genes (DEGs), immune cell infiltration and immune-related pathways activation were compared between the two groups. We established a model containing 4 PRGs, i.e., GSDMA, GSDMC, AIM2 and NOD2. The overall survival (OS) time was significantly different between the 2 groups. The risk score was an independent predictor for prognosis in both the uni- and multi-variable Cox regressions. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that DEGs were enriched in immune-related pathways. Most types of immune cells were highly expressed in the low risk group. All immune pathways were significantly up-regulated in the low-risk group. In addition, low-risk patients had a better response to immune checkpoint inhibitors. Our novel pyroptosis-related gene signature could predict the prognosis of SKCM patients and their response to immune checkpoint inhibitors.
The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].
Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal α-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, O-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].
The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively α-type Hochschild cohomology and α-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.
The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.
In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.
Definition 2.1. (see [7]) A Hom-Lie algebra is a triple (g,[⋅,⋅]g,ϕg) consisting of a vector space g, a skew-symmetric bilinear map [⋅,⋅]g:∧2g⟶g and a homomorphism ϕg:g⟶g, satisfying ϕg[x,y]=[ϕg(x),ϕg(y)] and
[ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,∀x,y,z∈g. | (2.1) |
A Hom-Lie algebra (g,[⋅,⋅]g,ϕg) is said to be regular if ϕg is invertible.
Definition 2.2. (see [29]) A representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) on a vector space V with respect to β∈gl(V) is a linear map ρ:g⟶gl(V), such that for all x,y∈g, the following equalities are satisfied:
ρ(ϕg(x))∘β=β∘ρ(x), | (2.2) |
ρ([x,y]g)∘β=ρ(ϕg(x))∘ρ(y)−ρ(ϕg(y))∘ρ(x). | (2.3) |
We denote a representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) by a triple (V,β,ρ).
Definition 2.3. (see [9]) A Hom-pre-Lie algebra (A,⋅,α) is a vector space A equipped with a bilinear product ⋅:A⊗A⟶A, and α∈gl(A), such that for all x,y,z∈A, α(x⋅y)=α(x)⋅α(y) and the following equality is satisfied:
(x⋅y)⋅α(z)−α(x)⋅(y⋅z)=(y⋅x)⋅α(z)−α(y)⋅(x⋅z). | (2.4) |
A Hom-pre-Lie algebra (A,⋅,α) is said to be regular if α is invertible.
Let (A,⋅,α) be a Hom-pre-Lie algebra. The commutator [x,y]C=x⋅y−y⋅x defines a Hom-Lie algebra (A,[⋅,⋅]C,α), which is denoted by AC and called the sub-adjacent Hom-Lie algebra of (A,⋅,α).
Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra (A,⋅,α) to a Hom-pre-Lie algebra (A′,⋅′,α′) is a linear map f:A⟶A′ such that for all x,y∈A, the following equalities are satisfied:
f(x⋅y)=f(x)⋅′f(y),∀x,y∈A, | (2.5) |
f∘α=α′∘f. | (2.6) |
Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra (A,⋅,α) on a vector space V with respect to β∈gl(V) consists of a pair (ρ,μ), where ρ:A⟶gl(V) is a representation of the sub-adjacent Hom-Lie algebra AC on V with respect to β∈gl(V), and μ:A⟶gl(V) is a linear map, satisfying, for all x,y∈A:
β∘μ(x)=μ(α(x))∘β, | (2.7) |
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (2.8) |
We denote a representation of a Hom-pre-Lie algebra (A,⋅,α) by a quadruple (V,β,ρ,μ). Furthermore, Let L,R:A⟶gl(A) be linear maps, where Lxy=x⋅y,Rxy=y⋅x. Then (A,α,L,R) is also a representation, which we call the regular representation.
Let (A,⋅,α) be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication ⋅ by ω.
Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,ω,α). We define Cnω(A;V) and Cnα(A;V) respectively by
Cnω(A;V)=Hom(∧n−1A⊗A,V),Cnα(A;V)=Hom(∧n−2A⊗A,V),∀n≥2. |
Define the set of cochains ˜Cn(A;V) by
{˜Cn(A;V)=Cnω(A;V)⊕Cnα(A;V),∀n≥2,˜C1(A;V)=Hom(A,V). | (2.9) |
For all (φ,ψ)∈˜Cn(A;V),x1,…,xn+1∈A, we define ∂ωω:Cnω(A;V)⟶Cn+1ω(A;V) by
(∂ωωφ)(x1,…,xn+1)=n∑i=1(−1)i+1ρ(αn−1(xi))φ(x1,…,^xi,…,xn+1)+n∑i=1(−1)i+1μ(αn−1(xn+1))φ(x1,…,^xi,…,xn,xi)−n∑i=1(−1)i+1φ(α(x1),…,^α(xi)…,α(xn),xi⋅xn+1)+∑1≤i<j≤n(−1)i+jφ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+1)), |
where the hat corresponds to deleting the element, define ∂αα:Cnα(A;V)⟶Cn+1α(A;V) by
(∂ααψ)(x1,…,xn)=n−1∑i=1(−1)iρ(αn−1(xi))ψ(x1,…,^xi,…,xn)+n−1∑i=1(−1)iμ(αn−1(xn))ψ(x1,…,^xi,…,xn−1,xi)−n−1∑i=1(−1)iψ(α(x1),…,^α(xi),…,α(xn−1),xi⋅xn)+∑1≤i<j≤n−1(−1)i+j−1ψ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn)), |
define ∂ωα:Cnω(A;V)⟶Cn+1α(A;V) by
(∂ωαφ)(x1,…,xn)=βφ(x1,…,xn)−φ(α(x1),…,α(xn)), |
and define ∂αω:Cnα(A;V)⟶Cn+1ω(A;V) by
(∂αωψ)(x1,…,xn+1)=∑1≤i<j≤n(−1)i+jρ([αn−2(xi),αn−2(xj)]C)ψ(x1,…,^xi,…,^xj,…,xn+1)+∑1≤i<j≤n(−1)i+jμ(αn−2(xi)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xj)−∑1≤i<j≤n(−1)i+jμ(αn−2(xj)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xi). |
Define the operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) by
˜∂(φ,ψ)=(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ),∀φ∈Cnω(A;V),ψ∈Cnα(A;V),n≥2, | (2.10) |
˜∂(φ)=(∂ωωφ,∂ωαφ),∀φ∈Hom(A,V). | (2.11) |
The following diagram will explain the above operators:
![]() |
Lemma 2.6. With the above notations, we have
∂ωω∘∂ωω+∂αω∘∂ωα=0, | (2.12) |
∂ωω∘∂αω+∂αω∘∂αα=0, | (2.13) |
∂ωα∘∂ωω+∂αα∘∂ωα=0, | (2.14) |
∂ωα∘∂αω+∂αα∘∂αα=0. | (2.15) |
Proof. The proof is given in the Appendix.
Theorem 2.7. The operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) defined as above satisfies ˜∂∘˜∂=0.
Proof. When n≥2, for all (φ,ψ)∈˜Cn(A;V), by (2.10) and Lemma 2.6, we have
˜∂∘˜∂(φ,ψ)=˜∂(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ)=(∂ωω∂ωωφ+∂ωω∂αωψ+∂αω∂ωαφ+∂αω∂ααψ,∂ωα∂ωωφ+∂ωα∂αωψ+∂αα∂ωαφ+∂αα∂ααψ)=0. |
When n=1, for all φ∈Hom(A,V), by (2.11) and Lemma 2.6, we have
˜∂∘˜∂(φ)=˜∂(∂ωωφ,∂ωαφ)=(∂ωω∂ωωφ+∂αω∂ωαφ,∂ωα∂ωωφ+∂αα∂ωαφ)=0. |
This finishes the proof.
We denote the set of closed n-cochains by ˜Zn(A;V) and the set of exact n-cochains by ˜Bn(A;V). We denote by ˜Hn(A;V)=˜Zn(A;V)/˜Bn(A;V) the corresponding cohomology groups.
Definition 2.8. Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,⋅,α). The cohomology of the cochain complex (⊕∞n=1˜Cn(A;V),∂) is called the full cohomology of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
We use ˜∂reg to denote the coboundary operator of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the regular representation. The corresponding cohomology group will be denoted by ˜Hn(A;A).
Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.
In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group ˜H2(A;A) is trivial, then the Hom-pre-Lie algebra is rigid.
Definition 3.1. Let (A,ω,α) be a Hom-pre-Lie algebra, ωt=ω+∑+∞i=1ωiti:A[[t]]⊗A[[t]]⟶A[[t]] be a K[[t]]-bilinear map and αt=α+∑+∞i=1αiti:A[[t]]⟶A[[t]] be a K[[t]]-linear map, where ωi:A⊗A⟶A and αi:A⟶A are linear maps. If (A[[t]],ωt,αt) is still a Hom-pre-Lie algebra, we say that {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α).
If {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), for all x,y,z∈A and n=1,2,…, we then have
∑i+j+k=ni,j,k≥0ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0. | (3.1) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(∂ωωωn+∂αωαn)(x,y,z). | (3.2) |
For all x,y∈A and n=1,2,…, we have
∑i+j+k=ni,j,k≥0ωi(αj(x),αk(y))−∑i+j=ni,j≥0αi(ωj(x,y))=0. | (3.3) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(αj(x),αk(y))−∑i+j=ni,j>0αi(ωj(x,y))=(∂ωαωn+∂αααn)(x,y). | (3.4) |
Proposition 3.2. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). Then (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α) with coefficients in the regular representation.
Proof. When n=1, by (3.1), we have
0=(x⋅y)⋅α1(z)+ω1(x,y)⋅α(z)+ω1(x⋅y,α(z))−α(x)⋅ω1(y,z)−α1(x)⋅(y⋅z)−ω1(α(x),y⋅z)−(y⋅x)⋅α1(z)−ω1(y,x)⋅α(z)−ω1(y⋅x,α(z))+α(y)⋅ω1(x,z)+α1(y)⋅(x⋅z)+ω1(α(y),x⋅z)=−(∂ωωω1+∂αωα1)(x,y,z), |
and by (3.3), we have
0=ω1(α(x),α(y))+α1(x)⋅α(y)+α(x)⋅α1(y)−α(ω1(x,y))−α1(x⋅y)=−(∂ωαω1+∂ααα1)(x,y), |
which implies that ˜∂reg(ω1,α1)=0. Thus, (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.3. The 2-cocycle (ω1,α1) is called the infinitesimal of the 1-parameter formal deformation (A[[t]],ωt,αt) of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.4. Let (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be two 1-parameter formal deformations of a Hom-pre-Lie algebra (A,ω,α). A formal isomorphism from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt) is a power series Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ω′t=ωt∘(Φt×Φt), | (3.5) |
αt∘Φt=Φt∘α′t. | (3.6) |
Two 1-parameter formal deformations (A[[t]],ω′t,α′t) and (A[[t]],ωt,αt) are said to be equivalent if there exists a formal isomorphism Φt=∑+∞i=0φiti from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt).
Theorem 3.5. Let (A,ω,α) be a Hom-pre-Lie algebra.If two 1-parameter formal deformations (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) are equivalent, then there infinitesimals (ω′1,α′1) and (ω1,α1) are in the same cohomology class of ˜H2(A;A).
Proof. Let (ω′t,α′t) and (ωt,αt) be two 1-parameter formal deformations. By Proposition 3.2, we have (ω′1,α′1) and (ω1,α1)∈˜Z2(A;A). Let Φt=∑+∞i=0φiti be the formal isomorphism. Then for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φ1t+…)ωt(x+φ1(x)t+…,y+φ1(y)t+…)=(Id−φ1t+…)(x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y))t+…)=x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y)−φ1(x⋅y))t+…. |
Thus, we have
ω′1(x,y)−ω1(x,y)=x⋅φ1(y)+φ1(x)⋅y−φ1(x⋅y)=∂ωωφ1(x,y), |
which implies that ω′1−ω1=∂ωωφ1.
For all x∈A, we have
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φ1t+…)αt(x+φ1(x)t+…)=(Id−φ1t+…)(α(x)+(α(φ1(x))+α1(x))t+…)=α(x)+(α(φ1(x))+α1(x)−φ1(α(x)))t+…. |
Thus, we have
α′1(x)−α1(x)=α(φ1(x))−φ1(α(x))=∂ωαφ1(x), |
which implies that α′1−α1=∂ωαφ1.
Thus, we have (ω′1−ω1,α′1−α1)∈˜B2(A;A). This finishes the proof.
Definition 3.6. A 1-parameter formal deformation (A[[t]],ωt,αt) of a Hom-pre-Lie algebra (A,ω,α) is said to be trivial if it is equivalent to (A,ω,α), i.e. there exists Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ωt=ω∘(Φt×Φt), | (3.7) |
α∘Φt=Φt∘αt. | (3.8) |
Definition 3.7. Let (A,ω,α) be a Hom-pre-Lie algebra. If all 1-parameter formal deformations are trivial, we say that (A,ω,α) is rigid.
Theorem 3.8. Let (A,ω,α) be a Hom-pre-Lie algebra. If ˜H2(A;A)=0, then (A,ω,α) is rigid.
Proof. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation and assume that n≥1 is the minimal number such that at least one of ωn and αn is not zero. By (3.2), (3.4) and ˜H2(A;A)=0, we have (ωn,αn)∈˜B2(A;A). Thus, there exists φn∈˜C1(A;A) such that ωn=∂ωω(−φn) and αn=∂ωα(−φn). Let Φt=Id+φntn and define a new formal deformation (ω′t,α′t) by ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y)) and α′t(x)=Φ−1t∘αt(Φt(x)). Then (ω′t,α′t) and (ωt,αt) are equivalent. By a straightforward computation, for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φntn+…)ωt(x+φn(x)tn,y+φn(y)tn)=(Id−φntn+…)(x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y))tn+…)=x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y)−φn(x⋅y))tn+…. |
Thus, we have ω′1=ω′2=⋯=ω′n−1=0. Moreover, we obtain
ω′n(x,y)=φn(x)⋅y+x⋅φn(y)+ωn(x,y)−φn(x⋅y)=∂ωωφn(x,y)+ωn(x,y)=0. |
For all x∈A, we get
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φntn+…)αt(x+φn(x)tn)=(Id−φ1tn+…)(α(x)+(α(φn(x))+αn(x))tn+…)=α(x)+(α(φn(x))+αn(x)−φn(α(x)))tn+…. |
Thus, α′1=α′2=⋯=α′n−1=0, and
α′n(x,y)=α(φn(x))+αn(x)−φn(α(x))=∂ωαφn(x)+αn(x)=0. |
By repeating this process, we obtain that (A[[t]],ωt,αt) is equivalent to (A,ω,α). The proof is finished.
At the end of this section, we recall 1-parameter formal deformations of Hom-Lie algebras, and establish the relation between 1-parameter formal deformations of Hom-pre-Lie algebras and 1-parameter formal deformations of Hom-Lie algebras.
Definition 3.9. (see [25]) Let (g,[⋅,⋅]g,ϕg) be a Hom-Lie algebra, [⋅,⋅]t=[⋅,⋅]g+∑+∞i=1ˉωiti:g[[t]]∧g[[t]]⟶g[[t]] be a K[[t]]-bilinear map and ϕt=ϕg+∑+∞i=1ϕiti:g[[t]]⟶g[[t]] be a K[[t]]-linear map, where ˉωi:g⊗g⟶g and ϕi:g⟶g are linear maps. If (g[[t]],[⋅,⋅]t,ϕt) is still a Hom-Lie algebra, we say that {ˉωi,ϕi}i≥1 generates a 1-parameter formal deformation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg).
Proposition 3.10. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), then
{ωi−ωi∘σ,αi}i≥1 |
generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC, where σ:A⊗A⟶A⊗A is the flip operator defined by σ(x⊗y)=y⊗x for all x,y∈A.
Proof. Let (A[[t]],ωt,αt) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). For all x,y∈A, we have
ωt(x,y)−ωt(y,x)=ω(x,y)−ω(y,x)++∞∑i=1ωi(x,y)ti−+∞∑i=1ωi(y,x)ti=[x,y]C++∞∑i=1(ωi−ωi∘σ)(x,y)ti, |
and
αt∘(ωt(x,y)−ωt(y,x))=ωt(αt(x),αt(y))−ωt(αt(y),αt(x)). |
Therefore, {ωi−ωi∘σ,αi}i≥1 generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC.
In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group ˜H2(A;V).
Definition 4.1. Let (A,⋅,α) and (V,⋅V,β) be two Hom-pre-Lie algebras. An extension of (A,⋅,α) by (V,⋅V,β) is a short exact sequence of Hom-pre-Lie algebra morphisms:
![]() |
where (ˆA,⋅ˆA,αˆA) is a Hom-pre-Lie algebra.
It is called an abelian extension if (V,⋅V,β) is an abelian Hom-pre-Lie algebra, i.e. for all u,v∈V,u⋅Vv=0.
Definition 4.2. A section of an extension (ˆA,⋅ˆA,αˆA) of a Hom-pre-Lie algebra (A,⋅,α) by (V,⋅V,β) is a linear map s:A⟶ˆA such that p∘s=IdA.
Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) and s:A⟶ˆA a section. For all x,y∈A, define linear maps θ:A⊗A⟶V and ξ:A⟶V respectively by
θ(x,y)=s(x)⋅ˆAs(y)−s(x⋅y), | (4.1) |
ξ(x)=αˆA(s(x))−s(α(x)). | (4.2) |
And for all x,y∈A,u∈V, define ρ,μ:A⟶gl(V) respectively by
ρ(x)(u)=s(x)⋅ˆAu, | (4.3) |
μ(x)(u)=u⋅ˆAs(x). | (4.4) |
Obviously, ˆA is isomorphic to A⊕V as vector spaces. Transfer the Hom-pre-Lie algebra structure on ˆA to that on A⊕V, we obtain a Hom-pre-Lie algebra (A⊕V,⋄,ϕ), where ⋄ and ϕ are given by
(x+u)⋄(y+v)=x⋅y+θ(x,y)+ρ(x)(v)+μ(y)(u),∀x,y∈A,u,v∈V, | (4.5) |
ϕ(x+u)=α(x)+ξ(x)+β(u),∀x∈A,u∈V. | (4.6) |
Theorem 4.3. With the above notations, we have
(i) (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α),
(ii) (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
Proof. For all x∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄v)−ϕ(x)⋄ϕ(v)=β(ρ(x)(v))−ρ(α(x))β(v)=0, |
which implies that
β∘ρ(x)=ρ(α(x))∘β. | (4.7) |
Similarly, we have
β∘μ(x)=μ(α(x))∘β. | (4.8) |
For all x,y∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(v)−ϕ(x)⋄(y⋄v)−(y⋄x)⋄ϕ(v)+ϕ(y)⋄(x⋄v)=(x⋅y+θ(x,y))⋄β(v)−(α(x)+ξ(x))⋄ρ(y)(v)−(y⋅x+θ(y,x))⋄β(v)+(α(y)+ξ(y))⋄ρ(x)(v)=ρ(x⋅y)β(v)−ρ(α(x))ρ(y)(v)−ρ(y⋅x)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)−ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0, |
which implies that
ρ([x,y]C)∘β=ρ(α(x))∘ρ(y)−ρ(α(y))∘ρ(x). | (4.9) |
Similarly, we have
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (4.10) |
By (4.7), (4.8), (4.9), (4.10), we obtain that (V,β,ρ,μ) is a representation.
For all x,y∈A, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄y)−ϕ(x)⋄ϕ(y)=ϕ(x⋅y+θ(x,y))−α(x)⋅α(y)−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=ξ(x⋅y)+β(θ(x,y))−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=∂ωαθ(x,y)+∂ααξ(x,y)=0, |
which implies that
∂ωαθ+∂ααξ=0. | (4.11) |
For all x,y,z∈A, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(z)−ϕ(x)⋄(y⋄z)−(y⋄x)⋄ϕ(z)+ϕ(y)⋄(x⋄z)=(x⋅y+θ(x,y))⋄(α(z)+ξ(z))−(α(x)+ξ(x))⋄(y⋅z+θ(y,z))−(y⋅x+θ(y,x))⋄(α(z)+ξ(z))+(α(y)+ξ(y))⋄(x⋅z+θ(x,z))=θ(x⋅y,α(z))+μ(α(z))θ(x,y)−θ(α(x),y⋅z)−ρ(α(x))θ(y,z)−θ(y⋅x,α(z))−μ(α(z))θ(y,x)+θ(α(y),x⋅z)+ρ(α(y))θ(x,z)+ρ(x⋅y)ξ(z)−μ(y⋅z)ξ(x)−ρ(y⋅x)ξ(z)+μ(x⋅z)ξ(y)=−∂ωωθ(x,y,z)−∂αωξ(x,y,z)=0, |
which implies that
∂ωωθ+∂αωξ=0. | (4.12) |
By Eqs (4.11) and (4.12), we obtain that ˜∂(θ,ξ)=0, which implies that (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α). The proof is finished.
Definition 4.4. Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) be two abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) such that the following diagram is commutative:
![]() |
Proposition 4.5. With the above notations, we have
(i) Two different sections of an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) give rise to the same representation of (A,⋅,α),
(ii) Isomorphic abelian extensions give rise to the same representation of (A,⋅,α).
Proof. (i) Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing two different sections s1,s2:A⟶ˆA, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations (V,β,ρ1,μ1) and (V,β,ρ2,μ2). Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x∈A, we have
ρ1(x)(u)−ρ2(x)(u)=s1(x)⋅ˆAu−s2(x)⋅ˆAu=(φ(x)+s2(x))⋅ˆAu−s2(x)⋅ˆAu=φ(x)⋅ˆAu=0, |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
(ii) Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Let s1:A1⟶^A1 and s2:A2⟶^A2 be two sections of (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that (V,β,ρ1,μ1) and (V,β,ρ2,μ2) are their representations respectively. Define s′1:A1⟶^A1 by s′1=ζ−1∘s2. Since ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by p2∘ζ=p1, we have
p1∘s′1=p2∘ζ∘ζ−1∘s2=IdA. | (4.13) |
Thus, we obtain that s′1 is a section of (^A1,⋅^A1,α^A1). For all x∈A,u∈V, we have
ρ1(x)(u)=s′1(x)⋅^A1u=(ζ−1∘s2)(x)⋅^A1u=ζ−1(s2(x)⋅^A2u)=ρ2(x)(u), |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
So in the sequel, we fix a representation (V,β,ρ,μ) of a Hom-pre-Lie algebra (A,⋅,α) and consider abelian extensions that induce the given representation.
Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) are classified by ˜H2(A;V).
Proof. Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing a section s:A⟶ˆA, by Theorem 4.3, we obtain that (θ,ξ)∈˜Z2(A;V). Now we show that the cohomological class of (θ,ξ) does not depend on the choice of sections. In fact, let s1 and s2 be two different sections. Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x,y∈A, we have
θ1(x,y)=s1(x)⋅ˆAs1(y)−s1(x⋅y)=(s2(x)+φ(x))⋅ˆA(s2(y)+φ(y))−s2(x⋅y)−φ(x⋅y)=s2(x)⋅ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)−s2(x⋅y)−φ(x⋅y)=θ2(x,y)+∂ωωφ(x,y), |
which implies that θ1−θ2=∂ωωφ.
For all x∈A, we have
ξ1(x)=αˆA(s1(x))−s1(α(x))=αˆA(φ(x)+s2(x))−φ(α(x))−s2(α(x))=αˆA(φ(x))+αˆA(s2(x))−φ(α(x))−s2(α(x))=ξ2(x)+β(φ(x))−φ(α(x)), |
which implies that ξ1−ξ2=∂ωαφ.
Therefore, we obtain that (θ1−θ2,ξ1−ξ2)∈˜B2(A;V), (θ1,ξ1) and (θ2,ξ2) are in the same cohomological class.
Now we prove that isomorphic abelian extensions give rise to the same element in ˜H2(A;V). Assume that (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β), and ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that s1:A⟶^A1 is a section of ^A1. By p2∘ζ=p1, we have
p2∘(ζ∘s1)=p1∘s1=IdA. | (4.14) |
Thus, we obtain that ζ∘s1 is a section of ^A2. Define s2=ζ∘s1. Since ζ is an isomorphism of Hom-pre-Lie algebras and ζ∣V=IdV, for all x,y∈A, we have
θ2(x,y)=s2(x)⋅^A2s2(y)−s2(x⋅y)=(ζ∘s1)(x)⋅^A2(ζ∘s1)(y)−(ζ∘s1)(x⋅y)=ζ(s1(x)⋅^A1s1(y)−s1(x⋅y))=θ1(x,y), |
and
ξ2(x)=α^A2(s2(x))−s2(α(x))=α^A2(ζ(s1(x)))−ζ(s1(α(x)))=ζ(α^A1(s1(x))−s1(α(x)))=ξ1(x). |
Thus, isomorphic abelian extensions gives rise to the same element in ˜H2(A;V).
Conversely, given two 2-cocycles (θ1,ξ1) and (θ2,ξ2), by Eqs (4.5) and (4.6), we can construct two abelian extensions (A⊕V,⋄1,ϕ1) and (A⊕V,⋄2,ϕ2). If (θ1,ξ1),(θ2,ξ2)∈˜H2(A;V), then there exists φ:A⟶V, such that θ1=θ2+∂ωωφ and ξ1=ξ2+∂ωαφ. We define ζ:A⊕V⟶A⊕V by
ζ(x+u)=x+u+φ(x),∀x∈A,u∈V. | (4.15) |
For all x,y∈A,u,v∈V, by θ1=θ2+∂ωωφ, we have
ζ((x+u)⋄1(y+v))−ζ(x+u)⋄2ζ(y+v)=ζ(x⋅y+θ1(x,y)+ρ(x)(v)+μ(y)(u))−(x+u+φ(x))⋄2(y+v+φ(y))=θ1(x,y)+φ(x⋅y)−θ2(x,y)−ρ(x)φ(y)−μ(y)φ(x)=θ1(x,y)−θ2(x,y)−∂ωωφ(x,y)=0, | (4.16) |
and for all x∈A,u∈V, by ξ1=ξ2+∂ωαφ, we have
ζ∘ϕ1(x+u)−ϕ1∘ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))−ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))−ξ2(x)−β(φ(x))=ξ1(x)−ξ2(x)−∂ωαφ(x)=0, | (4.17) |
which implies that ζ is a Hom-pre-Lie algebra isomorphism from (A⊕V,⋄1,ϕ1) to (A⊕V,⋄2,ϕ2). Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.
By straightforward computations, for all x1,…,xn+2∈A, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂ωωφ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂ωωφ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂ωωφ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂ωωφ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+2) | (4.18) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+2) | (4.19) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.20) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.21) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xn+2) | (4.22) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xn+2) | (4.23) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk),…,^α(xi),…,α(xn+2)) | (4.24) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi),…,^α(xk),…,α(xn+2)) | (4.25) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.26) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+1,xi) | (4.27) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+1,xi) | (4.28) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.29) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.30) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xi) | (4.31) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xi) | (4.32) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk), | (4.33) |
…,^α(xi),…,α(xn+1),α(xi))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi), | (4.34) |
…,^α(xk),…,α(xn+1),α(xi))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj), | (4.35) |
…,^α(xk),…,α(xn+1),α(xi))−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xj))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xi⋅xn+2) | (4.36) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xj))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xi⋅xn+2) | (4.37) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)) | (4.38) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj)) | (4.39) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1φ(α2(x1),…,^α2(xj),…,^α2(xi),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.40) |
+∑1≤i<j≤n+1(−1)i+1(−1)jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.41) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xk),…, | (4.42) |
^α2(xi),…,α2(xn+1),α(xi⋅xn+2))−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1φ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xi),…, | (4.43) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…, | (4.44) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))+∑1≤i<j≤n+1(−1)i+jρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.45) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.46) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…,^α(xj),…,α(xn+2)) | (4.47) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.48) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…, | (4.49) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…, | (4.50) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…, | (4.51) |
^α(xk),…,α(xn+1),α(xk))+∑1≤i<j≤n+1(−1)i+jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),[xi,xj]C) | (4.52) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj), | (4.53) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj), | (4.54) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j<k≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk), | (4.55) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j≤n+1(−1)i+jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),[xi,xj]C⋅α(xn+2)) | (4.56) |
+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.57) |
^α2(xl),…,^α2(xi),…,^α2(xj),…,α2(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.58) |
^α2(xi),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.59) |
^α2(xk),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.60) |
^α2(xj),…,^α2(xk),…,^α2(xl),…,α2(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.61) |
^α2(xk),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.62) |
^α2(xi),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj),…,α2(xn+2)) | (4.63) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj),…,α2(xn+2)) | (4.64) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk),…,α2(xn+2)). | (4.65) |
The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since α is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.
Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α), the sum of (4.18) and (4.19) can be written as
∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2), | (4.66) |
the sum of (4.20), (4.28) and (4.29) can be written as
−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj), | (4.67) |
and the sum of (4.21), (4.27) and (4.30) can be written as
∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj). | (4.68) |
Thus, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),+∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+j+1ρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))−∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))+∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)). |
For all x1,…,xn+2∈A, we have
∂αω(∂ωαφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+2)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xi)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),−∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xi)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xi)). |
Since α is an algebra morphism, we obtain that ∂ωω∘∂ωω+∂αω∘∂ωα = 0.
For all x1,…,xn+2∈A, we have
∂ωω(∂αωψ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂αωψ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂αωψ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂αωψ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂αωψ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+2) | (4.69) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+2) | (4.70) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+2) | (4.71) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.72) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.73) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.74) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.75) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.76) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.77) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xi) | (4.78) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xi) | (4.79) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xi) | (4.80) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.81) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.82) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.83) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.84) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.85) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.86) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xk), | (4.87) |
…,^α(xi),…,α(xn+1),xi⋅xn+2)−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xi), | (4.88) |
…,^α(xk),…,α(xn+1),xi⋅xn+2)−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.89) |
…,^α(xk),…,α(xn+1),xi⋅xn+2)−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xk), | (4.90) |
…,^α(xi),…,α(xn+1),α(xk))−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xi), | (4.91) |
…,^α(xk),…,α(xn+1),α(xk))−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn−1(xj)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.92) |
…,^α(xk),…,α(xn+1),α(xk))+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xk), | (4.93) |
…,^α(xi),…,α(xn+1),α(xj))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xj),…,^α(xi), | (4.94) |
…,^α(xk),…,α(xn+1),α(xj))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn−1(xk)⋅αn−2(xi⋅xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.95) |
…,^α(xk),…,α(xn+1),α(xj))+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.96) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.97) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.98) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.99) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.100) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lρ([αn−1(xk),αn−1(xl)]C)ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.101) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xk),…,^α(xi), | (4.102) |
…,^α(xj),…,α(xn+2))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xk), | (4.103) |
…,^α(xj),…,α(xn+2))+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ([αn−2[xi,xj]C,αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.104) |
…,^α(xk),…,α(xn+2))+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.105) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xl))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.106) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xl))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.107) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xl))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.108) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xl))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.109) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xl))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xk)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.110) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xl))−∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.111) |
^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xk))−∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.112) |
^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xk))−∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xk),…, | (4.113) |
^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xk))−∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.114) |
^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xk))−∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.115) |
^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xk))−∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xl)⋅αn−1(xn+2))ψ([xi,xj]C,α(x1),…,^α(xi),…, | (4.116) |
^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xk))+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.117) |
…,^α(xj),…,α(xn+1),α(xk))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.118) |
…,^α(xj),…,α(xn+1),α(xk))+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−2[xi,xj]C⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.119) |
…,^α(xk),…,α(xn+1),α(xk))−∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.120) |
…,^α(xj),…,α(xn+1),[xi,xj]C)−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.121) |
…,^α(xj),…,α(xn+1),[xi,xj]C)−∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xk)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+1),[xi,xj]C), | (4.122) |
and
∂αω(∂ααψ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)(∂ααψ)(x1,…,^xi,…,^xj,…,xn+2)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))(∂ααψ)(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))(∂ααψ)(x1,…,^xi,…,^xj,…,xn+1,xi)=∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)ρ(αn−1(xk))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+2) | (4.123) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ([αn−1(xi),αn−1(xj)]C)ρ(αn−1(xk))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+2) | (4.124) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)ρ(αn−1(xk))ψ(x1,…,^xi,…,^xj,…,^xk,…,xn+2) | (4.125) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)μ(αn−1(xn+2))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+1,xk) | (4.126) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ([αn−1(xi),αn−1(xj)]C)μ(αn−1(xn+2))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+1,xk) | (4.127) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)μ(αn−1(xn+2))ψ(x1,…,^xi,…,^xj,…,^xk…,xn+1,xk) | (4.128) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)ψ(α(x1),…,^α(xk),…,^α(xi), | (4.129) |
…,^α(xj),…,α(xn+1),xk⋅xn+2)−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ([αn−1(xi),αn−1(xj)]C)ψ(α(x1),…,^α(xi),…,^α(xk), | (4.130) |
…,^α(xj),…,α(xn+1),xk⋅xn+2)−∑1≤i<j<k≤n+1(−1)i+j(−1)kρ([αn−1(xi),αn−1(xj)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.131) |
…,^α(xk),…,α(xn+1),xk⋅xn+2)+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xk), | (4.132) |
…,^α(xl),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+lρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xk), | (4.133) |
…,^α(xi),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xk), | (4.134) |
…,^α(xi),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xi), | (4.135) |
…,^α(xk),…,^α(xl),…,^α(xj),…,α(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+lρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xi), | (4.136) |
…,^α(xk),…,^α(xj),…,^α(xl),…,α(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+l−1ρ([αn−1(xi),αn−1(xj)]C)ψ([xk,xl]C,α(x1),…,^α(xi), | (4.137) |
…,^α(xj),…,^α(xk),…,^α(xl),…,α(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+1,xj) | (4.138) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xi)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+1,xj) | (4.139) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xi,…,^xj,…,^xk…,xn+1,xj) | (4.140) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))μ(αn−1(xj))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+1,xk) | (4.141) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xi)⋅αn−1(xn+2))μ(αn−1(xj))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+1,xk) | (4.142) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))μ(αn−1(xj))ψ(x1,…,^xi,…,^xj,…,^xk…,xn+1,xk) | (4.143) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.144) |
…,^α(xj),…,α(xn+1),xk⋅xj)−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xi)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.145) |
…,^α(xj),…,α(xn+1),xk⋅xj)−∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xi)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.146) |
…,^α(xk),…,α(xn+1),xk⋅xj)+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.147) |
…,^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.148) |
…,^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xj))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.149) |
…,^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xj))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi), | (4.150) |
…,^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xj))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi), | (4.151) |
…,^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xj))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xi)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi), | (4.152) |
…,^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xj))−∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+1,xi) | (4.153) |
−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xj)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+1,xi) | (4.154) |
−∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))ρ(αn−1(xk))ψ(x1,…,^xi,…,^xj,…,^xk…,xn+1,xi) | (4.155) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))μ(αn−1(xi))ψ(x1,…,^xk,…,^xi,…,^xj…,xn+1,xk) | (4.156) |
−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xj)⋅αn−1(xn+2))μ(αn−1(xi))ψ(x1,…,^xi,…,^xk,…,^xj…,xn+1,xk) | (4.157) |
−∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))μ(αn−1(xi))ψ(x1,…,^xi,…,^xj,…,^xk…,xn+1,xk) | (4.158) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))ψ(α(x1),…,^α(xk),…,^α(xi), | (4.159) |
…,^α(xj),…,α(xn+1),xk⋅xi)+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn−1(xj)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xk), | (4.160) |
…,^α(xj),…,α(xn+1),xk⋅xi)+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn−1(xj)⋅αn−1(xn+2))ψ(α(x1),…,^α(xi),…,^α(xj), | (4.161) |
…,^α(xk),…,α(xn+1),xk⋅xi)−∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.162) |
…,^α(xl),…,^α(xi),…,^α(xj),…,α(xn+1),α(xi))−∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+lμ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.163) |
…,^α(xi),…,^α(xl),…,^α(xj),…,α(xn+1),α(xi))−∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xk), | (4.164) |
…,^α(xi),…,^α(xj),…,^α(xl),…,α(xn+1),α(xi))−∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi), | (4.165) |
…,^α(xk),…,^α(xl),…,^α(xj),…,α(xn+1),α(xi))−∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+lμ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi), | (4.166) |
…,^α(xk),…,^α(xj),…,^α(xl),…,α(xn+1),α(xi))−∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+l−1μ(αn−1(xj)⋅αn−1(xn+2))ψ([xk,xl]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,^α(xl),…,α(xn+1),α(xi)). | (4.167) |
By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since (V,β,ρ) is a representation of the sub-adjacent Hom-Lie algebra AC, the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α), the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have ∂ωω∘∂αω+∂αω∘∂αα=0.
Similarly, we have ∂ωα∘∂ωω+∂αα∘∂ωα=0 and ∂ωα∘∂αω+∂αα∘∂αα=0. This finishes the proof.
We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).
The authors declare there is no conflicts of interest.
[1] |
R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, CA Cancer J. Clin., 71 (2021), 7−33. doi: 10.3322/caac.20073. doi: 10.3322/caac.20073
![]() |
[2] |
K. D. Miller, L. Nogueira, A. B. Mariotto, J. H. Rowland, K. R. Yabroff, C. M. Alfano, et al., Cancer treatment and survivorship statistics, CA Cancer J. Clin., 69 (2019), 363−385. doi: 10.3322/caac.21235. doi: 10.3322/caac.21235
![]() |
[3] |
R. R. Kudchadkar, M. C. Lowe, M. K. Khan, S. M. McBrien, Metastatic melanoma, CA Cancer J. Clin., 70 (2020), 78−85. doi: 10.3322/caac.21599. doi: 10.3322/caac.21599
![]() |
[4] | M. Rastrelli, S. Tropea, C. R. Rossi, M. Alaibac, Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification, In Vivo, 28 (2014), 1005−1011. |
[5] |
X. Xia, X. Wang, Z. Cheng, W. Qin, L. Lei, J. Jiang, et al., The role of pyroptosis in cancer: pro-cancer or pro-"host"?, Cell Death Dis., 10 (2019), 650. doi: 10.1038/s41419-019-1883-8. doi: 10.1038/s41419-019-1883-8
![]() |
[6] |
P. Yu, H. Y. Wang, M. Tian, A. X. Li, X. S. Chen, X. L. Wang, et al., Eukaryotic elongation factor-2 kinase regulates the cross-talk between autophagy and pyroptosis in doxorubicin-treated human melanoma cells in vitro, Acta Pharmacol. Sin., 40 (2019), 1237−1244. doi: 10.1038/s41401-019-0222-z. doi: 10.1038/s41401-019-0222-z
![]() |
[7] |
S. Feng, D. Fox, S. M. Man, Mechanisms of gasdermin family members in inflammasome signaling and cell death, J. Mol. Biol., 430 (2018), 3068−3080. doi: 10.1016/j.jmb.2018.07.002. doi: 10.1016/j.jmb.2018.07.002
![]() |
[8] |
C. Lee, H. T. T. Do, J. Her, Y. Kim, D. Seo, I. Rhee, Inflammasome as a promising therapeutic target for cancer, Life Sci., 231 (2019), 116593. doi: 10.1016/j.lfs.2019.116593. doi: 10.1016/j.lfs.2019.116593
![]() |
[9] |
W. Hong, Y. Gu, R. Guan, D. Xie, H. Zhou, M. Yu, Pan-cancer analysis of the CASP gene family in relation to survival, tumor-infiltrating immune cells and therapeutic targets, Genomics, 112 (2020), 4304−4315. doi: 10.1016/j.ygeno.2020.07.026. doi: 10.1016/j.ygeno.2020.07.026
![]() |
[10] |
Q. Wei, K. Mu, T. Li, Y. Zhang, Z. Yang, X. Jia, et al., Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression, Lab Invest., 94 (2014), 52−62. doi: 10.1038/labinvest.2013.126. doi: 10.1038/labinvest.2013.126
![]() |
[11] |
M. Hergueta-Redondo, D. Sarrió, Á Molina-Crespo, D. Megias, A. Mota, A. Rojo-Sebastian, et al., Gasdermin-B promotes invasion and metastasis in breast cancer cells, PLoS One, 9 (2014), e90099. doi: 10.1371/journal.pone.0090099. doi: 10.1371/journal.pone.0090099
![]() |
[12] |
W. J. Wang, D. Chen, M. Z. Jiang, B. Xu, X. W. Li, Y. Chu, et al., Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins, J. Dig. Dis., 19 (2018), 74−83. doi: 10.1111/1751-2980.12576. doi: 10.1111/1751-2980.12576
![]() |
[13] |
Y. Ye, Q. J. Dai, H. B. Qi, A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer, Cell Death Discov., 7 (2021), 71. doi: 10.1038/s41420-021-00451-x. doi: 10.1038/s41420-021-00451-x
![]() |
[14] |
D. A. Erkes, W. Cai, I. M. Sanchez, T. J. Purwin, C. Rogers, C. O. Field, et al., Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis, Cancer Discov., 10 (2020), 254−269. doi: 10.1158/2159-8290.CD-19-0672. doi: 10.1158/2159-8290.CD-19-0672
![]() |
[15] |
B. Zhou, J. Y. Zhang, X. S. Liu, H. Z. Chen, Y. L. Ai, K. Cheng, et al., Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis, Cell Res., 28 (2018), 1171−1185. doi: 10.1038/s41422-018-0090-y. doi: 10.1038/s41422-018-0090-y
![]() |
[16] |
J. Long, L. Zhang, X. Wan, J. Lin, Y. Bai, W. Xu, et al., A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma, J. Cell Mol. Med., 22 (2018), 5928−5938. doi: 10.1111/jcmm.13863. doi: 10.1111/jcmm.13863
![]() |
[17] |
Y. Jia, Y. Chen, J. Liu, Prognosis-predictive signature and nomogram based on autophagy-related long non-coding RNAs for hepatocellular carcinoma, Front. Genet., 11 (2020), 608668. doi: 10.3389/fgene.2020.608668. doi: 10.3389/fgene.2020.608668
![]() |
[18] |
P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder, et al., Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade, Cell Rep., 18 (2017), 248−262. doi: 10.1016/j.celrep.2016.12.019. doi: 10.1016/j.celrep.2016.12.019
![]() |
[19] |
D. Yan, S. Hu, Z. Zhou, S. Zeenat, F. Cheng, Y. Li, et al., Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties, Int. J. Biol. Macromol., 107 (2018), 463−469. doi: 10.1016/j.ijbiomac.2017.09.008. doi: 10.1016/j.ijbiomac.2017.09.008
![]() |
[20] |
C. Ci, B. Tang, D. Lyu, W. Liu, D. Qiang, X. Ji, et al., Overexpression of CDCA8 promotes the malignant progression of cutaneous melanoma and leads to poor prognosis, Int. J. Mol. Med., 43 (2019), 404−412. doi: 10.3892/ijmm.2018.3985. doi: 10.3892/ijmm.2018.3985
![]() |
[21] |
X. Zhang, X. Wen, N. Feng, A. Chen, S. Yao, X. Ding, et al., Increased expression of T-Box transcription factor protein 21 (TBX21) in skin cutaneous melanoma predicts better prognosis: A study based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, Med. Sci. Monit., 26 (2020), e923087. doi: 10.12659/MSM.923087. doi: 10.12659/MSM.923087
![]() |
[22] |
B. Huang, W. Han, Z. F. Sheng, G. L. Shen, Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients, Cancer Cell Int., 20 (2020), 195. doi: 10.21203/rs.2.23305/v3. doi: 10.21203/rs.2.23305/v3
![]() |
[23] |
Q. Wan, C. Liu, C. Liu, W. Liu, X. Wang, Z. Wang, Discovery and validation of a metastasis-related prognostic and diagnostic biomarker for melanoma based on single cell and gene expression datasets, Front. Oncol., 10 (2020), 585980. doi: 10.3389/fonc.2020.585980. doi: 10.3389/fonc.2020.585980
![]() |
[24] |
Y. Fang, S. Tian, Y. Pan, W. Li, Q. Wang, Y. Tang, et al., Pyroptosis: A new frontier in cancer, Biomed. Pharmacother., 121 (2020), 109595. doi: 10.1016/j.biopha.2019.109595. doi: 10.1016/j.biopha.2019.109595
![]() |
[25] |
A. A. Emran, H. Y. Tseng, M. C. Coleman, J. Tiffen, S. Cook, H. M. McGuire, et al., Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma?, Pigment Cell Melanoma Res., 33 (2020), 660−670. doi: 10.1111/pcmr.12870. doi: 10.1111/pcmr.12870
![]() |
[26] |
H. Guo, J. B. Callaway, J. P. Ting, Inflammasomes: mechanism of action, role in disease, and therapeutics, Nat. Med., 21 (2015), 677−687. doi: 10.1038/nm.3893. doi: 10.1038/nm.3893
![]() |
[27] |
C. Rogers, D. A. Erkes, A. Nardone, A. E. Aplin, T. Fernandes-Alnemri, E. S. Alnemri, Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation, Nat. Commun., 10 (2019), 1689. doi: 10.1038/s41467-019-09397-2. doi: 10.1038/s41467-019-09397-2
![]() |
[28] |
M. Segovia, S. Russo, M. Jeldres, Y. D. Mahmoud, V. Perez, M. Duhalde, et al., Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation, Cancer Cell, 35 (2019), 767−781. e766. doi: 10.1016/j.ccell.2019.04.003. doi: 10.1016/j.ccell.2019.04.003
![]() |
[29] |
F. Ahmed, H. Y. Tseng, A. Ahn, D. Gunatilake, S. Alavi, M. Eccles, et al., Repurposing melanoma chemotherapy to activate inflammasomes in treatment of BRAF/MAPK inhibitor resistant melanoma, J. Invest. Dermatol., 2021 (2021). doi: 10.1016/j.jid.2021.09.030. doi: 10.1016/j.jid.2021.09.030
![]() |
[30] |
Y. Tan, Q. Chen, X. Li, Z. Zeng, W. Xiong, G. Li, et al., Correction to: Pyroptosis: a new paradigm of cell death for fighting against cancer, J. Exp. Clin. Cancer Res., 40 (2021), 219. doi: 10.1186/s13046-021-01959-x. doi: 10.1186/s13046-021-01959-x
![]() |
[31] |
J. Yu, Q. Wang, X. Zhang, Z. Guo, X. Cui, Mechanisms of neoantigen-targeted induction of pyroptosis and ferroptosis: From basic research to clinical applications, Front. Oncol., 11 (2021), 685377. doi: 10.3389/fonc.2021.685377. doi: 10.3389/fonc.2021.685377
![]() |
[32] |
L. M. Coussens, Z. Werb, Inflammation and cancer, Nature, 420 (2002), 860−867. doi: 10.1186/s12199-018-0740-1. doi: 10.1186/s12199-018-0740-1
![]() |
[33] |
K. Nagarajan, K. Soundarapandian, R. F. Thorne, D. Li, D. Li, Activation of pyroptotic cell death pathways in cancer: An alternative therapeutic approach, Transl. Oncol., 12 (2019), 925−931. doi: 10.1016/j.tranon.2019.04.010. doi: 10.1016/j.tranon.2019.04.010
![]() |
[34] |
C. Berkel, E. Cacan, Differential expression and Copy Number Variation of Gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue, Inflammation, 2021 (2021). doi: 10.1007/s10753-021-01493-0. doi: 10.1007/s10753-021-01493-0
![]() |
[35] |
J. Ding, K. Wang, W. Liu, Y. She, Q. Sun, J. Shi, et al., Pore-forming activity and structural autoinhibition of the gasdermin family, Nature, 535 (2016), 111−116. doi: 10.1038/nature18590. doi: 10.1038/nature18590
![]() |
[36] |
J. Ruan, S. Xia, X. Liu, J. Lieberman, H. Wu, Cryo-EM structure of the gasdermin A3 membrane pore, Nature, 557 (2018), 62−67. doi: 10.1038/s41586-018-0058-6. doi: 10.1038/s41586-018-0058-6
![]() |
[37] |
N. Saeki, Y. Kuwahara, H. Sasaki, H. Satoh, T. Shiroishi, Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells, Mamm. Genome., 11 (2000), 718−724. doi: 10.1007/s003350010138. doi: 10.1007/s003350010138
![]() |
[38] |
N. Saeki, T. Usui, K. Aoyagi, D. H. Kim, M. Sato, T. Mabuchi, et al., Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium, Genes Chromosomes Cancer, 48 (2009), 261−271. doi: 10.1002/gcc.20636. doi: 10.1002/gcc.20636
![]() |
[39] |
K. Watabe, A. Ito, H. Asada, Y. Endo, T. Kobayashi, K. Nakamoto, et al., Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells, Jpn. J. Cancer Res., 92 (2001), 140−151. doi: 10.1111/j.1349-7006.2001.tb01076.x. doi: 10.1111/j.1349-7006.2001.tb01076.x
![]() |
[40] |
J. Hou, R. Zhao, W. Xia, C. W. Chang, Y. You, J. M. Hsu, et al., PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis, Nat. Cell Biol., 22 (2020), 1264−1275. doi: 10.1038/s41556-020-0575-z. doi: 10.1038/s41556-020-0575-z
![]() |
[41] |
M. Miguchi, T. Hinoi, M. Shimomura, T. Adachi, Y. Saito, H. Niitsu, et al., Gasdermin C Is upregulated by inactivation of transforming growth factor β receptor Type Ⅱ in the presence of mutated apc, promoting colorectal cancer proliferation, PLoS One, 11 (2016), e0166422. doi: 10.1371/journal.pone.0166422. doi: 10.1371/journal.pone.0166422
![]() |
[42] |
J. Wei, Z. Xu, X. Chen, X. Wang, S. Zeng, L. Qian, et al., Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma, Mol. Med. Rep., 21 (2020), 360−370. doi: 10.3892/mmr.2019.10837. doi: 10.3892/mmr.2019.10837
![]() |
[43] |
A. Ito, K. Watabe, Y. Koma, Y. Kitamura, An attempt to isolate genes responsible for spontaneous and experimental metastasis in the mouse model, Histol. Histopathol., 17 (2002), 951−959. doi: 10.14670/HH-17.951. doi: 10.14670/HH-17.951
![]() |
[44] |
B. R. Sharma, R. Karki, T. D. Kanneganti, Role of AIM2 inflammasome in inflammatory diseases, cancer and infection, Eur. J. Immunol., 49 (2019), 1998−2011. doi: 10.1002/eji.201848070. doi: 10.1002/eji.201848070
![]() |
[45] |
M. Xu, J. Wang, H. Li, Z. Zhang, Z. Cheng, AIM2 inhibits colorectal cancer cell proliferation and migration through suppression of Gli1, Aging (Albany NY), 13 (2020), 1017−1031. doi: 10.18632/aging.202226. doi: 10.18632/aging.202226
![]() |
[46] |
M. Farshchian, L. Nissinen, E. Siljamäki, P. Riihilä, M. Piipponen, A. Kivisaari, et al., Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma, Oncotarget, 8 (2017), 45825−45836. doi: 10.18632/oncotarget.17573. doi: 10.18632/oncotarget.17573
![]() |
[47] |
R. Caruso, N. Warner, N. Inohara, G. Núñez, NOD1 and NOD2: signaling, host defense, and inflammatory disease, Immunity, 41 (2014), 898−908. doi: 10.1016/j.immuni.2014.12.010. doi: 10.1016/j.immuni.2014.12.010
![]() |
[48] |
X. Ma, Y. Qiu, Y. Sun, L. Zhu, Y. Zhao, T. Li, et al., NOD2 inhibits tumorigenesis and increases chemosensitivity of hepatocellular carcinoma by targeting AMPK pathway, Cell Death Dis., 11 (2020), 174. doi: 10.1038/s41419-020-2368-5. doi: 10.1038/s41419-020-2368-5
![]() |
[49] |
S. A. Gurses, S. Banskar, C. Stewart, B. Trimoski, R. Dziarski, D. Gupta, Nod2 protects mice from inflammation and obesity-dependent liver cancer, Sci. Rep., 10 (2020), 20519. doi: 10.1038/s41598-020-77463-7. doi: 10.1038/s41598-020-77463-7
![]() |
[50] |
Y. Zhou, L. Hu, W. Tang, D. Li, L. Ma, H. Liu, et al., Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism, J. Hematol. Oncol., 14 (2021), 9. doi: 10.1186/s13045-020-01028-4. doi: 10.1186/s13045-020-01028-4
![]() |
[51] |
T. Fujimura, K. Yamasaki, T. Hidaka, Y. Ito, S. Aiba, A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18) and IFN-β synergistically induce dendritic cell maturation with augmented IL-12 production and suppress melanoma growth, J. Dermatol. Sci., 62 (2011), 107−115. doi: 10.1016/j.jdermsci.2011.02.002. doi: 10.1016/j.jdermsci.2011.02.002
![]() |
[52] |
A. Ladányi, Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma, Pigment Cell Melanoma Res., 28 (2015), 490−500. doi: 10.1111/pcmr.12371. doi: 10.1111/pcmr.12371
![]() |
[53] |
S. R. Selitsky, L. E. Mose, C. C. Smith, S. Chai, K. A. Hoadley, D. P. Dittmer, et al., Prognostic value of B cells in cutaneous melanoma, Genome Med., 11 (2019), 36. doi: 10.1186/s13073-019-0647-5. doi: 10.1186/s13073-019-0647-5
![]() |
[54] |
M. Tucci, A. Passarelli, F. Mannavola, C. Felici, L. S. Stucci, M. Cives, et al., Immune system evasion as hallmark of melanoma progression: The role of dendritic cells, Front. Oncol., 9 (2019), 1148. doi: 10.3389/fonc.2019.01148. doi: 10.3389/fonc.2019.01148
![]() |
[55] |
Z. Zhang, Y. Zhang, S. Xia, Q. Kong, S. Li, X. Liu, et al., Gasdermin E suppresses tumour growth by activating anti-tumour immunity, Nature, 579 (2020), 415−420. doi: 10.1038/s41586-020-2071-9. doi: 10.1038/s41586-020-2071-9
![]() |
[56] |
Q. Wang, Y. Wang, J. Ding, C. Wang, X. Zhou, W. Gao, et al., A bioorthogonal system reveals antitumour immune function of pyroptosis, Nature, 579 (2020), 421−426. doi: 10.1038/s41586-020-2079-1. doi: 10.1038/s41586-020-2079-1
![]() |
[57] |
S. L. Topalian, J. M. Taube, R. A. Anders, D. M. Pardoll, Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy, Nat. Rev. Cancer, 16 (2016), 275−287. doi: 10.1038/nrc.2016.36. doi: 10.1038/nrc.2016.36
![]() |
[58] |
C. C. Zhang, C. G. Li, Y. F. Wang, L. H. Xu, X. H. He, Q. Z. Zeng, et al., Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase−3/GSDME activation, Apoptosis, 24 (2019), 312−325. doi: 10.1007/s10495-019-01515-1. doi: 10.1007/s10495-019-01515-1
![]() |
[59] |
E. Yue, G. Tuguzbaeva, X. Chen, Y. Qin, A. Li, X. Sun, et al., Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma, Phytomedicine, 56 (2019), 286−294. doi: 10.1016/j.phymed.2018.09.223. doi: 10.1016/j.phymed.2018.09.223
![]() |
[60] |
R. Ghiman, M. Nistor, M. Focșan, A. Pintea, S. Aștilean, D. Rugina, Fluorescent polyelectrolyte system to track anthocyanins delivery inside melanoma cells, Nanomaterials (Basel), 11 (2021), 782. doi: 10.3390/nano11030782. doi: 10.3390/nano11030782
![]() |
[61] |
A. Ashworth, ATR inhibitors and paclitaxel in melanoma, Clin. Cancer Res., 27 (2021), 4667−4668. doi: 10.1158/1078-0432.CCR-21-1778. doi: 10.1158/1078-0432.CCR-21-1778
![]() |
[62] |
J. J. Li, J. H. Wang, Y. Dingv, D. D. Li, X. Z. Wen, J. J. Zhao, et al., Efficacy and safety of anti-PD-1 inhibitor combined with nab-paclitaxel in Chinese patients with refractory melanoma, J. Cancer Res. Clin. Oncol., 2021 (2021). doi: 10.1007/s00432-021-03700-9. doi: 10.1007/s00432-021-03700-9
![]() |
[63] |
L. Ai, A. Xu, J. Xu, Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond, Adv. Exp. Med. Biol., 1248 (2020), 33−59. doi: 10.1007/978-981-15-3266-5_3. doi: 10.1007/978-981-15-3266-5_3
![]() |
[64] |
S. Kleffel, C. Posch, S. R. Barthel, H. Mueller, C. Schlapbach, E. Guenova, et al., Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth, Cell, 162 (2015), 1242−1256. doi: 10.1016/j.cell.2015.08.052. doi: 10.1016/j.cell.2015.08.052
![]() |
[65] |
B. Rowshanravan, N. Halliday, D. M. Sansom, CTLA-4: a moving target in immunotherapy, Blood, 131 (2018), 58−67. doi: 10.1182/blood-2017-06-741033. doi: 10.1182/blood-2017-06-741033
![]() |
[66] |
F. S. Hodi, S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen, et al., Improved survival with ipilimumab in patients with metastatic melanoma, N. Engl. J. Med., 363 (2010), 711−723. doi: 10.1056/NEJMoa1003466. doi: 10.1056/NEJMoa1003466
![]() |
[67] |
T. N. Gide, J. S. Wilmott, R. A. Scolyer, G. V. Long, Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma, Clin. Cancer Res., 24 (2018), 1260−1270. doi: 10.1016/j.jtho.2021.01.131. doi: 10.1016/j.jtho.2021.01.131
![]() |
1. | Shuangjian Guo, Ripan Saha, On α-type (equivariant) cohomology of Hom-pre-Lie algebras, 2023, 0092-7872, 1, 10.1080/00927872.2023.2243514 |