Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Shape reconstruction of acoustic obstacle with linear sampling method and neural network

  • We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.

    Citation: Bowen Tang, Xiaoying Yang, Lin Su. Shape reconstruction of acoustic obstacle with linear sampling method and neural network[J]. AIMS Mathematics, 2024, 9(6): 13607-13623. doi: 10.3934/math.2024664

    Related Papers:

    [1] Faeza Lafta Hasan, Mohamed A. Abdoon, Rania Saadeh, Ahmad Qazza, Dalal Khalid Almutairi . Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system. AIMS Mathematics, 2024, 9(5): 11622-11643. doi: 10.3934/math.2024570
    [2] Naher Mohammed A. Alsafri . Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics. AIMS Mathematics, 2025, 10(3): 4747-4774. doi: 10.3934/math.2025218
    [3] Hussain Gissy, Abdullah Ali H. Ahmadini, Ali H. Hakami . The travelling wave phenomena of the space-time fractional Whitham-Broer-Kaup equation. AIMS Mathematics, 2025, 10(2): 2492-2508. doi: 10.3934/math.2025116
    [4] Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229
    [5] Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030
    [6] Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma . A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564
    [7] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [8] Sixing Tao . Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864
    [9] Noorah Mshary . Exploration of nonlinear traveling wave phenomena in quintic conformable Benney-Lin equation within a liquid film. AIMS Mathematics, 2024, 9(5): 11051-11075. doi: 10.3934/math.2024542
    [10] Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
  • We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.



    Researchers have recently placed a great deal of emphasis on investigating the propagation of soliton solutions in nonlinear systems (NSs) of FNPDEs. In engineering and applied sciences, such solutions are required to describe nonlinearity. Many NSs have been utilized to explain phenomena in physics, for example, heat flow, chemical kinematics, electricity, wave propagation, shallow water waves, fluid mechanics, plasma physics, optical fibers, and quantum mechanics [1,2,3,4,5,6,7]. FNPDEs also appear in the literature in various applications such as chemistry, population modeling, ecology, geochemistry, chemical reactivity of materials, and several others. Obtaining exact and numerical solutions to NSs is an essential and significant task that is becoming increasingly important in understanding physical phenomena [8,9,10,11,12,13]. On the other hand, accurate soliton solutions give us a deeper understand of some physical phenomena than numerical solutions from the viewpoint of NSs. Thus, investigating the exact soliton solutions of NSs is a critical issue for these physical phenomena. So far, for these NSs, many numerical and analytical techniques have been used to extract exact soliton solutions in many types. In 2024, Meng et al. introduced a method for designing observers for nonlinear generalized systems with nonlinear algebraic constraints, contributing to advancements in control system design [14]. Additionally, Cai et al. (2021) explored the dynamic control of terahertz wavefronts using cascaded metasurfaces, providing insights into photonics and wave engineering [15]. Guo et al. (2023) presented innovative approaches for fixed-time tracking control of uncertain nonlinear pure-feedback systems, contributing to robust control methodologies [16,17]. Furthermore, Kai et al. (2022) and Zhou et al. (2023) focused on nonlinear dynamics and signal processing, respectively, exploring topics such as the generalization of regularized long-wave equations and an iterative threshold algorithm for sparse problems [18,19,20]. These include the auxiliary equation method [21], generalized extended rational expansion method [22], (G'/G)-expansion method [23], Fan sub-equation method [24], homotopy asymptotic method [25], Hirota bilinear method [26], homotopy perturbation method [27], Darboux transformation [28], Bücklund transformation method [29], Painlevé expansion method [30], extended tanh method [31], elliptic function method [32], the mapping method [33], EDAM [34,35,36], and many others [37,38,39,40,41].

    The (2+1)-dimensional Broer-Kaup-Kupershmidt system (BKKS) [42,43] is a set of partial differential equations (PDEs) that are generated from the Kadomtsev-Petviashvili (KP) equation [44] through an extension of inner parameter-dependent symmetry constraints, and present themselves as models for nonlinear and dispersive long waves, for fields in two horizontal directions within shallow water of constant depth. This is the driving force behind the current study, which focuses on soliton dynamics in the context of the CBKKS. This model is a fractional generalization of BKKS, replacing traditional integer-order derivatives with conformable derivatives. This model is articulated as follows:

    Dϱy(Dσt)wDϱy(Dρx(Dρxw))+2Dϱy(wDρxw)+2Dρx(Dρxz)=0,Dσtz+Dρx(Dρxz)+2Dρx(wz)=0, (1.1)

    where 0<ρ,ϱ,σ1, ww(x,y,t), zz(x,y,t) and the derivative operators Dρx(), Dϱy(), and Dσt() represent spatial and time conformable derivatives. Notably, the BBKS reduces to the Whitham-Broer-Kaup System (WBKS) for y=x and ρ=ϱ=σ=1, which describes dispersive long waves in shallow water [45,46,47] and was constructed using the Boussinesq approximation, and was characterized by parameters reflecting different diffusion powers. A comprehensive understanding of the solutions to the NSs above proves immensely beneficial for engineers and coastal experts, enabling them to solve nonlinear water wave models across varied scientific and engineering areas. As a result, the search for different kinds of traveling wave solutions for these coupled systems continues to be an essential field in fluid dynamics, with many articles devoted to discovering exact and numerical solutions for these equations.

    In this research, we expand the EDAM to get soliton solutions to the fractional CBKKS (1.1). The proposed EDAM primarily reduces the CBKKS to a system of integer-ordered NODEs under the traveling wave transformation, yielding an algebraic system of equations. The ensuing algebraic problem systems are then solved to construct the soliton solutions, particularly rogue and breather soliton solutions. A soliton is a localized, stable wave solution that travels through a nonlinear medium without changing its form or speed. A breather is a particular kind of soliton with regular amplitude oscillations. These oscillations indicate little areas of the wave that are compressed and expanded. An exceptionally big and isolated soliton, known as a rogue soliton, can arise unexpectedly in a medium and is frequently connected to severe and infrequent events in nonlinear systems.

    This article is structured as follows: An introduction is given in Section 1. The definition of conformable derivative and methodology are presented in Section 2. We construct some new soliton solutions for CBKKS in Section 3, while Section 4 presents some depictions and a graphical discussion. Lastly, the conclusion is given in Section 5.

    The FNPDEs can be solved explicitly by utilizing the unique benefits of conformable fractional derivatives over other fractional derivative operators. Surprisingly, different ways of looking at the fractional derivative for Eq (1.1) do not give traveling wave solutions and solitons because they break the chain rule [48,49]. Equation (1.1) was, therefore, changed to incorporate conformable fractional derivatives [50] gives the following definition for the conformable fractional derivative operator of order ϱ:

    Dϱυw(υ)=limμ0w(μυ1ϱ+υ)w(υ)μ,ϱ(0,1]. (2.1)

    In this investigation, we make use of the following properties of the fractional derivatives:

    Dϱυυb=bυbϱ, (2.2)
    Dϱυ(b1ρ(υ)±b2η(υ))=b1Dϱυ(ρ(υ))±b2Dϱυ(η(υ)), (2.3)
    Dϱυχ[ζ(υ)]=χζ(ζ(υ))Dϱυζ(υ), (2.4)

    where ρ(υ), η(υ), χ(υ), and ζ(υ) are arbitrary differentiable functions, whereas b, b1, and b2 signify constants.

    In this part, we outline the operating strategy of the EDAM by considering the FNPDE:

    R(z,Dρtz,Dϱx1z,Dσx2z,zDϱx1z,)=0,  0<ρ,ϱ,σ1, (2.5)

    where z=z(t,x1,x2,x3,,xr). The steps listed below are utilized for solving Eq (2.5):

    (I) We begin with a variable transformation of the type z(t,x1,x2,x3,,xr)=Z(υ), where υ can be written in several ways. Then, Eq (2.5) is transformed into the subsequent NODE

    Q(Z,ZZ,Z,)=0, (2.6)

    where Z=dZdυ. Occasionally, the NODE can be made suitable for the homogeneous balancing principle by integrating Eq (2.6).

    (II) Next, we suppose the following series-based solution to the NODE in Eq (2.6) using the Riccati ODE:

    Z(υ)=γk=γAk(Υ(υ))k. (2.7)

    In this context, Ak(k=γ,...,γ) denotes the unknown constants, and Υ(υ) is the general solution of the resulting ODE:

    Υ(υ)=P+QΥ(υ)+R(Υ(υ))2, (2.8)

    where P,Q, and R are constants.

    (III) The positive integer γ appearing in Eq (2.8) can be obtained by making an even balance in Eq (2.6) between the largest nonlinearity and the highest-order derivative. Using the following mathematical formulas, we can determine the balance number γ with greater accuracy:

    {D(dkZdυk)=γ+k,D(Vn(dkZdυk)m)=γn+m(k+γ),

    where D expresses degree of U(υ), whereas k,n, and m are positive integers.

    (IV) Following that, we place Eq (2.7) into Eq (2.6) or the equation that results from the integration of Eq (2.6) and bring together the terms of Υ(υ) into similar orders. An expression in the terms of Υ(υ) is obtained by using this procedure. The variables Ak(k=γ,...,γ) and other related parameters are then represented by an algebraic system of equations when the coefficients in this expression are set to zero.

    (V) This system of nonlinear algebraic equations can be solved using Maple or Wolfram Mathematica.

    (VI) After that, by calculating and inserting the unknown values into Eq (2.7), together with the Υ(υ) (the solution of Eq (2.7)), analytical soliton solutions for Eq (2.5) can be obtained. We can generate the ensuing families of soliton solutions by employing the general solution of Eq (2.8).

    Family 1: For Λ<0 and R0, we get

    Υ1(υ)=Q2R+Λtan(12Λυ)2R,Υ2(υ)=Q2RΛcot(12Λυ)2R,Υ3(υ)=Q2R+Λ(tan(Λυ)+sec(Λυ))2R,Υ4(υ)=Q2RΛ(cot(Λυ)+csc(Λυ))2R,Υ5(υ)=Q2R+Λ(tan(14Λυ)cot(14Λυ))4R.

    Family 2: For Λ>0 and R0, we get

    Υ6(υ)=Q2RΛtanh(12Λυ)2R,Υ7(υ)=Q2RΛcoth(12Λυ)2R,Υ8(υ)=Q2RZ(tanh(Λυ)+sech(Λυ))2R,Υ9(υ)=Q2RΛ(coth(Λυ)+csch(Λυ))2R,Υ10(υ)=Q2RΛ(tanh(14Λυ)coth(14Λυ))4R.

    Family 3: For QP>0 and Q=0, we get

    Υ11(υ)=PRtan(PRυ),Υ12(υ)=PRcot(PRυ),Υ13(υ)=PR(tan(2PRυ)+sec(2PRυ)),Υ14(υ)=PR(cot(2PRυ)+csc(2PRυ)),Υ15(υ)=12PR(tan(12PRυ)cot(12PRυ)).

    Family 4: For PR<0 and Q=0, we get

    Υ16(υ)=PRtanh(PRυ),Υ17(υ)=PRcoth(PRυ),Υ18(υ)=PR(tanh(2PRυ)+isech(2PRυ)),Υ19(υ)=PR(coth(2PRυ)+csch(2PRυ)),Υ20(υ)=12PR(tanh(12PRυ)+coth(12PRυ)).

    Family 5: For P=R & Q=0, we get

    Υ21(υ)=tan(Pυ),Υ22(υ)=cot(Pυ),Υ23(υ)=tan(2Pυ)+(sec(2Pυ)),Υ24(υ)=cot(2Pυ)+(csc(2Pυ)),Υ25(υ)=12tan(12Pυ)12cot(12Pυ).

    Family 6: For R=P and Q=0, we get

    Υ26(υ)=tanh(Pυ),Υ27(υ)=coth(Pυ),Υ28(υ)=tanh(2Pυ)+(isech(2Pυ)),Υ29(υ)=coth(2Pυ)+(csch(2Pυ)),Υ30(υ)=12tanh(12Pυ)12coth(12Pυ).

    Family 7: For Λ=0, we get

    Υ31(υ)=2P(Qυ+2)Q2υ.

    Family 8: For Q=τ, P=hτ(h0) and R=0, we get

    Υ32(υ)=eτυh.

    Family 9: For Q=R=0, we get

    Υ33(υ)=υP.

    Family 10: For Q=P=0, we get

    Υ34(υ)=1υR.

    Family 11: For P=0, Q0 and R0, we get

    Υ35(υ)=QR(1+cosh(Qυ)sinh(Qυ)),Υ36(υ)=Q(cosh(Qυ)+sinh(Qυ))R(cosh(Qυ)+sinh(Qυ)+1).

    Family 12: For Q=τ, R=hτ(h0) and P=0, we get

    Υ37(υ)=eυυ1heυυ,

    where Λ=Q24RP.

    This section uses the EDAM technique to develop soliton solutions for the CBKKS, as indicated in Eq (1.1). For this purpose, first, the following variable transformation must be performed in order to initiate the method:

    w(x,y,t)W(υ),z(x,y,t)Z(υ),υαxρρ+βyϱϱ+δtσσ. (3.1)

    Applying this transformation to Eq (1.1) yields the following system of NODEs:

    βδW2βW+2αβ(WW)2Z=0,δZ2Z+2α(WZ)=0. (3.2)

    The following outcome is obtained by integrating the first equation in system (3.2) three times with a zero integration constant:

    Z=β2(δWα2+W2αW). (3.3)

    Substituting the above result in the second equation of system (3.2) yields the following NODE:

    βα4W2W32βδαW2βδ2W+K=0, (3.4)

    where K is the constant of integration. After using the formula given in step (III) of Section. 2, for establishing a homogeneous balancing condition between W3 and W, we get γ+2=3γ which implies γ=1. By replacing γ=1 in Eq (2.7), we get the following series-based solution for Eq (3.4):

    W(υ)=1k=1Ak(Υ(υ))k=A1(Υ(υ))1+A0+A1(Υ(υ))1. (3.5)

    Inserting Eq (3.5) into Eq (3.4) and collecting terms with the same powers of Υ(υ), we get an expression in Υ(υ). The process yields a set of algebraic nonlinear equations when the coefficients are set to zero. The two sets of solutions offered when using Maple to solve this system are as follows:

    Case 1:

    A0=16(3Q+6Λ)α,A1=0,A1=αP,α=α,β=365Kα56ΛΛ,δ=12α26Λ,K=K. (3.6)

    Case 2:

    A0=16(3Q+6Λ)α,A1=αR,A1=0,α=α,β=365Kα56ΛΛ,δ=12α26Λ,K=K. (3.7)

    For Case 1, and by using Eqs (3.1), (3.3), and (3.5) and the corresponding general solution of Eq (2.8), we construct the families of soliton solutions for CBKKS (1.1) as follows:

    Family 1.1: For Λ<0 and R0, we get

    w1,1(x,t)=αP(12QR+12Λtan(12Λυ)R)1+16(3Q+6Λ)α,z1,1(x,t)=12β(δα2(αP(12QR+12Λtan(12Λυ)R)1+16(3Q+6Λ)α)+(αP(12QR+12Λtan(12Λυ)R)1+16(3Q+6Λ)α)21α14αPΛ(1+(tan(12Λυ))2)(12QR+12Λtan(12Λυ)R)21R), (3.8)
    w1,2(x,t)=αP(12QR12Λcot(12Λυ)R)1+16(3Q+6Λ)α,z1,2(x,t)=12β(δα2(αP(12QR12Λcot(12Λυ)R)1+16(3Q+6Λ)α)+(αP(12QR12Λcot(12Λυ)R)1+16(3Q+6Λ)α)21α+14αPΛ(1(cot(12Λυ))2)(12QR12Λcot(12Λυ)R)21R), (3.9)
    w1,3(x,t)=αP(12QR+12Λ(tan(Λυ)+sec(Λυ))R)1+16(3Q+6Λ)α,z1,3(x,t)=12β(δα2(αP(12QR+12Λ(tan(Λυ)+sec(Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR+12Λ(tan(Λυ)+sec(Λυ))R)1+16(3Q+6Λ)α)21α+12αPΛ((1+(tan(Λυ))2)Λ+sec(Λυ)tan(Λυ)Λ)×(12QR+12Λ(tan(Λυ)+sec(Λυ))R)21R), (3.10)
    w1,4(x,t)=αP(12QR12Λ(cot(Λυ)+csc(Λυ))R)1+16(3Q+6Λ)α,z1,4(x,t)=12β(δα2(αP(12QR12Λ(cot(Λυ)+csc(Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR12Λ(cot(Λυ)+csc(Λυ))R)1+16(3Q+6Λ)α)21α12αPΛ((1(cot(Λυ))2)Λcsc(Λυ)cot(Λυ)Λ)×(12QR12Λ(cot(Λυ)+csc(Λυ))R)21R), (3.11)

    and

    w1,5(x,t)=αP(12QR+14Λ(tan(14Λυ)cot(14Λυ))R)1+16(3Q+6Λ)α,z1,5(x,t)=12β(δα2(αP(12QR+14Λ(tan(14Λυ)cot(14Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR+14Λ(tan(14Λυ)cot(14Λυ))R)1+16(3Q+6Λ)α)21α+14αPΛ(14(1+(tan(1/4Λυ))2)Λ14(1(cot(14Λυ))2)Λ)×(12QR+14Λ(tan(14Λυ)cot(14Λυ))R)21R). (3.12)

    Family 1.2: For Λ>0 and R0, we get

    w1,6(x,t)=αP(12QR12Λtanh(12Λυ)R)1+16(3Q+6Λ)α,z1,6(x,t)=12β(δα2(αP(12QR12Λtanh(12Λυ)R)1+16(3Q+6Λ)α)+(αP(12QR12Λtanh(12Λυ)R)1+16(3Q+6Λ)α)21α14αPΛ(1(tanh(12Λυ))2)(12QR1/2Λtanh(12Λυ)R)21R), (3.13)
    w1,7(x,t)=αP(12QR12Λcoth(12Λυ)R)1+16(3Q+6Λ)α,z1,7(x,t)=12β(δα2(αP(12QR12Λcoth(12Λυ)R)1+16(3Q+6Λ)α)+(αP(12QR12Λcoth(12Λυ)R)1+16(3Q+6Λ)α)21α14αPΛ(1(coth(12Λυ))2)(12QR1/2Λcoth(12Λυ)R)21R), (3.14)
    w1,8(x,t)=αP(12QR12Λ(tanh(Λυ)+isech(Λυ))R)1+1/6(3Q+6Λ)α,z1,8(x,t)=12β(δα2(αP(12QR12Λ(tanh(Λυ)+isech(Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR12Λ(tanh(Λυ)+isech(Λυ))R)1+16(3Q+6Λ)α)21α12αPΛ((1(tanh(Λυ))2)Λisech(Λυ)tanh(Λυ)Λ)×(12QR12Λ(tanh(Λυ)+isech(Λυ))R)21R), (3.15)
    w1,9(x,t)=αP(12QR12Λ(coth(Λυ)+csch(Λυ))R)1+1/6(3Q+6Λ)α,z1,9(x,t)=12β(δα2(αP(12QR12Λ(coth(Λυ)+csch(Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR12Λ(coth(Λυ)+csch(Λυ))R)1+16(3Q+6Λ)α)21α12αPΛ((1(coth(Λυ))2)Λcsch(Λυ)coth(Λυ)Λ)×(12QR12Λ(coth(Λυ)+csch(Λυ))R)21R), (3.16)

    and

    w1,10(x,t)=αP(12QR14Λ(tanh(14Λυ)coth(14Λυ))R)1+16(3Q+6Λ)α,z1,10(x,t)=12β(δα2(αP(12QR14Λ(tanh(14Λυ)coth(14Λυ))R)1+16(3Q+6Λ)α)+(αP(12QR14Λ(tanh(14Λυ)coth(14Λυ))R)1+16(3Q+6Λ)α)21α14αPΛ(14(1(tanh(1/4Λυ))2)Λ14(1(coth(14Λυ))2)Λ)×(12QR14Λ(tanh(14Λυ)coth(14Λυ))R)21R). (3.17)

    Family 1.3: For PR>0 and Q=0,

    w1,11(x,t)=αPR(tan(PRυ))1+1624PRα,z1,11(x,t)=12β(δα2(αPR(tan(PRυ))1+1624PRα)+(αPR(tan(PRυ))1+1624PRα)21α+αP(1+(tan(PRυ))2)PRRP(tan(PRυ))2), (3.18)
    w1,12(x,t)=αPR(cot(PRυ))1+1624PRα,z1,12(x,t)=12β(δα2(αPR(cot(PRυ))1+1624PRα)+(αPR(cot(PRυ))1+1624PRα)21ααP(1(cot(PRυ))2)PRRP(cot(PRυ))2), (3.19)
    w1,13(x,t)=αPR(tan(2PRυ)+sec(2PRυ))1+1624PRα,z1,13(x,t)=12β(δα2(αPR(tan(2PRυ)+sec(2PRυ))1+1624PRα)+(αP1PR(tan(2PRυ)+sec(2PRυ))1+1624PRα)21α+αP(2(1+(tan(2PRυ))2)PR×+2sec(2PRυ)tan(2PRυ)PR)RP(tan(2PRυ)+sec(2PRυ))2), (3.20)
    w1,14(x,t)=αPR(cot(2PRυ)+csc(2PRυ))1+1624PRα,z1,14(x,t)=12β(δα2(αPR(cot(2PRυ)+csc(2PRυ))1+1624PRα)+(αP1PR(cot(2PRυ)+csc(2PRυ))1+1624PRα)21ααP(2(1(cot(2PRυ))2)PR×2csc(2PRυ)cot(2PRυ)PR)RP(cot(2PRυ)+csc(2PRυ))2), (3.21)

    and

    w1,15(x,t)=2αPR(tan(12PRυ)cot(12PRυ))1+1624PRα,z1,15(x,t)=12β(δα2(2αPR(tan(12PRυ)cot(12PRυ))1+1624PRα)+(2αP1PR(tan(12PRυ)cot(12PRυ))1+1624PRα)2α1+2αP(12(1+(tan(12PRυ))2)PR×12(1(cot(12PRυ))2)PR)RP(tan(12PRυ)cot(12PRυ))2). (3.22)

    Family 1.4: For PR>0 and Q=0, we get

    w1,16(x,t)=αPR(tanh(PRυ))1+1624PRα,z1,16(x,t)=12β(δα2(αPR(tanh(PRυ))1+1624PRα)+(αPR(tanh(PRυ))1+1624PRα)21ααP(1(tanh(PRυ))2)PRRP(tanh(PRυ))2), (3.23)
    w1,17(x,t)=αPR(coth(PRυ))1+1624PRα,z1,17(x,t)=12β(δα2(αPR(coth(PRυ))1+1624PRα)+(αPR(coth(PRυ))1+1624PRα)21ααP(1(coth(PRυ))2)PRRP(coth(PRυ))2), (3.24)
    w1,18(x,t)=αPR(tanh(2PRυ)+isech(2PRυ))1+1624PRα,z1,18(x,t)=12β(δα2(αPR(tanh(2PRυ)+isech(2PRυ))1+1624PRα)+(αP1PR(tanh(2PRυ)+isech(2PRυ))1+1624PRα)21ααP(2(1(tanh(2PRυ))2)PR2isech(2PRυ)tanh(2PRυ)PR)×RP(tanh(2PRυ)+isech(2PRυ))2), (3.25)
    w1,19(x,t)=αPR(coth(2PRυ)+csch(2PRυ))1+1624PRα,z1,19(x,t)=12β(δα2(αPR(coth(2PRυ)+csch(2PRυ))1+1624PRα)+(αP1PR(coth(2PRυ)+csch(2PRυ))1+1624PRα)21ααP(2(1(coth(2PRυ))2)PR2csch(2PRυ)coth(2PRυ)PR)×RP(coth(2PRυ)+csch(2PRυ))2), (3.26)

    and

    w1,20(x,t)=2αPR(tanh(12PRυ)+coth(12PRυ))1+1624PRα,z1,20(x,t)=12β(δα2(2αPR(tanh(12PRυ)+coth(12PRυ))1+1624PRα)+(2αPRP(tanh(12PRυ)+coth(12PRυ))1+1624PRα)21α2αP(12(1(tanh(12PRυ))2)PR×+12(1(coth(12PRυ))2)PR)RP(tanh(12PRυ)+coth(1/2PRυ))2). (3.27)

    Family 1.5: For R=P and Q=0, we get

    w1,21(x,t)=αPtan(Pυ)+1624Pα,z1,21(x,t)=12β(δα2(αPtan(Pυ)+1624Pα)+(αPtan(Pυ)+1624Pα)21α+αP2(1+(tan(Pυ))2)(tan(Pυ))2), (3.28)
    w1,22(x,t)=αPcot(Pυ)+1624Pα,z1,22(x,t)=12β(δα2(αPcot(Pυ)+1624Pα)+(αPcot(Pυ)+1624Pα)21ααP2(1(cot(Pυ))2)(cot(Pυ))2), (3.29)
    w1,23(x,t)=αPtan(2Pυ)+sec(2Pυ)+1624Pα,z1,23(x,t)=12β(δα2(αPtan(2Pυ)+sec(2Pυ)+1624Pα)+(αPtan(2Pυ)+sec(2Pυ)+1624Pα)21α+αP(2(1+(tan(2Pυ))2)P+2sec(2Pυ)tan(2Pυ)P)(tan(2Pυ)+sec(2Pυ))2), (3.30)
    w1,24(x,t)=αPcot(2Pυ)csc(2Pυ)+1624Pα,z1,24(x,t)=12β(δα2(αPcot(2Pυ)csc(2Pυ)+1624Pα)+(αPcot(2Pυ)csc(2Pυ)+1624Pα)21α+αP(2(1(cot(2Pυ))2)P+2csc(2Pυ)cot(2Pυ)P)(cot(2Pυ)csc(2Pυ))2), (3.31)

    and

    w1,25(x,t)=αP12tan(12Pυ)12cot(12Pυ)+1624Pα,z1,25(x,t)=12β(δα2(αP12tan(12Pυ)12cot(12Pυ)+1624Pα)+(αP12tan(12Pυ)12cot(12Pυ)+1624P2α)21α+αP(14(1+(tan(12Pυ))2)P14(1(cot(12Pυ))2)P)(12tan(12Pυ)12cot(12Pυ))2). (3.32)

    Family 1.6: For R=P and Q=0, we get

    w1,26(x,t)=αPtanh(Pυ)+1624Pα,z1,26(x,t)=12β(δα2(αPtanh(Pυ)+1624Pα)α2+(αPtanh(Pυ)+1624Pα)21ααP2(1(tanh(Pυ))2)(tanh(Pυ))2), (3.33)
    w1,27(x,t)=αPcoth(Pυ)+1624Pα,z1,27(x,t)=12β(δα2(αPcoth(Pυ)+1624Pα)+(αPcoth(Pυ)+1624Pα)21ααP2(1(coth(Pυ))2)(coth(Pυ))2), (3.34)
    w1,28(x,t)=αPtanh(2Pυ)isech(2Pυ)+1624Pα,z1,28(x,t)=12β(δα2(αPtanh(2Pυ)isech(2Pυ)+1624Pα)+(αPtanh(2Pυ)isech(2Pυ)+1624Pα)21α+αP(2(1(tanh(2Pυ))2)P+2isech(2Pυ)tanh(2Pυ)P)(tanh(2Pυ)isech(2Pυ))2),  (3.35)
    w1,29(x,t)=αPcoth(2Pυ)csch(2Pυ)+1624Pα,z1,29(x,t)=12β(δα2(αPcoth(2Pυ)csch(2Pυ)+1624Pα)+(αPcoth(2Pυ)csch(2Pυ)+1624Pα)21α+αP(2(1(coth(2Pυ))2)P+2csch(2Pυ)coth(2Pυ)P)(coth(2Pυ)csch(2Pυ))2), (3.36)

    and

    w1,30(x,t)=αP12tanh(12Pυ)12coth(12Pυ)+1624Pα,z1,30(x,t)=12β(δα2(αP12tanh(12Pυ)12coth(12Pυ)+1624Pα)+(αP12tanh(12Pυ)12coth(12Pυ)+1624Pα)21α+αP(14(1(tanh(12Pυ))2)P14(1(coth(12Pυ))2)P)(12tanh(12Pυ)12coth(12Pυ))2). (3.37)

    Family 1.7: For Q=τ, P=hτ(h0), and R=0, we get

    w1,31(x,t)=16α(3hτ+3τeτυ+6τ2eτυ6τ2h)eτυh,z1,31(x,t)=12β(δα2(αhτeτυh+16(3τ+6τ2)α)+(αhτeτυh+16(3τ+6τ2)α)2α1+αhτ2eτυ(eτυh)2), (3.38)

    where υ=αxρρ+(365Kα56ΛΛ)yϱϱ+(12α26Λ)tσσ.

    For Case 1, and by using Eqs (3.1), (3.3), and (3.5) and the corresponding general solution of Eq (2.8), we construct the following families of soliton solutions for CBKKS Eq (1.1):

    Family 2.1: For Λ<0 and R0, we get

    w2,1(x,t)=16(3Q+6Λ)α+αR(12QR+12Λtan(12Λυ)R),z2,1(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR+12Λtan(12Λυ)R))+(16(3Q+6Λ)α+αR(12QR+12Λtan(12Λυ)R))21α+14αΛ(1+(tan(12Λυ))2)), (3.39)
    w2,2(x,t)=16(3Q+6Λ)α+αR(12QR12Λcot(12Λυ)R),z2,2(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λcot(12Λυ)R))+(16(3Q+6Λ)α+αR(12QR12Λcot(12Λυ)R))21α14αΛ(1(cot(12Λυ))2)), (3.40)
    w2,3(x,t)=16(3Q+6Λ)α+αR(12QR+12Λ(tan(Λυ)+sec(Λυ))R),z2,3(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR+12Λ(tan(Λυ)+sec(Λυ))R))+(16(3Q+6Λ)α+αR(12QR+12Λ(tan(Λυ)+sec(Λυ))R))21α12αΛ((1+(tan(Λυ))2)Λ+sec(Λυ)tan(Λυ)Λ)), (3.41)
    w2,4(x,t)=16(3Q+6Λ)α+αR(12QR12Λ(cot(Λυ)+csc(Λυ))R),z2,4(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λ(cot(Λυ)+csc(Λυ))R))+(16(3Q+6Λ)α+αR(12QR12Λ(cot(Λυ)+csc(Λυ))R))21α+12αΛ((1(cot(Λυ))2)Λcsc(Λυ)cot(Λυ)Λ)), (3.42)

    and

    w2,5(x,t)=16(3Q+6Λ)α+αR(12QR+14Λ(tan(14Λυ)cot(14Λυ))R),z2,5(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR+14Λ(tan(14Λυ)cot(14Λυ))R))+(16(3Q+6Λ)α+αR(12QR+14Λ(tan(14Λυ)cot(14Λυ))R))21α14αΛ(14(1+(tan(14Λυ))2)Λ14(1(cot(14Λυ))2)Λ)). (3.43)

    Family 2.2: When Λ>0 and R0,

    w2,6(x,t)=16(3Q+6Λ)α+αR(12QR12Λtanh(12Λυ)R),z2,6(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λtanh(12Λυ)R))+(16(3Q+6Λ)α+αR(12QR12Λtanh(12Λυ)R))21α+14αΛ(1(tanh(12Λυ))2)), (3.44)
    w2,7(x,t)=16(3Q+6Λ)α+αR(12QR12Λcoth(12Λυ)R),z2,7(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λcoth(12Λυ)R))+(16(3Q+6Λ)α+αR(12QR12Λcoth(12Λυ)R))21α+14αΛ(1(coth(12Λυ))2)), (3.45)
    w2,8(x,t)=16(3Q+6Λ)α+αR(12QR12Λ(tanh(Λυ)+isech(Λυ))R),z2,8(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λ(tanh(Λυ)+isech(Λυ))R))+(16(3Q+6Λ)α+αR(12QR12Λ(tanh(Λυ)+isech(Λυ))R))21α+12αΛ((1(tanh(Λυ))2)Λisech(Λυ)tanh(Λυ)Λ)), (3.46)
    w2,9(x,t)=16(3Q+6Λ)α+αR(12QR12Λ(coth(Λυ)+csch(Λυ))R),z2,9(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR12Λ(coth(Λυ)+csch(Λυ))R))+(16(3Q+6Λ)α+αR(12QR12Λ(coth(Λυ)+csch(Λυ))R))21α+12αΛ((1(coth(Λυ))2)Λcsch(Λυ)coth(Λυ)Λ)), (3.47)

    and

    w2,10(x,t)=16(3Q+6Λ)α+αR(12QR14Λ(tanh(14Λυ)coth(14Λυ))R),z2,10(x,t)=12β(δα2(16(3Q+6Λ)α+αR(12QR14Λ(tanh(14Λυ)coth(14Λυ))R))+(16(3Q+6Λ)α+αR(12QR14Λ(tanh(14Λυ)coth(14Λυ))R))21α+14αΛ(14(1(tanh(14Λυ))2)Λ14(1(coth(14Λυ))2)Λ)). (3.48)

    Family 2.3: For PR>0 and Q=0, we get

    w2,11(x,t)=1624PRα+αPRtan(PRυ),z2,11(x,t)=12β(δα2(1624PRα+αPRtan(PRυ))+(1624PRα+αPRtan(PRυ))21ααPR(1+(tan(PRυ))2)PR), (3.49)
    w2,12(x,t)=1624PRααPRcot(PRυ),z2,12(x,t)=12β(δα2(1624PRααPRcot(PRυ))+(1624PRααPRcot(PRυ))21α+αPR(1(cot(PRυ))2)PR), (3.50)
    w2,13(x,t)=1624PRα+αPR(tan(2PRυ)+sec(2PRυ)),z2,13(x,t)=12β(δα2(1624PRα+αPR(tan(2PRυ)+sec(2PRυ)))+(1624PRα+αPR(tan(2PRυ)+sec(2PRυ)))21ααPR(2(1+(tan(2PRυ))2)PR+2sec(2PRυ)tan(2PRυ)PR)), (3.51)
    w2,14(x,t)=1624PRααPR(cot(2PRυ)+csc(2PRυ)),z2,14(x,t)=12β(δα2(1624PRααPR(cot(2PRυ)+csc(2PRυ)))+(1624PRααPR(cot(2PRυ)+csc(2PRυ)))21α+αPR(2(1(cot(2PRυ))2)PR2csc(2PRυ)cot(2PRυ)PR)), (3.52)

    and

    w2,15(x,t)=1624PRα+12αPR(tan(12PRυ)cot(12PRυ)),z2,15(x,t)=12β(δα2(1624PRα+1/2αPR(tan(12PRυ)cot(12PRυ)))+(1624PRα+12αPR(tan(12PRυ)cot(12PRυ)))21α12αRPR(12(1+(tan(12PRυ))2)PR12(1(cot(12PRυ))2)PR)). (3.53)

    Family 2.4: For PR>0 and Q=0, we get

    w2,16(x,t)=1624PRααPRtanh(PRυ),z2,16(x,t)=12β(δα2(1624PRααPRtanh(PRυ))+(1624PRααPRtanh(PRυ))21α+αRPR(1(tanh(PRυ))2)PR), (3.54)
    w2,17(x,t)=1624PRααPRcoth(PRυ),z2,17(x,t)=12β(δα2(1624PRααPRcoth(PRυ))+(1624PRααPRcoth(PRυ))21α+αRPR(1(coth(PRυ))2)PR), (3.55)
    w2,18(x,t)=1624PRααPR(tanh(2PRυ)+isech(2PRυ)),z2,18(x,t)=12β(δα2(1624PRααPR(tanh(2PRυ)+isech(2PRυ)))+(1624PRααPR(tanh(2PRυ)+isech(2PRυ)))21α+αRPR(2(1(tanh(2PRυ))2)PR2isech(2PRυ)tanh(2PRυ)PR)), (3.56)
    w2,19(x,t)=1624PRααPR(coth(2PRυ)+csch(2PRυ)),z2,19(x,t)=12β(δα2(1624PRααPR(coth(2PRυ)+csch(2PRυ)))+(1624PRααPR(coth(2PRυ)+csch(2PRυ)))21α+αRPR(2(1(coth(2PRυ))2)PR2csch(2PRυ)coth(2PRυ)PR)), (3.57)

    and

    w2,20(x,t)=1624PRα12αPR(tanh(12PRυ)+coth(1/2PRυ)),z2,20(x,t)=12β(δα2(1624PRα1/2αPR(tanh(12PRυ)+coth(12PRυ)))+(1624PRα12αPR(tanh(12PRυ)+coth(12PRυ)))21α+12αRPR(12(1(tanh(12PRυ))2)PR+12(1(coth(12PRυ))2)PR)). (3.58)

    Family 2.5: For R=P and Q=0, we get

    w2,21(x,t)=1624Pα+αPtan(Pυ),z2,21(x,t)=12β(δ(1624Pα+αPtan(Pυ))α2+(1624Pα+αPtan(Pυ))2ααP2(1+(tan(Pυ))2)), (3.59)
    w2,22(x,t)=1624PααPcot(Pυ),z2,22(x,t)=12β(δ(1624PααPcot(Pυ))α2+(1624PααPcot(Pυ))2α+αP2(1(cot(Pυ))2)), (3.60)
    w2,23(x,t)=1624Pα+αP(tan(2Pυ)+sec(2Pυ)),z2,23(x,t)=12β(δ(1624Pα+αP(tan(2Pυ)+sec(2Pυ)))α2+(1624Pα+αP(tan(2Pυ)+sec(2Pυ)))2ααP(2(1+(tan(2Pυ))2)P+2sec(2Pυ)tan(2Pυ)P)), (3.61)
    w2,24(x,t)=1624Pα+αP(cot(2Pυ)csc(2Pυ)),z2,24(x,t)=12β(δ(1624Pα+αP(cot(2Pυ)csc(2Pυ)))α2+(1624Pα+αP(cot(2Pυ)csc(2Pυ)))2ααP(2(1(cot(2Pυ))2)P+2csc(2Pυ)cot(2Pυ)P)), (3.62)

    and

    w2,25(x,t)=1624Pα+αP(12tan(12Pυ)12cot(12Pυ)),z2,25(x,t)=12β(δ(1624Pα+αP(12tan(12Pυ)12cot(12Pυ)))α2+(1624Pα+αP(12tan(12Pυ)12cot(12Pυ)))2ααP(14(1+(tan(12Pυ))2)P14(1(cot(12Pυ))2)P)). (3.63)

    Family 2.6: For R=P and Q=0, we get

    w2,26(x,t)=1624Pα+αPtanh(Pυ),z2,26(x,t)=12β(δ(1624Pα+αPtanh(Pυ))α2+(1624Pα+αPtanh(Pυ))2ααP2(1(tanh(Pυ))2)), (3.64)
    w2,27(x,t)=1624Pα+αPcoth(Pυ),z2,27(x,t)=12β(δ(1624Pα+αPcoth(Pυ))α2+(1624Pα+αPcoth(Pυ))2ααP2(1(coth(Pυ))2)), (3.65)
    w2,28(x,t)=1624PααP(tanh(2Pυ)isech(2Pυ)),z2,28(x,t)=12β(δ(1624PααP(tanh(2Pυ)isech(2Pυ)))α2+(1624PααP(tanh(2Pυ)isech(2Pυ)))2α+αP(2(1(tanh(2Pυ))2)P+2isech(2Pυ)tanh(2Pυ)P)),  (3.66)
    w2,29(x,t)=1624PααP(coth(2Pυ)csch(2Pυ)),z2,29(x,t)=12β(δ(1624PααP(coth(2Pυ)csch(2Pυ)))α2+(1624PααP(coth(2Pυ)csch(2Pυ)))2α+αP(2(1(coth(2Pυ))2)P+2csch(2Pυ)coth(2Pυ)P)), (3.67)

    and

    w2,30(x,t)=1624PααP(12tanh(1/2Pυ)12coth(12Pυ)),z2,30(x,t)=12β(δ(1624PααP(12tanh(12Pυ)12coth(12Pυ)))α2+(1624PααP(1/2tanh(12Pυ)12coth(12Pυ)))2α+αP(1/4(1(tanh(12Pυ))2)P14(1(coth(12Pυ))2)P)). (3.68)

    Family 2.7: For P=0, R0 and Q0, we get

    w2,31(x,t)=16(3Q+i6Q)ααQcosh(Qυ)sinh(Qυ)+1,z2,31(x,t)=12β(δα2(16(3Q+i6Q)ααQcosh(Qυ)sinh(Qυ)+1)+(16(3Q+i6Q)ααQcosh(Qυ)sinh(Qυ)+1)21ααQ(Qsinh(Qυ)Qcosh(Qυ))(cosh(Qυ)sinh(Qυ)+1)2), (3.69)

    and

    w2,32(x,t)=16(3Q+i6Q)ααQ(cosh(Qυ)+sinh(Qυ))sinh(Qυ)+cosh(Qυ)+1,z2,32(x,t)=12β(δα2(16(3Q+i6Q)ααQ(cosh(Qυ)+sinh(Qυ))sinh(Qυ)+cosh(Qυ)+1)+(16(3Q+i6Q)ααQ(cosh(Qυ)+sinh(Qυ))sinh(Qυ)+cosh(Qυ)+1)21α+αQ(Qsinh(Qυ)+Qcosh(Qυ))sinh(Qυ)+cosh(Qυ)+1αQ(cosh(Qυ)+sinh(Qυ))(Qsinh(Qυ)+Qcosh(Qυ))(sinh(Qυ)+cosh(Qυ)+1)2). (3.70)

    Family 2.8: For Q=τ, R=hτ(h0) and P=0, we get

    w2,33(x,t)=16(3τ+i6τ)α+αhτ(eτυ)1h(eτυ),z2,33(x,t)=12β(δα2(16(3τ+i6τ)α+αhτeτυ1heτυ)+(16(3τ+i6τ)α+αhτeτυ1heτυ)21ααhτ2eτυ1heτυαh2τ2(eτυ)2(1heτυ)2), (3.71)

    where υ has the same value as given above.

    This section contains graphic representations of various waveforms contained in the examined models. The findings show that EDAM stands out for having various solutions derived using this technology. The wave structures consist of periodic waves, breathers, rogue soliton solutions, and several other traveling wave solutions expressed in trigonometric or hyperbolic functions. Carefully chosen parameters produce distinctive and informative visuals. Furthermore, this research's findings are novel since this method's outcomes have never been applied to the (2+1)-dimensional CBKKS in the literature.

    A soliton is a special kind of self-reinforcing solitary wave that emerges in nonlinear and dispersive situations and retains its shape and velocity while moving across a medium. This study identified two solitons: breather solitons, which display localized periodic oscillations, and rogue solitons, which have abnormally big and isolated waves. Breather solitons result from the interaction between dispersion and nonlinearity in media, where dispersive effects prevent spreading, but nonlinear factors lead to self-focusing. In the same way, nonlinearity and dispersion work together to make rogue solitons. Nonlinear effects focus energy, while dispersive factors change how they are made and how stable they are. The study uses the Boussinesq approximation to focus on long gravity waves in shallow water. Parameters representing various diffusion powers emphasize the interaction between nonlinear and dispersive properties in producing breathers and rogue solitons, advancing our knowledge of intricate wave dynamics.

    Using some appropriate values for the parameters related to the derived solutions that satisfy the conditions and constraints on these solutions, some derived solutions are analyzed numerically, as shown in Figures 111. For example, we analyzed solutions (3.8) and (3.27), as shown in Figures 1 and 2, respectively, utilizing specific values for the solution parameters to meet the requirements of these solutions. These figures illustrate that the first part of these solutions represents a periodic wave, while the second part represents a breather soliton. Figure 1(a) indicates 3D graphics, while Figure 1(b) indicates contour graphics for the first part of the solution (3.8). On the other side, Figure 1(c) shows 3D graphics, while Figure 1(d) shows contour graphics for the second part of the solution (3.8). In the same way, Figures 2(a)2(d) can be classified. It is essential to mention that upon analyzing the majority of the numerically derived solutions, it was evident that they yielded nearly identical results to these solutions. To avoid redundancy, we illustrated only the figures for solutions (3.8) and (3.27) to represent the other types of solutions. The real and imaginary parts of the rogue wave-like (RW-like) solution (3.38) are analyzed numerically, as shown in Figures 3(a) and 3(b), respectively. Moreover, the impact of the space and time fractional parameters (ρ,ϱ,σ) on the profile of the RW-like solution (3.38) is examined as illustrated in Figures 4(a)4(f).

    Figure 1.  Solutions (3.8) is plotted in the (x,y)-plane. Here, (a) and (b) indicate the 3D and contour plots of breather soliton w1,1, whereas (c) and (d) indicate the 3D and contour plots of the breather soliton and z1,1. Here, P=1,Q=2,R=2,ρ=1,ϱ=1,σ=1,t=0,K=3,α=5.
    Figure 2.  Solutions (3.27) is plotted in the (x,y)-plane. Here, (a) and (b) indicate the 3D and contour plots of breather soliton w1,20, whereas (c) and (d) indicate the 3D and contour plots of the breather soliton and z1,20. Here, P=5,Q=0,R=5,ρ=1,ϱ=1,σ=0.9,t=10,K=3,α=10.
    Figure 3.  These 3D plots of (a) the real part and (b) imaginary part of the rogue like-solution z1,31 as given in Eq (3.38) are plotted (x,y)-plane. Here, P=4,Q=2,R=0,ρ=1,ϱ=1,σ=1,t=50,K=10,α=2,τ=2,h=2.
    Figure 4.  The real and imaginary parts of solution (3.38) are plotted against the fractional parameters. The impact of the fractional parameter ρ on (a) the real part (b) the imaginary part of solution (3.38) is examined for (ϱ,σ)=(1,1). The impact of the fractional parameter ϱ on (a) the real part (b) the imaginary part of solution (3.38) is examined for (ρ,σ)=(1,1). The impact of the fractional parameter σ on (a) the real part (b) the imaginary part of solution (3.38) is examined for (ρ,ϱ)=(1,1). Here, P=4,Q=2,R=0,ρ=1,ϱ=1,σ=1,t=50,K=10,α=2,τ=2,h=2.
    Figure 5.  The soliton solutions (3.64) are plotted in the (x,y)-plane for (a) |w2,26| and (b) |z2,26|. Here, P=1,Q=0,R=1,ρ=1,ϱ=1,σ=1,t=2,K=2,α=2.
    Figure 6.  The impact of fractional parameter ρ on the profiles of soliton solutions (3.64) is investigated: (a) |w2,26| and (b) |z2,26|. Here, P=1,Q=0,R=1,ϱ=1,σ=1,t=2,K=2,α=2.
    Figure 7.  The soliton solutions (3.66) are plotted in the (x,y)-plane for (a) |w2,28| and (b) |z2,28|. Here, P=1,Q=0,R=1,ρ=1,ϱ=1,σ=1,t=2,K=2,α=2.
    Figure 8.  The soliton solutions (3.69) are plotted in the (x,y)-plane for (a) |w2,31| and (b) |z2,31|. Here, P=0,Q=1,R=1,ρ=1,ϱ=1,σ=1,t=2,K=2,α=2.
    Figure 9.  The impact of fractional parameter ρ on the profiles of soliton solutions (3.69) in investigated: (a) |w2,31| and (b) |z2,31|. Here, P=0,Q=1,R=1,ϱ=1,σ=1,t=2,K=2,α=2.
    Figure 10.  The soliton solutions (3.71) are plotted in the (x,y)-plane for (a) |w2,33| and (b) |z2,33|. Here, P=0,Q=τ,R=hτ,h=τ=2,ρ=1,ϱ=1,σ=1,K=2,α=2,τ=2.
    Figure 11.  The impact of different fractional parameters (ρ,ϱ,σ) on the profiles of soliton solutions (3.71) is investigated. The impact of (ρ) is introduced in Figure 11(a) for |w2,33| and Figure 11(b) for |z2,33|. The impact of (ϱ) is introduced in Figure 11(c) for |w2,33| and Figure 11(d) for |z2,33|. The impact of (σ) is introduced in Figure 11(e) for |w2,33| and Figure 11(f) for |z2,33|.Here, P=0,Q=τ,R=hτ,h=τ=2,K=2,α=2,τ=2.

    Moreover, soliton solutions (3.64) of case II are graphically analyzed as illustrated in Figure 5, which Figure 5(a) indicates the first part of the solution (3.64) |w2,26| whereas Figure 5(b) refers to the second part of the solution (3.64) |z2,26|. We also studied the effect of the fractional parameter ρ on the soliton profile, as shown in Figures 6(a) and 6(b) for |w2,26| and |z2,26|, respectively. In addition, we analyzed soliton solutions (3.66) for both |w2,28| and |z2,28|, as is clear in Figures 7(a) and 7(b), respectively. Furthermore, solutions (3.69) are examined as demonstrated in Figures 8(a) and 8(b) for |w2,31| and |z2,31|, respectively. Also, the impact of the fractional parameter ρ on the profiles of solutions (3.69) is investigated as elucidated in Figures 9(a) and 9(b) for |w2,31| and |z2,31|, respectively. In addition, we visually examined several more derived soliton solutions (we mean here solutions (3.71)), as depicted in Figures 10(a) and 10(b) for |w2,38| and |z2,38|, respectively. We also discussed the impact of different fractional parameters (ρ,ϱ,σ) on the solitons profiles as depicted in Figures 11(a)11(f).

    To sum up, the Extended Direct Algebraic Method (EDAM) was applied to anatomy and solve the space-time fractional (2+1)-dimensional Conformable Broer-Kaup-Kupershmit System (CBKKS). For this purpose, a suitable traveling wave transformation was used to reduce the space-time fractional partial differential (2+1)-dimensional CBKKS to an integer-order nonlinear ordinary differential equation (NODE), resulting in an algebraic system of equations. Subsequently, the solutions to these algebraic systems were employed to construct different types of traveling wave solutions and soliton-like solutions. Accordingly, two different cases were produced under specific parameters for each case. By analyzing each case separately, several distinct families of solutions were derived. In this investigation, Maple was employed to analyze and solve the present issue by employing the EDAM, thereby deriving several forms of traveling wave solutions. The derived solutions were graphically and numerically explored using Wolfram Mathematica to gain a comprehensive understanding of their nature and dynamics. We also studied the effect of different fractional parameters on the profile of some derived solutions to understand the extent of their influence on the shape of the waves and to capture some information that was not known before, as is the case in non-fractional cases. The soliton solutions found have implications for fluid mechanics since they shed light on the nonlinear behavior of the CBKKS model and open up new avenues for our comprehension of intricate physical processes.

    Future work: The stochastic components can be considered in the current problem of the study as a direction for future research to examine the model's behavior under random influences, thereby deepening our comprehension of its dynamics and possible uses in stochastic systems. Moreover, the present methodology distinguishes itself by its abundance of derived solutions. Hence, it can examine various evolution equations encompassing intricate physical and engineering phenomena. Numerous nonlinear solutions can be constructed for various wave equations describing nonlinear processes in diverse plasma systems. These equations include the KdV-type equations [51,52,53], the Kawahara-type equations [54,55,56], the nonlinear Schrodinger-type equations [57,58,59], and other fractional forms.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2024R378), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 6152).

    The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2024R378), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 6152).

    All authors contributed equally and approved the final version of the current manuscript.

    The authors declare that they have no conflicts of interest.



    [1] G. Alessandrini, L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691.
    [2] H. Liu, J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Probl., 22 (2006), 515–524. http://doi.org/10.1088/0266-5611/22/2/008 doi: 10.1088/0266-5611/22/2/008
    [3] O. Ivanyshyn, R. Kress, Nonlinear integral equations in inverse obstacle scattering, Mathematical Methods in Scattering Theory and Biomedical Engineering, 51 (2006), 39–50. https://doi.org/10.1142/9789812773197_0005 doi: 10.1142/9789812773197_0005
    [4] J. Li, H. Liu, Numerical methods for inverse scattering problems, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-99-3772-1
    [5] H. Diao, H. Liu, Spectral geometry and inverse scattering theory, Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-34615-6
    [6] L. Borcea, H. Kang, H. Liu, G. Uhlmann, Inverse problems and imaging, panoramas et Syntheses, 2015.
    [7] J. Li, H. Liu, J. Zou, An efficient multilevel algorithm for inverse scattering problem, In: Advances in computation and intelligence, Berlin, Heidelber: Springer, 2007,234–242. https://doi.org/10.1007/978-3-540-74581-5_25
    [8] J. Xiang, G. Yan, The factorization method for a mixed inverse elastic scattering problem, IMA. J. Appl. Math., 87 (2022), 407–437. http://doi.org/10.1093/imamat/hxac010 doi: 10.1093/imamat/hxac010
    [9] J. Wang, B. Chen, Q. Yu, Y. Sun, A novel sampling method for time domain acoustic inverse source problems, Phys. Scr., 99 (2024), 035221. http://doi.org/10.1088/1402-4896/ad21c7 doi: 10.1088/1402-4896/ad21c7
    [10] D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Probl., 12 (1996), 383–393. http://doi.org/10.1088/0266-5611/12/4/003 doi: 10.1088/0266-5611/12/4/003
    [11] J. Li, J. Yang, B. Zhang, A linear sampling method for inverse acoustic scattering by a locally rough interface, Inverse Probl. Imag., 15 (2021), 1247–1267. http://doi.org/10.3934/ipi.2021036 doi: 10.3934/ipi.2021036
    [12] Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2021), 110771. http://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
    [13] W. Yin, Z. Yang, P. Meng, Solving inverse scattering problem with a crack in inhomogeneous medium based on a convolutional neural network, Symmetry, 15 (2023), 119. https://doi.org/10.3390/sym15010119 doi: 10.3390/sym15010119
    [14] P. Zhang, P. Meng, W. Yin, H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842
    [15] W. Yin, J. Ge, P. Meng, F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123–1142. https://doi.org/10.3934/era.2020062 doi: 10.3934/era.2020062
    [16] W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594
    [17] H. Liu, C. Mou, S. Zhang, Inverse problems for mean field games, Inverse Probl., 39 (2023), 085003. https://doi.org/10.1088/1361-6420/acdd90 doi: 10.1088/1361-6420/acdd90
    [18] Y. He, H. Liu, X. Wang, A novel quantitative inverse scattering scheme using interior resonant modes, Inverse Probl., 39 (2023), 085002. https://doi.org/10.1088/1361-6420/acdc49 doi: 10.1088/1361-6420/acdc49
    [19] X. Cao, H. Diao, H. Liu, J. Zou, Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries, Inverse Probl. Imag., 16, (2022), 1501–1528. https://doi.org/10.3934/ipi.2022023 doi: 10.3934/ipi.2022023
    [20] X. Cao, H. Diao, H. Liu, J. Zou, On nodal and singular structures of Laplacian eigenfunctions and applications to inverse scattering problems, J. Math. Pures Appl., 143 (2020), 116–161. https://doi.org/10.1016/j.matpur.2020.09.011 doi: 10.1016/j.matpur.2020.09.011
    [21] L. Liu, W. Liu, D. Teng, Y. Xiang, F.-Z. Xuan, A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data, J. Acoust. Soc. Am., 154 (2023), 2044–2054. http://doi.org/10.1121/10.0021171 doi: 10.1121/10.0021171
    [22] A. Reed, T. Blanford, D. Brown, S. Jayasuriya, SINR: Deconvolving circular sas images using implicit neural representations, IEEE J. Sel. Topics Signal Process., 17 (2023), 458–472. http://doi.org/10.1109/JSTSP.2022.3215849 doi: 10.1109/JSTSP.2022.3215849
    [23] W. Yu, X. Huang, Reconstruction of aircraft engine noise source using beamforming and compressive sensing, IEEE Access, 6 (2018), 11716–11726. http://doi.org/10.1109/ACCESS.2018.2801260 doi: 10.1109/ACCESS.2018.2801260
    [24] T. Nagata, K. Nakai, K. Yamada, Y. Saito, T. Nonomura, M. Kano, et al., Seismic wavefield reconstruction based on compressed sensing using data-driven reduced-order model, Geophys. J. Int., 233 (2023), 33–50. http://doi.org/10.1093/gji/ggac443 doi: 10.1093/gji/ggac443
    [25] M. Suhonen, A. Pulkkinen, T. Tarvainen, Single-stage approach for estimating optical parameters in spectral quantitative photo acoustic tomography, Journal of the Optical Society of America A, 41 (2024), 527–542. http://doi.org/10.1364/JOSAA.518768 doi: 10.1364/JOSAA.518768
    [26] M. Ding, H. Liu, G. Zheng, Shape reconstructions by using plasmon resonances with enhanced sensitivity, J. Comput. Phys., 486 (2023), 112131. http://doi.org/10.1016/j.jcp.2023.112131 doi: 10.1016/j.jcp.2023.112131
    [27] W. Yin, H. Qi, P. Meng, Broad learning system with preprocessing to recover the scattering obstacles with far-field data, Adv. Appl. Math. Mech., 15 (2023), 984–1000. https://doi.org/10.4208/aamm.OA-2021-0352 doi: 10.4208/aamm.OA-2021-0352
    [28] Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
    [29] Y. Yin, W. Yin, P. Meng, H. Liu, On a hybrid approach for recovering multiple obstacle, Commun. Comput. Phys., 31 (2022), 869–892. https://doi.org/10.4208/cicp.OA-2021-0124 doi: 10.4208/cicp.OA-2021-0124
    [30] P. Meng, J. Zhuang, L. Zhou, W. Yin, D. Qi, Efficient synchronous retrieval of OAM modes and AT strength using multi-task neural networks, Opt. Express, 32 (2024), 7816–7831. http://doi.org/10.1364/OE.511098 doi: 10.1364/OE.511098
    [31] P. Meng, X. Wang, W. Yin, ODE-RU: a dynamical system view on recurrent neural networks, Electron. Res. Arch., 30 (2022), 257–271. http://doi.org/10.3934/era.2022014 doi: 10.3934/era.2022014
    [32] Y. Gao, H. Liu, X. Wang, K. Zhang, A bayesian scheme for reconstructing obstacles in acoustic waveguides, J. Sci. Comput., 97 (2023), 53. http://doi.org/10.1007/s10915-023-02368-2 doi: 10.1007/s10915-023-02368-2
    [33] D. Colton, R. Kress, Using fundamental solutions in inverse scattering, Inverse Probl., 22 (2006), R49–R66. http://doi.org/10.1088/0266-5611/22/3/R01 doi: 10.1088/0266-5611/22/3/R01
    [34] F. Cakoni, D. Colton, A qualitative approach to inverse scattering theory, New York: Springer, 2014. http://doi.org/10.1007/978-1-4614-8827-9
    [35] J. Li, H. Liu, J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228–1250. http://doi.org/10.1137/060674247 doi: 10.1137/060674247
    [36] T. Arens, Why linear sampling works, Inverse Probl., 20 (2004), 163–173. http://doi.org/10.1088/0266-5611/20/1/010 doi: 10.1088/0266-5611/20/1/010
    [37] Y. Guo, P. Monk, D. Colton, The linear sampling method for sparse small aperture data, Appl. Anal., 95 (2016), 1599–1615. http://doi.org/10.1080/00036811.2015.1065317 doi: 10.1080/00036811.2015.1065317
    [38] P. Meng, L. Su, W. Yin, S. Zhang, Solving a kind of inverse scattering problem of acoustic waves based on linear sampling method and neural network, Alex. Eng. J., 59 (2020), 1451–1462. https://doi.org/10.1016/j.aej.2020.03.047 doi: 10.1016/j.aej.2020.03.047
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1205) PDF downloads(50) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog