In this paper, we investigate the numerical solution of the Brusselator system using a meshless method. A numerical scheme is derived employing the formulas of the Generalized Finite Difference Method, and the convergence of the approximate solution to the exact solution is examined. In order to demonstrate the applicability and accuracy of the method, several examples are proposed.
Citation: Ángel García, Francisco Ureña, Antonio M. Vargas. Solving the reaction-diffusion Brusselator system using Generalized Finite Difference Method[J]. AIMS Mathematics, 2024, 9(5): 13211-13223. doi: 10.3934/math.2024644
In this paper, we investigate the numerical solution of the Brusselator system using a meshless method. A numerical scheme is derived employing the formulas of the Generalized Finite Difference Method, and the convergence of the approximate solution to the exact solution is examined. In order to demonstrate the applicability and accuracy of the method, several examples are proposed.
[1] | A. Whye-Teong, The two-dimensional reaction-diffusion Bruselator system: A dual-reciprocity boundary element solution, Eng. Anal. Bound. Elem., 27 (2003), 897–903. https://doi.org/10.1016/S0955-7997(03)00059-6 doi: 10.1016/S0955-7997(03)00059-6 |
[2] | M. Mohammadi, R. Mokhtart, R. Schaback, A Meshless Method for Solving the 2D Brusselator Reaction-Diffusion System, CMES, 101 (2014), 113–138. |
[3] | Z. Zafar, K. Rehan, M. Mushtaq, M. Rafiq, Numerical treatment for nonlinear Brusselator chemical model, J. Differ. Equ. Appl., 23 (2017), 521–538, http://doi.org/10.1080/10236198.2016.1257005 doi: 10.1080/10236198.2016.1257005 |
[4] | R. K. Saeed, S. A. Manaa, F. H. Easif, Numerical Solution of Brusselator Model by Expansion Methods, Aust. J. Basic Appl. Sci., 4 (2010), 3389–3403. |
[5] | R. C. Mittal, R. Jiwari, Numerical solution of two-dimensional reaction-diffusion Brusselator system, Appl. Math. Comput., 217 (2011), 5404–5415. https://doi.org/10.1016/j.amc.2010.12.010 doi: 10.1016/j.amc.2010.12.010 |
[6] | W. Sun, W. Qu, Y. Gu, P. W. Li, An arbitrary order numerical framework for transient heat conduction problems, Int. J. Heat Mass Tran., 218 (2024), 124798. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124798 doi: 10.1016/j.ijheatmasstransfer.2023.124798 |
[7] | W. Sun, H. Ma, W. Qu, A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity, Appl. Math. Lett., 146 (2024), 108868. https://doi.org/10.1016/j.aml.2023.108868 doi: 10.1016/j.aml.2023.108868 |
[8] | J. Benito, F. Ureña, L. Gavete, B. Alonso, Application of the Generalized Finite Difference Method to improve the approximated solution of PDEs, CMES, 38 (2009), 39–58. |
[9] | J. Benito, F. Ureña, L. Gavete, Influence of several factors in the generalized finite difference method, Appl. Math. Modell., 25 (2001), 1039–1053. https://doi.org/10.1016/S0307-904X(01)00029-4 doi: 10.1016/S0307-904X(01)00029-4 |
[10] | L. Gavete, F. Ureña, J. Benito, A. Garcia, M. Ureña, E. Salete, Solving second order non-linear elliptic partial differential equations using generalized finite difference method, J. Comput. Appl. Math., 318 (2017), 378–387. https://doi.org/10.1016/j.cam.2016.07.025 doi: 10.1016/j.cam.2016.07.025 |
[11] | F. Ureña, L. Gavete, A. Garcia, J. Benito, A. M. Vargas, Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 354 (2019), 221–241. https://doi.org/10.1016/j.cam.2018.02.016 doi: 10.1016/j.cam.2018.02.016 |