In this article, the Montgomery identity and Ostrowski inequality are established for univariate first-order diamond-alpha differentiable functions. We also investigate the generalization of Ostrowski-type inequalities for bivariate functions with bounded second-order diamond-alpha derivatives by applying integration by parts for ♢α-integrals. Moreover, some extensions of dynamic trapezoid- and Grüss-type inequalities are also obtained by using the Montgomery identity.
Citation: Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb. Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-α integrals and Montgomery identity[J]. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624
[1] | Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114 |
[2] | Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar . Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2020, 5(6): 5439-5457. doi: 10.3934/math.2020349 |
[3] | Hüseyin Budak, Ebru Pehlivan . Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131 |
[4] | Atiqe Ur Rahman, Khuram Ali Khan, Ammara Nosheen, Muhammad Saeed, Thongchai Botmart, Nehad Ali Shah . Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales. AIMS Mathematics, 2022, 7(9): 16657-16672. doi: 10.3934/math.2022913 |
[5] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[6] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[7] | Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393 |
[9] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[10] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
In this article, the Montgomery identity and Ostrowski inequality are established for univariate first-order diamond-alpha differentiable functions. We also investigate the generalization of Ostrowski-type inequalities for bivariate functions with bounded second-order diamond-alpha derivatives by applying integration by parts for ♢α-integrals. Moreover, some extensions of dynamic trapezoid- and Grüss-type inequalities are also obtained by using the Montgomery identity.
The Ostrowski inequality [1] is presented in 1938.
Theorem 1.1. Suppose that ˘G:[η1,η4]→R is a function which is continuous on [η1,η4] and differentiable on (η1,η4); then, for all τ3∈[η1,η4], we have
|˘G(τ3)−1η4−η1∫η4η1˘G(τ2)dτ2|≤supη1<τ2<η4|˘G′(τ2)|(η4−η1)[(τ3−η1+η42)2(η4−η1)2+14]. | (1.1) |
Inequality (1.1) clearly indicates the absolute difference between the integral mean of ˘G over [η1,η4] and its value at a certain point in [η1,η4]. Many applications of Ostrowski's inequality have been explored in statistics, optimization and probability theory, numerical integration, and theory of the integral operators. Inequality (1.1) is also used to calculate error in the approximation of integrals. For more details, we refer the readers to [2,3,4,5,6,7,8,9].
In 1991, the trapezoid inequality [10] is estimated as follows:
Theorem 1.2. Suppose that a function ˘G is two times differentiable on [η1,η4]; then, we have
|˘G(η1)+˘G(η4)2(η4−η1)−∫η4η1˘G(τ2)dτ2|≤supη1<τ2<η4|˘G″(τ2)|(η4−η1)312. |
In 1935, Gr¨uss [11] obtained the following inequality.
Theorem 1.3. Suppose that ˘G and ˘H are continuous functions on [η1,η4] such that
ζ1≤˘G(τ2)≤ζ2andζ3≤˘H(τ2)≤ζ4 |
for all τ2∈[η1,η4] and ζi∈[η1,η4], where i=1,2,3,4. Then, we have
|1η4−η1∫η4η1˘G(τ2)˘H(τ2)dτ2−1(η4−η1)2∫η4η1˘G(τ2)dτ2∫η4η1˘H(τ2)dτ2|≤14(ζ2−ζ1)(ζ4−ζ3). | (1.2) |
Certainly, (1.2) computes the absolute divergence of the integral means of two functions from the product of their integral means.
In 2003, Pachpatte [12] derived the Gr¨uss- and trapezoid-type inequalities as follows:
Theorem 1.4. Suppose that ˘G,˘H:[η1,η4]→R are differentiable functions on (η1,η4), whose first derivatives ˘G′,˘H′:(η1,η4)→R are bounded on (η1,η4); then, we have
|1η4−η1∫η4η1˘G(τ2)˘H(τ2)dτ2−(1η4−η1∫η4η1˘G(τ2)dτ2)(1η4−η1∫η4η1˘H(τ2)dτ2)|≤12(η4−η1)2∫η4η1[M1|˘G(τ2)|+N1|˘H(τ2)|][(η4−η1)24+(τ2−η1+η42)2]dτ2, | (1.3) |
where M1=supη1<τ2<η4˘G′(τ2) and N1=supη1<τ2<η4˘H′(τ2).
Theorem 1.5. Suppose that ˘G:[η1,η4]→R is a differentiable function on (η1,η4), whose first derivative ˘G′:(η1,η4)→R is bounded on (η1,η4); then,
|˘G2(η4)−˘G2(η1)2−˘G(η4)−˘G(η1)η4−η1∫η4η1˘G(τ2)dτ2|≤M21(η4−η1)23, |
where M1=supη1<τ2<η4˘G′(τ2).
The theory of time scales is a significant branch of mathematics because of its applications in a variety of fields. In 1988, calculus on measure chains was introduced by Stefan Hilger [13]. The valuable contributions of theory of unification, extension and discretization were identified by his Ph.D supervisor, Bernd Aulbach. The theory of time scales for integral inequalities has been explored by numerous researchers. When estimating the approximate error in integration, these inequalities facilitate the analysis of the consistency and steadiness of statistical calculations [14]. Its applications in engineering, optimization theory, functional spaces, mathematical biology and dynamic inequalities have also contributed to the literature. Time scale calculus is illustrated through the use of continuous, discrete, and quantum calculus. For convex functions, Ekinci [15] derived Ostrowski-type delta integral inequalities. Hu and Wang [16] investigated time scales inequalities and their applications to the persistence of a predator-prey system.
In 2006, Sheng et al. [17] developed a joint dynamic ♢α-derivative as a linear combination of delta and nabla dynamic derivatives on time scales. For α=1 and α=0, the diamond-α derivative becomes the conventional delta and nabla derivative, respectively. On any discrete time scale, it gives a symmetric dynamic derivative for α=12. Ahmad et al. [18] obtained a bivariate Montgomery identity by using α-diamond integrals. Liu and Tuna [19] established weighted Gr¨uss-type and Ostrowski-type inequalities for ♢α-integrals. Bohner et al. [20] derived diamond-alpha Gr¨uss-type inequalities. Liu et al. [21] also presented weighted Gr¨uss-type, Ostrowski-type, Ostrowski-Gr¨uss-type and trapezoid-type inequalities. Du et al. [22] established the Y-function and L'Hospital-type monotonicity rules with nabla and diamond-alpha derivatives on time scales. Bilal et al. [23] obtained bounds of some divergence measures by applying Hermite polynomials in diamond integrals on time scales. Truong et al. [24] investigated the diamond-alpha differentiability of interval-valued functions and their applicability to interval differential equations on time scales.
Motivated by the work of Bohner and Mathews [25,26] and El-Deeb [27], the objective of this manuscript is to obtain some Ostrowski-type, Grüss-type, and trapezoid-type inequalities via the Montgomery identity for diamond-alpha integrals on time scales. The proofs of these results rely on employing the properties of differentiation and integration on time scales and they not only provide the generalization of existing results, but also give some novel inequalities for diamond-alpha integrals through the choice of some special time scales.
This paper is organized as follows. Section 2 presents some early results on time scales that will be used later in this study. Section 3 proves the Montgomery identity and Ostrowski inequality for diamond-alpha differentiable functions. In addition, we derive Ostrowski-type, trapezoid-type and Grüss-type inequalities for twice diamond-alpha differentiable functions. Some classical and modern inequalities are derived. Section 4 gives the summary of the findings.
We now go over some fundamental concepts and notations in time scales calculus.
An arbitrary nonempty closed subset T of R is called a time scale. Consider the time scale T and v1∈T. The forward and backward jump operators σ,ρ:T→T are defined as follows: σ(v1):=inf{w1∈T:w1>v1} and ρ(v1):=sup{w1∈T:w1<v1}, respectively. The Δ-derivative and Δ-integral of a mapping ˘G are denoted by ˘GΔ and ∫T˘G(η)Δη. Similarly, the ∇-derivative and ∇-integral of a mapping ˘G are denoted respectively by ˘G∇ and ∫T˘G(η)∇η.
Assume that a function W1:T→R, τ2∈Tκκ, α∈[0,1], μτ2η1=σ(τ2)−η1, and ντ2η1=ρ(τ2)−η1. Suppose that W♢α1(τ2)∈R is a ♢α-derivative of W1 at τ2 if for any ϵ>0, there exists a neighborhood W0 of τ2 such that, for all η1∈W0, we have
|α[W1(σ(τ2))−W1(η1)]ντ2η1+(1−α)[W1(ρ(τ2))−W1(η1)]μτ2η1−W♢α1(τ2)μτ2η1ντ2η1|≤ϵ|μτ2η1ντ2η1|. |
Moreover, W1 is said to be ♢α-differentiable if and only if it is delta- and nabla differentiable. For α=1 and α=0, the ♢α-derivative reduces to the delta and nabla derivative, respectively [28].
In [29], the following results are given:
Assume that the functions W1,W2:T→R are diamond-alpha differentiable at τ2∈T, and that c0∈R. Then, we have
(a)(W1+W2)♢α(τ2)=W♢α1(τ2)+W♢α2(τ2);(b)(c0W1)♢α(τ2)=c0W♢α1(τ2);(c)(W1W2)♢α(τ2)=W♢α1(τ2)W2(τ2)+αWσ1(τ2)WΔ2(τ2)+(1−α)Wρ1(τ2)W∇2(τ2). | (2.1) |
If we take the integral on both sides of (2.1), we get the following formula for integration by parts.
If η1,η4∈T and W1,W2 are continuous functions, then
∫η4η1W♢α1(τ2)W2(τ2)♢ατ2=(W1W2)(η4)−(W1W2)(η1)−α∫η4η1Wσ1(τ2)WΔ2(τ2)♢ατ2−(1−α)∫η4η1Wρ1(τ2)W∇2(τ2)♢ατ2. | (2.2) |
Suppose that W1:T→R is a continuous function and η1,η4∈T. Then, the ♢α-integral of W1 over [η1,η4] is described as follows:
∫η4η1W1(τ2)♢ατ2=α∫η4η1W1(τ2)Δτ2+(1−α)∫η4η1W1(τ2)∇τ2,0≤α≤1. | (2.3) |
Assume that η1,η4,τ2∈T, c0∈R and W1,W2 are continuous functions on [η1,η4]T. Then,
(ⅰ) ∫η4η1[W1(τ2)+W2(τ2)]♢ατ2=∫η4η1W1(τ2)♢ατ2+∫η4η1W2(τ2)♢ατ2;
(ⅱ) ∫η4η1c0W1(τ2)♢ατ2=c0∫η4η1W1(τ2)♢ατ2;
(ⅲ) ∫η4η1W1(τ2)♢ατ2=∫ηη1W1(τ2)♢ατ2+∫η4ηW1(τ2)♢ατ2;
(ⅳ) ∫η4η1W1(τ2)♢ατ2=−∫η1η4W1(τ2)♢ατ2;
(ⅴ) |∫η4η1W1(τ2)♢ατ2|≤∫η4η1|W1(τ2)|♢ατ2.
Let T be an arbitrary time scale. Suppose that the functions hk,ˆhk:T×T→R,k∈N∪{0}, are defined recursively by
h0(τ2,η1)=1,hk+1(τ2,η1)=∫τ2η1hk(τ3,η1)Δτ3, |
and
ˆh0(τ2,η1)=1,ˆhk+1(τ2,η1)=∫τ2η1ˆhk(τ3,η1)∇τ3. |
Similarly, we define a function ˜hk:T×T→R,k∈N∪{0}, as:
˜h1(τ2,η1)=1,˜hk+1(τ2,η1)=αhk+1(τ2,η1)+(1−α)ˆhk+1(τ2,η1),α∈[0,1], |
where hk are right-dense continuous and ˆhk are left-dense continuous functions.
For further details, the readers are referred to [30,31,32,33,34].
In this section, the Montgomery identity is proved by utilizing the formula for integration by parts for diamond alpha integrals. Further, Ostrowski-, Grüss-, and trapezoid-type inequalities are established by using the Montgomery identity for second-order diamond-alpha-differentiable functions. Mathematical applications of this work are given in the form of examples and corollaries.
Theorem 3.1. Assume that η1,τ2,τ3,η4∈T, with η1<η4, α∈[0,1] and ˘G:[η1,η4]T→R as a diamond-alpha differentiable function. Then, for all τ3∈[η1,η4]T
˘G(τ2)=αη4−η1∫η4η1˘Gσ(τ3)♢ατ3+1−αη4−η1∫η4η1˘Gρ(τ3)♢ατ3+1η4−η1∫η4η1˘Γ(τ2,τ3)˘G♢α(τ3)♢ατ3, | (3.1) |
where
˘Γ(τ2,τ3)={τ3−η1,τ3∈[η1,τ2]T,τ3−η4,τ3∈(τ2,η4]T. | (3.2) |
Proof. By using (2.2), we have
∫τ2η1(τ3−η1)˘G♢α(τ3)♢ατ3=˘G(τ2)(τ2−η1)−α∫τ2η1˘Gσ(τ3)♢ατ3−(1−α)∫τ2η1˘Gρ(τ3)♢ατ3, | (3.3) |
and
∫η4τ2(τ3−η4)˘G♢α(τ3)♢ατ3=˘G(τ2)(η4−τ2)−α∫η4τ2˘Gσ(τ3)♢ατ3−(1−α)∫η4τ2˘Gρ(τ3)♢ατ3. | (3.4) |
Add (3.3) and (3.4) to obtain
∫η4η1˘Γ(τ2,τ3)˘G♢α(τ3)♢ατ3=˘G(τ2)(η4−η1)−α∫η4η1˘Gσ(τ3)♢ατ3−(1−α)∫η4η1˘Gρ(τ3)♢ατ3. | (3.5) |
Therefore,
˘G(τ2)=αη4−η1∫η4η1˘Gσ(τ3)♢ατ3+1−αη4−η1∫η4η1˘Gρ(τ3)♢ατ3+1η4−η1∫η4η1˘Γ(τ2,τ3)˘G♢α(τ3)♢ατ3=αη4−η1∫η4η1˘Gσ(τ3)♢ατ3+1−αη4−η1∫η4η1˘Gρ(τ3)♢ατ3+1η4−η1[−α∫η4η1˘Gσ(τ3)♢ατ3−(1−α)∫η4η1˘Gρ(τ3)♢ατ3+˘G(τ2)(η4−η1)]. |
Remark 3.2. (i) Put α=1 in Theorem 3.1 to get [26,Lemma 3.1];
(ii) put α=0 in Theorem 3.1 to get [18,Remark 1.1];
(iii) put α=12 in Theorem 3.1 to get the symmetric combination of the inequalities established in [26,Lemma 3.1] and [18,Remark 1.1].
Example 3.3. Substitute T=Z in Theorem 3.1 to get
˘G(τ2)=αη4−η1[η4−1∑τ3=η1+1˘G(τ3+1)+α˘G(η1+1)+(1−α)˘G(η4+1)]+1−αη4−η1[η4−1∑τ3=η1+1˘G(τ3−1)+α˘G(η1−1)+(1−α)˘G(η4−1)]+1η4−η1[η4−1∑τ3=η1+1˘Γ(τ2,τ3)˘G[αΔ+(1−α)∇](τ3)+α˘Γ(τ2,τ3)˘G[αΔ+(1−α)∇](η1)+(1−α)˘Γ(τ2,τ3)˘G[αΔ+(1−α)∇](η4)]. |
Theorem 3.4. Let η1,τ2,τ3,η4∈T, with η1<η4, α∈[0,1] and ˘G:[η1,η4]T be diamond-alpha-differentiable. Then,
|˘G(τ2)−αη4−η1∫η4η1˘Gσ(τ3)♢ατ3−1−αη4−η1∫η4η1˘Gρ(τ3)♢ατ3|≤Y0η4−η1(˜h2(τ2,η1)+˜h2(τ2,η4)), | (3.6) |
where
Y0=supη1<τ2<η4|˘G♢α(τ3)|,˜h2(τ2,η1)=∫τ2η1(τ3−η1)♢ατ3, |
and
˜h2(τ2,η4)=∫τ2η4(τ3−η4)♢ατ3. |
Proof. Using Theorem 3.1, we obtain
|˘G(τ2)−αη4−η1∫η4η1˘Gσ(τ3)♢ατ3−1−αη4−η1∫η4η1˘Gρ(τ3)♢ατ3|=|1η4−η1∫η4η1˘Γ(τ2,τ3)˘G♢α(τ3)♢ατ3|≤Y0η4−η1[∫τ2η1(τ3−η1)♢ατ3+∫η4τ2(τ3−η4)♢ατ3]=Y0η4−η1(˜h2(τ2,η1)+˜h2(τ2,η4)). |
Remark 3.5. (i) Put α=1 in Theorem 3.4 to obtain [26,Theorem 3.5];
(ii) set α=1 and T=R to obtain [26,Corollary 3.7].
Example 3.6. Substitute T=Z in Theorem 3.4 to obtain
|˘G(τ2)−αη4−η1[η4−1∑τ3=η1+1˘G(τ3+1)+α˘G(η1+1)+(1−α)˘G(η4+1)]−1−αη4−η1[η4−1∑τ3=η1+1˘G(τ3−1)+α˘G(η1−1)+(1−α)˘G(η4−1)]|≤Y0η4−η1[(αh2(τ2,η1)+(1−α)ˆh2(τ2,η1))+(αh2(τ2,η4)+(1−α)ˆh2(τ2,η4))]. |
Theorem 3.7. Consider T to be a time scale with η1,τ2,τ3,η4∈T and η1<η4. Additionally, assume that a function ˘G:[η1,η4]T→T is two times diamond-α-differentiable. Then, for all τ3∈[η1,η4]T, τ,ν∈R and α∈[0,1], we have
|˘G(τ3)−1τ+ν[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2+∫η4η1∫τ2η1ττ2−η1˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2+∫η4η1∫η4τ2νη4−τ2˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2]−ατ+ν[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+∫η4η1∫τ2η1ττ2−η1˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2+∫η4η1∫η4τ2νη4−τ2˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2]|≤Y1(τ+ν)2(ττ3−η1˜h2(τ3,η1)+νη4−τ3˜h2(τ3,η4))2, | (3.7) |
where
˘Γ(τ3,τ2)={ττ+ν(τ2−η1τ3−η1),η1≤τ2<τ3,−ντ+ν(η4−τ2η4−τ3),τ3≤τ2≤η4, |
and
Y1=supη1<τ2<η4|˘G♢α♢α(τ2)|<∞. |
Proof. By using (2.2), we obtain
∫τ3η1ττ+ν(τ2−η1τ3−η1)˘G♢α(τ2)♢ατ2=ττ+ν˘G(τ3)−τ(τ+ν)(τ3−η1)∫τ3η1˘Gρ(τ2)♢ατ2−τα(τ+ν)(τ3−η1)∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2, | (3.8) |
and
∫η4τ3−ντ+ν(η4−τ2η4−τ3)˘G♢α(τ2)♢ατ2=ντ+ν˘G(τ3)−ν(τ+ν)(η4−τ3)∫η4τ3˘Gρ(τ2)♢ατ2−αν(τ+ν)(η4−τ3)∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2. | (3.9) |
By adding (3.8) and (3.9), we get
∫η4η1˘Γ(τ3,τ2)˘G♢α(τ2)♢ατ2=˘G(τ3)−1τ+ν[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]−ατ+ν[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]. | (3.10) |
Likewise, we have
∫η4η1˘Γ(τ2,w∗1)˘G♢α♢α(w∗1)♢αw∗1=˘G♢α(τ2)−1τ+ν[ττ2−η1∫τ2η1˘G♢α(ρ(w∗1))♢αw∗1+νη4−τ2∫η4τ2˘G♢α(ρ(w∗1))♢αw∗1]−ατ+ν[ττ2−η1∫τ2η1[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1+νη4−τ2∫η4τ2[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1]. | (3.11) |
By substituting (3.11) into (3.10), we obtain
∫η4η1∫η4η1˘Γ(τ3,τ2)˘Γ(τ2,w∗1)˘G♢α♢α(w∗1)♢αw∗1♢ατ2+1τ+ν[∫η4η1∫τ2η1ττ2−η1˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2+∫η4η1∫η4τ2νη4−τ2˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2]+ατ+ν[∫η4η1∫τ2η1ττ2−η1˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2+∫η4η1∫η4τ2νη4−τ2˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2]=˘G(τ3)−1τ+ν[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]−ατ+ν[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]. | (3.12) |
Using the properties of the modulus and the definition of ˜h2(.,.), inequality (3.7) follows directly from (3.12). This concludes the theorem.
Remark 3.8. (i) Put α=1 in Theorem 3.7 to obtain [27,Theorem 3.1];
(ii) set α=1 and T=R to obtain [27,Corollary 3.2].
Corollary 3.9. Substitute τ=ν=1 in (3.7) to get
|˘G(τ3)−12[1τ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+1η4−τ3∫η4τ3˘Gρ(τ2)♢ατ2+∫η4η1∫τ2η11τ2−η1˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2+∫η4η1∫η4τ21η4−τ2˘Γ(τ3,τ2)˘G♢α(ρ(w∗1))♢αw∗1♢ατ2]−α2[1τ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+1η4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+∫η4η1∫τ2η11τ2−η1˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2+∫η4η1∫η4τ21η4−τ2˘Γ(τ3,τ2)[˘G♢α(σ(w∗1))−˘G♢α(ρ(w∗1))]♢αw∗1♢ατ2]|≤Y14(1τ3−η1˜h2(τ3,η1)+1η4−τ3˜h2(τ3,η4))2. | (3.13) |
Example 3.10. If we substitute T=Z in (3.7), then we obtain
|˘G(τ3)−1τ+ν[ττ3−η1[τ3−1∑τ2=η1+1˘G(τ2−1)+α˘G(η1−1)+(1−α)˘G(τ3−1)]+νη4−τ3[η4−1∑τ2=τ3+1˘G(τ2−1)+α˘G(τ3−1)+(1−α)˘G(η4−1)]+η4−1∑τ2=η1+1τ2−1∑w∗1=η1+1ττ2−η1˘Γ(τ3,τ2)˘G(αΔ+(1−α)∇)(w∗1−1)+ττ2−η1˘Γ(τ3,τ2)[α˘G(αΔ+(1−α)∇)(η1−1)+(1−α)˘G(αΔ+(1−α)∇)(τ2−1)]+η4−1∑τ2=η1+1η4−1∑w∗1=τ2+1νη4−τ2˘Γ(τ3,τ2)˘G(αΔ+(1−α)∇)(w∗1−1)+νη4−τ2˘Γ(τ3,τ2)[α˘G(αΔ+(1−α)∇)(τ2−1)+(1−α)˘G(αΔ+(1−α)∇)(η4−1)]]−ατ+ν[ττ3−η1[τ3−1∑τ2=η1+1[˘G(τ2+1)−˘G(τ2−1)]+α[˘G(η1+1)−˘G(η1−1)]+(1−α)[˘G(τ3+1)−˘G(τ3−1)]]+νη4−τ3[η4−1∑τ2=τ3+1[˘G(τ2+1)−˘G(τ2−1)]+α[˘G(τ3+1)−˘G(τ3−1)]+(1−α)[˘G(η4+1)−˘G(η4−1)]]+η4−1∑τ2=η1+1τ2−1∑w∗1=η1+1ττ2−η1˘Γ(τ3,τ2)[˘G(αΔ+(1−α)∇)(w∗1+1)−˘G(αΔ+(1−α)∇)(w∗1−1)+ττ2−η1˘Γ(τ3,τ2)[α(˘G(αΔ+(1−α)∇)(η1+1)−˘G(αΔ+(1−α)∇)(η1−1))+(1−α)(˘G(αΔ+(1−α)∇)(τ2+1)−˘G(αΔ+(1−α)∇)(τ2−1))]+η4−1∑τ2=η1+1η4−1∑w∗1=τ2+1νη4−τ2˘Γ(τ3,τ2)[˘G(αΔ+(1−α)∇)(w∗1+1)−˘G(αΔ+(1−α)∇)(w∗1−1)]+νη4−τ2˘Γ(τ3,τ2)[α[˘G(αΔ+(1−α)∇)(τ2+1)−˘G(αΔ+(1−α)∇)(τ2−1)]+(1−α)[˘G(αΔ+(1−α)∇)(η4+1)−˘G(αΔ+(1−α)∇)(η4−1)]]|≤Y1(τ+ν)2(ττ3−η1[αh2(τ3,η1)+(1−α)^h2(τ3,η1)]+νη4−τ3[αh2(τ3,η4)+(1−α)^h2(τ3,η4)])2, |
where
Y1=supη1<τ2<η4|˘G(αΔ2+(1−α)∇2)(τ2)|<∞. |
Theorem 3.11. Using the assumptions given in Theorem 3.7, we have
|˘G2(η4)−˘G2(η1)−1τ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]♢ατ3−ατ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]♢ατ3−ατ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1˘Gρ(σ(τ2))♢ατ2+νη4−τ3∫η4τ3˘Gρ(σ(τ2))♢ατ2]♢ατ3−α2τ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2+νη4−τ3∫η4τ3[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2]♢ατ3−1−ατ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1˘Gρ2(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ2(τ2)♢ατ2]♢ατ3−α(1−α)τ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2]♢ατ3|≤[Y20+αY2Z0+(1−α)Y3X1]∫η4η1∫η4η1|˘Γ(τ3,τ2)|♢ατ2♢ατ3, | (3.14) |
where
Y0=supη1<τ2<η4|˘G♢α(τ2)|,Y2=supη1<τ2<η4|˘G♢α(σ(τ2))|,Y3=supη1<τ2<η4|˘G♢α(ρ(τ2))|,Z0=supη1<τ2<η4|˘GΔ(τ2)|andX1=supη1<τ2<η4|˘G∇(τ2)|. |
Proof. Rewrite (3.10) for ˘Gσ(τ3) and ˘Gρ(τ3) as follows:
˘Gσ(τ3)=∫η4η1˘Γ(τ3,τ2)˘G♢α(σ(τ2))♢ατ2+1τ+ν[ττ3−η1∫τ3η1˘Gρ(σ(τ2))♢ατ2+νη4−τ3∫η4τ3˘Gρ(σ(τ2))♢ατ2]+ατ+ν[ττ3−η1∫τ3η1[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2+νη4−τ3∫η4τ3[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2], | (3.15) |
˘Gρ(τ3)=∫η4η1˘Γ(τ3,τ2)˘G♢α(ρ(τ2))♢ατ2+1τ+ν[ττ3−η1∫τ3η1˘Gρ2(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ2(τ2)♢ατ2]+ατ+ν[ττ3−η1∫τ3η1[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2]. | (3.16) |
Multiply (3.10) by ˘G♢α(τ3), (3.15) by α˘GΔ(τ3), and (3.16) by (1−α)˘G∇(τ3), add them, use the product formula and integrate the obtained identity with respect to τ3 over [η1,η4] to obtain
˘G2(η4)−˘G2(η1)=∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(τ3)˘G♢α(τ2)♢ατ2♢ατ3+α∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(σ(τ2))˘GΔ(τ3)♢ατ2♢ατ3+(1−α)∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(ρ(τ2))˘G∇(τ3)♢ατ2♢ατ3+1τ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]♢ατ3+ατ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]♢ατ3+ατ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1˘Gρ(σ(τ2))♢ατ2+νη4−τ3∫η4τ3˘Gρ(σ(τ2))♢ατ2]♢ατ3+α2τ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2+νη4−τ3∫η4τ3[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2]♢ατ3+1−ατ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1˘Gρ2(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gη42(τ2)♢ατ2]♢ατ3+α(1−α)τ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2]♢ατ3. |
By using the properties of the modulus, we get
|˘G2(η4)−˘G2(η1)−1τ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]♢ατ3−ατ+ν∫η4η1˘G♢α(τ3)[ττ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]♢ατ3−ατ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1˘Gρ(σ(τ2))♢ατ2+νη4−τ3∫η4τ3˘Gρ(σ(τ2))♢ατ2]♢ατ3−α2τ+ν∫η4η1˘GΔ(τ3)[ττ3−η1∫τ3η1[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2+νη4−τ3∫η4τ3[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2]♢ατ3−1−ατ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1˘Gρ2(τ2)♢ατ2+νη4−τ3∫η4τ3˘Gρ2(τ2)♢ατ2]♢ατ3−α(1−α)τ+ν∫η4η1˘G∇(τ3)[ττ3−η1∫τ3η1[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2]♢ατ3|=|∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(τ2)˘G♢α(τ3)♢ατ2♢ατ3+α∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(σ(τ2))˘GΔ(τ3)♢ατ2♢ατ3+(1−α)∫η4η1∫η4η1˘Γ(τ3,τ2)˘G♢α(ρ(τ2))˘G∇(τ3)♢ατ2♢ατ3|≤∫η4η1∫η4η1|˘Γ(τ3,τ2)||˘G♢α(τ2)||˘G♢α(τ3)|♢ατ2♢ατ3+α∫η4η1∫η4η1|˘Γ(τ3,τ2)||˘G♢α(σ(τ2))||˘GΔ(τ3)|♢ατ2♢ατ3+(1−α)∫η4η1∫η4η1|˘Γ(τ3,τ2)||˘G♢α(ρ(τ2))||˘G∇(τ3)|♢ατ2♢ατ3≤[Y20+αY2Z0+(1−α)Y3X1]∫η4η1∫η4η1|˘Γ(τ3,τ2)|♢ατ2♢ατ3. |
Remark 3.12. (i) Put α=1 in Theorem 3.11 to obtain [27,Theorem 3.4];
(ii) apply α=1 and T=R to obtain [27,Corollary 3.5].
Corollary 3.13. Put τ=ν=1 in (3.14) to obtain
|˘G2(η4)−˘G2(η1)−12∫η4η1˘G♢α(τ3)[1τ3−η1∫τ3η1˘Gρ(τ2)♢ατ2+1η4−τ3∫η4τ3˘Gρ(τ2)♢ατ2]♢ατ3−α2∫η4η1˘G♢α(τ3)[1τ3−η1∫τ3η1[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2+1η4−τ3∫η4τ3[˘Gσ(τ2)−˘Gρ(τ2)]♢ατ2]♢ατ3−α2∫η4η1˘GΔ(τ3)[1τ3−η1∫τ3η1˘Gρ(σ(τ2))♢ατ2+1η4−τ3∫η4τ3˘Gρ(σ(τ2))♢ατ2]♢ατ3−α22∫η4η1˘GΔ(τ3)[1τ3−η1∫τ3η1[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2+1η4−τ3∫η4τ3[˘Gσ2(τ2)−˘Gρ(σ(τ2))]♢ατ2]♢ατ3−1−α2∫η4η1˘G∇(τ3)[1τ3−η1∫τ3η1˘Gρ2(τ2)♢ατ2+1η4−τ3∫η4τ3˘Gρ2(τ2)♢ατ2]♢ατ3−α(1−α)2∫η4η1˘G∇(τ3)[1τ3−η1∫τ3η1[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2+1η4−τ3∫η4τ3[˘Gσ(ρ(τ2))−˘Gρ2(τ2)]♢ατ2]♢ατ3|≤[Y20+αY2Z0+(1−α)Y3X1]∫η4η1∫η4η1|˘Γ(τ3,τ2)|♢ατ2♢ατ3. |
Example 3.14. If we put T=Z in (3.14), then we get
|˘G2(η4)−˘G2(η1)−1τ+ν[η4−1∑τ3=η1+1˘G(αΔ+(1−α)∇)(τ3)+α˘G(αΔ+(1−α)∇)(η1)+(1−α)˘G(αΔ+(1−α)∇)(η4)[ττ3−η1[τ3−1∑τ2=η1+1˘G(τ2−1)+α˘G(η1−1)+(1−α)˘G(τ3−1)]+νη4−τ3[η4−1∑τ2=τ3+1˘G(τ2−1)+α˘G(τ3−1)+(1−α)˘G(η4−1)]]]−ατ+ν[η4−1∑τ3=η1+1˘G(αΔ+(1−α)∇)(τ3)+α˘G(αΔ+(1−α)∇)(η1)+(1−α)˘G(αΔ+(1−α)∇)(η4)[ττ3−η1[τ3−1∑τ2=η1+1[˘G(τ2+1)−˘G(τ2−1)]+α[˘G(η1+1)−˘G(η1−1)]+(1−α)[˘G(τ3+1)−˘G(τ3−1)]]+νη4−τ3[η4−1∑τ2=τ3+1[˘G(τ2+1)−˘G(τ2−1)]+α[˘G(τ3+1)−˘G(τ3−1)]+(1−α)[˘G(η4+1)−˘G(η4−1)]]]]−ατ+ν[η4−1∑τ3=η1+1Δ˘G(τ3)+αΔ˘G(η1)+(1−α)Δ˘G(η4)[ττ3−η1[τ3−1∑τ2=η1+1˘G(τ2)+α˘G(η1)+(1−α)˘G(τ3)]+νη4−τ3[η4−1∑τ2=τ3+1˘G(τ2)+α˘G(τ3)+(1−α)˘G(η4)]]]−α2τ+ν[η4−1∑τ3=η1+1Δ˘G(τ3)+αΔ˘G(η1)+(1−α)Δ˘G(η4)[ττ3−η1[τ3−1∑τ2=η1+1[˘G(τ2+2)−˘G(τ2)]+α[˘G(η1+2)−˘G(η1)]+(1−α)[˘G(τ3+2)−˘G(τ3)]]+νη4−τ3[η4−1∑τ2=τ3+1[˘G(τ2+2)−˘G(τ2)]+α[˘G(τ3+2)−˘G(τ3)]+(1−α)[˘G(η4+2)−˘G(η4)]]]]−1−ατ+ν[η4−1∑τ3=η1+1∇˘G(τ3)+α∇˘G(η1)+(1−α)∇˘G(η4)[ττ3−η1[τ3−1∑τ2=η1+1˘G(τ2−2)+α˘G(η1−2)+(1−α)˘G(τ3−2)]+νη4−τ3[η4−1∑τ2=τ3+1˘G(τ2−2)+α˘G(τ3−2)+(1−α)˘G(η4−2)]]]−α(1−α)τ+ν[η4−1∑τ3=η1+1∇˘G(τ3)+α∇˘G(η1)+(1−α)˘G(η4)[ττ3−η1[τ3−1∑τ2=η1+1[˘G(τ2)−˘G(τ2−2)]+α[˘G(η1)−˘G(η1−2)]+(1−α)[˘G(τ3)−˘G(τ3−2)]]+νη4−τ3[η4−1∑τ2=τ3+1[˘G(τ2)−˘G(τ2−2)]+α[˘G(τ3)−˘G(τ3−2)]+(1−α)[˘G(η4)−˘G(η4−2)]]]]|≤[Y20+αY2Z0+(1−α)Y3X1]η4−1∑τ3=η1+1η4−1∑τ2=η1+1|˘Γ(τ3,τ2)|, |
where
Y0=supη1<τ2<η4|˘G(αΔ+(1−α)∇)(τ2)|,Y2=supη1<τ2<η4|˘G(αΔ+(1−α)∇)(τ2+1)|,Y3=supη1<τ2<η4|˘G(αΔ+(1−α)∇)(τ2−1)|,Z0=supη1<τ2<η4|Δ˘G(τ2)|andX1=supη1<τ2<η4|∇˘G(τ2)|. |
Theorem 3.15. Consider T to be a time scale with η1,τ2,τ3,η4∈T and η1<η4. Further, suppose that the functions ˘G,˘H:[η1,η4]T→R are diamond-alpha differentiable. Then, for all τ3∈[η1,η4]T, α∈[0,1], and τ,ν∈R, we have
|2∫η4η1˘G(τ3)˘H(τ3)♢ατ3−1τ+ν[ττ3−η1∫η4η1∫τ3η1[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3]−ατ+ν[ττ3−η1∫η4η1∫τ3η1[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3]|≤∫η4η1∫η4η1|˘Γ(τ3,τ2)|[Y0|˘H(τ3)|+S0|˘G(τ3)|]♢ατ2♢ατ3, | (3.17) |
where
Y0=supη1<τ2<η4|˘G♢α(τ2)|<∞andS0=supη1<τ2<η4|˘H♢α(τ2)|<∞. |
Proof. Replace ˘H with ˘G in (3.10) to get
˘H(τ3)=∫η4η1˘Γ(τ3,τ2)˘H♢α(τ2)♢ατ2+1τ+ν[ττ3−η1∫τ3η1˘Hρ(τ2)♢ατ2+νη4−τ3∫η4τ3˘Hρ(τ2)♢ατ2]+ατ+ν[ττ3−η1∫τ3η1[˘Hσ(τ2)−˘Hρ(τ2)]♢ατ2+νη4−τ3∫η4τ3[˘Hσ(τ2)−˘Hρ(τ2)]♢ατ2]. | (3.18) |
Multiply (3.10) by ˘H(τ3) and (3.18) by ˘G(τ3), add them and integrate the obtained identity with respect to τ3 over [η1,η4] to obtain
2∫η4η1˘G(τ3)˘H(τ3)♢ατ3=∫η4η1∫η4η1˘Γ(τ3,τ2)[˘G♢α(τ2)˘H(τ3)+˘H♢α(τ2)˘G(τ3)]♢ατ2♢ατ3+1τ+ν[ττ3−η1∫η4η1∫τ3η1[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3]+ατ+ν[ττ3−η1∫η4η1∫τ3η1[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3]. |
By using the modulus properties, we get
|2∫η4η1˘G(τ3)˘H(τ3)♢ατ3−1τ+ν[ττ3−η1∫η4η1∫τ3η1[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3]−ατ+ν[ττ3−η1∫η4η1∫τ3η1[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3+νη4−τ3∫η4η1∫η4τ3[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3]|=|∫η4η1∫η4η1˘Γ(τ3,τ2)[˘G♢α(τ2)˘H(τ3)+˘H♢α(τ2)˘G(τ3)]♢ατ2♢ατ3|≤∫η4η1∫η4η1|˘Γ(τ3,τ2)|[|˘G♢α(τ2)||˘H(τ3)|+|˘H♢α(τ2)||˘G(τ3)|]♢ατ2♢ατ3≤∫η4η1∫η4η1|˘Γ(τ3,τ2)|[Y0|˘H(τ3)|+S0|˘G(τ3)|]♢ατ2♢ατ3. |
Remark 3.16. (i) Put α=1 in Theorem 3.15 to obtain [27,Theorem 3.7];
(ii) apply α=1 and T=R to obtain [27,Corollary 3.8].
Corollary 3.17. Substitute τ=ν=1 in (3.17) to get
|2∫η4η1˘G(τ3)˘H(τ3)♢ατ3−12[1τ3−η1∫η4η1∫τ3η1[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3+1η4−τ3∫η4η1∫η4τ3[˘Gρ(τ2)˘H(τ3)+˘Hρ(τ2)˘G(τ3)]♢ατ2♢ατ3]−α2[1τ3−η1∫η4η1∫τ3η1[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3+1η4−τ3∫η4η1∫η4τ3[(˘Gσ(τ2)−˘Gρ(τ2))˘H(τ3)+(˘Hσ(τ2)−˘Hρ(τ2))˘G(τ3)]♢ατ2♢ατ3]|≤∫η4η1∫η4η1|˘Γ(τ3,τ2)|[Y0|˘H(τ3)|+S0|˘G(τ3)|]♢ατ2♢ατ3. | (3.19) |
Example 3.18. If we substitute T=Z in (3.17), then we obtain
|2[η4−1∑τ3=η1+1˘G(τ3)˘H(τ3)+α˘G(η1)˘H(η1)+(1−α)˘G(η4)˘H(η4)]−1τ+ν[ττ3−η1[η4−1∑τ3=η1+1τ3−1∑τ2=η1+1[˘G(τ2−1)˘H(τ3)+˘H(τ2−1)˘G(τ3)]+α[˘G(η1−1)˘H(η1)+˘H(η1−1)˘G(η1)]+(1−α)[˘G(τ3−1)˘H(η4)+˘H(τ3−1)˘G(η4)]]]+νη4−τ3[η4−1∑τ3=η1+1η4−1∑τ2=τ3+1[˘G(τ2−1)˘H(τ3)+˘H(τ2−1)˘G(τ3)]+α[˘G(τ3−1)˘H(η1)+˘H(η1−1)˘G(τ3)]+(1−α)[˘G(η4−1)˘H(η4)+˘H(η4−1)˘G(η4)]]]−ατ+ν[ττ3−η1[η4−1∑τ3=η1+1τ3−1∑τ2=η1+1[[˘G(τ2+1)−˘G(τ2−1)]˘H(τ3)+[˘H(τ2+1)−˘H(τ2−1)]˘G(τ3)]+α[[˘G(η1+1)−˘G(η1−1)]˘H(η1)+[˘H(η1+1)−˘H(η1−1)]˘G(η1)]+(1−α)[[˘G(τ3+1)−˘G(τ3−1)]˘H(η4)+[˘H(η3+1)−˘H(τ3−1)]˘G(η4)]]+νη4−τ3[η4−1∑τ3=η1+1η4−1∑τ2=τ3+1[[˘G(τ2+1)−˘G(τ2−1)]˘H(τ3)+[˘H(τ2+1)−˘H(τ2−1)]˘G(τ3)]+α[[˘G(τ3+1)−˘G(τ3−1)]˘H(η1)+[˘H(τ3+1)−˘H(τ3−1)]˘G(η1)]+(1−α)[[˘G(η4+1)−˘G(η4−1)]˘H(η4)+[˘H(η4+1)−˘H(η4−1)]˘G(η4)]]]|≤η4−1∑τ3=η1+1η4−1∑τ2=η1+1|˘Γ(τ3,τ2)|[Y0|˘H(τ3)|+S0|˘G(τ3)|], |
where
Y0=supη1<τ2<η4|˘G♢α(τ2)|<∞, |
and
S0=supη1<τ2<η4|˘H♢α(τ2)|<∞. |
In the present manuscript, the Ostrowski-type integral inequality has been established through the use of the Montgomery identity for diamond-alpha integrals. Moreover, some extensions of dynamic Grüss- and trapezoid-type inequalities have been investigated for bivariate functions which are two times diamond-α-differentiable. Special cases of our results not only produce the results of [18,26,27], they also give a symmetric combination of the results established in [18,26,27]. Truong et al. [24] presented the diamond-alpha differentiability of interval-valued functions and their applicability to interval differential equations on time scales which can help to extend the results of the present manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research work was funded by the Institutional Fund Project under grant no. (IFPIP: 1159-144-1443). The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
No potential conflict of interest is reported by the authors.
[1] |
A. Ostrowski, ¨Uber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
![]() |
[2] |
F. Ahmad, P. Cerone, S. S. Dragomir, N. A. Mir, On some bounds of Ostrowski and Cebyev type, J. Math. Inequal., 4 (2010), 53–65. https://doi.org/10.7153/jmi-04-07 doi: 10.7153/jmi-04-07
![]() |
[3] |
P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski-Gr¨uss type for twice differentiable mappings and applications in numerical integration, Kyungpook Math. J., 39 (1999), 333–341. https://doi.org/10.1515/dema-1999-0404 doi: 10.1515/dema-1999-0404
![]() |
[4] |
S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to L1[a,b] and applications in numerical integration, J. Comput. Anal. Appl., 3 (2001), 343–360. https://doi.org/10.48550/arXiv.1503.08283 doi: 10.48550/arXiv.1503.08283
![]() |
[5] |
S. S. Dragomir, A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to Lp[a,b] and applications in numerical integration, J. Math. Anal. Appl., 255 (2001), 605–626. https://doi.org/10.1006/jmaa.2000.7300 doi: 10.1006/jmaa.2000.7300
![]() |
[6] |
S. S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 19–25. https://doi.org/10.1016/S0893-9659(99)00139-1 doi: 10.1016/S0893-9659(99)00139-1
![]() |
[7] |
W. Liu, Several error inequalities for a quadrature formula with a parameter and applications, Comput. Math. Appl., 56 (2008), 1766–1772. https://doi.org/10.1016/j.camwa.2008.04.016 doi: 10.1016/j.camwa.2008.04.016
![]() |
[8] | W. J. Liu, Y. Huang, X. X. Pan, New weighted Ostrowski-Gruss-Cebysev type inequalities, Bull. Korean Math. Soc., 45 (2008), 477–483. |
[9] | W. J. Liu, Q. L. Xue, S. F. Wang, Several new perturbed Ostrowski-like type inequalities, J. Inequal. Pure Appl. Math., 8 (2007), 110. |
[10] | D. S. Mitrinoviˊc, J. E. Peˇcariˊc, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Science & Business Media, 2012. |
[11] |
G. Gr¨uss, ¨Uber das Maximum des absoluten Betrages von, Math. Z., 39 (1935), 215–226. https://doi.org/10.1007/BF01201355 doi: 10.1007/BF01201355
![]() |
[12] |
B. G. Pachpatte, On trapezoid and Gr¨uss-like integral inequalities, Tamkang J. Math., 34 (2003), 356–370. https://doi.org/10.5556/j.tkjm.34.2003.238 doi: 10.5556/j.tkjm.34.2003.238
![]() |
[13] | S. Hilger, Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten, Wurzburg: Universtat Wurzburg, 1988. |
[14] | S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Dordrecht: Kluwer Academic, 2002. https://doi.org/10.1007/978-94-017-2519-4 |
[15] | A. Ekinci, Inequalities for convex functions on time scales, TWMS J. Appl. Eng. Math., 9 (2019), 64–72. |
[16] |
M. Hu, L. Wang, Dynamic inequalities on time scales with applications in permanence of predator-prey system, Discrete Dyn. Nat. Soc., 2012 (2012). https://doi.org/10.1155/2012/281052 doi: 10.1155/2012/281052
![]() |
[17] |
Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal.-Real, 7 (2006), 395–413. https://doi.org/10.1016/j.nonrwa.2005.03.008 doi: 10.1016/j.nonrwa.2005.03.008
![]() |
[18] |
M. Ahmad, K. M. Awan, S. Hameed, K. A. Khan, A. Nosheen, Bivariate Montgomery identity for alpha diamond integrals, Adv. Differential Equ., 2019 (2019), 1–13. https://doi.org/10.1186/s13662-019-2254-6 doi: 10.1186/s13662-019-2254-6
![]() |
[19] |
W. Liu, A. Tuna, Diamond-alpha weighted Ostrowski type and Gr¨uss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251–260. https://doi.org/10.1016/j.amc.2015.06.132 doi: 10.1016/j.amc.2015.06.132
![]() |
[20] |
M. Bohner, T. Matthews, A. Tuna, Diamond-alpha Gr¨uss type inequalities on time scales, Int. J. Dyn. Syst. Diffe., 3 (2011), 234–247. https://doi.org/10.1504/IJDSDE.2011.038504 doi: 10.1504/IJDSDE.2011.038504
![]() |
[21] |
W. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., 93 (2014), 551–571. https://doi.org/10.1080/00036811.2013.786045 doi: 10.1080/00036811.2013.786045
![]() |
[22] | X. Y. Du, Z. X. Mao, J. F. Tian, Y-function and L'Hospital-type monotonicity rules with nabla and diamond-alpha derivatives on time scales, arXiv Preprint, 2024. https://doi.org/10.48550/arXiv.2401.12774 |
[23] |
M. Bilal, K. A. Khan, A. Nosheen, J. Pecaric, Bounds of some divergence measures using Hermite polynomial via diamond integrals on time scales, Qual. Theor. Dyn. Syst., 23 (2024), 54. https://doi.org/10.1007/s12346-023-00911-y doi: 10.1007/s12346-023-00911-y
![]() |
[24] |
T. Truong, B. Schneider, L. Nguyen, Diamond alpha differentiability of interval-valued functions and its applicability to interval differential equations on time scales, Iran. J. Fuzzy Syst., 21 (2024), 143–158. https://doi.org/10.22111/IJFS.2024.45184.7977 doi: 10.22111/IJFS.2024.45184.7977
![]() |
[25] | M. Bohner, T. Matthews, The Gr¨uss inequality on time scales, Commun. Math. Anal., 3 (2007). |
[26] | M. Bohner, T. Matthews, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9 (2008), 8. |
[27] |
A. A. El-Deeb, On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales, J. Inequal. Appl., 2022 (2022), 1–14. https://doi.org/10.1186/s13660-022-02825-w doi: 10.1186/s13660-022-02825-w
![]() |
[28] | A. B. Malinowska, D. F. Torres, The diamond-alpha Riemann integral and mean value theorems on time scales, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0804.4420 |
[29] |
A. Abdeldaim, A. A. El-Deeb, P. Agarwal, H. A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Method. Appl. Sci., 41 (2018), 4737–4753. https://doi.org/10.1002/mma.4927 doi: 10.1002/mma.4927
![]() |
[30] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkh¨auser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[31] |
M. R. S. Rahmat, M. S. M. Noorani, A new conformable nabla derivative and its application on arbitrary time scales, Adv. Differential Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03385-x doi: 10.1186/s13662-021-03385-x
![]() |
[32] |
T. A. Ghareeb, S. H. Saker, A. A. Ragab, Ostrowski type integral inequalities, weighted Ostrowski, and trapezoid type integral inequalities with powers, J. Math. Comput. Sci., 26 (2022), 291–308. https://doi.org/10.22436/jmcs.026.03.07 doi: 10.22436/jmcs.026.03.07
![]() |
[33] |
A. M. Brito da Cruz, N. Martins, D. F. Torres, The diamond integral on time scales, B. Malays. Math. Sci. So., 38 (2015), 1453–1462. https://doi.org/10.1007/s40840-014-0096-7 doi: 10.1007/s40840-014-0096-7
![]() |
[34] | D. Mozyrska, D. F. Torres, Diamond-alpha polynomial series on time scales, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0805.0274 |