Research article Special Issues

Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales

  • These authors contributed equally to this work and are co-first authors
  • Received: 17 March 2022 Revised: 28 June 2022 Accepted: 29 June 2022 Published: 12 July 2022
  • MSC : 26D07, 26D15, 26E70

  • In this paper, the Montgomery identity is generalized for double integrals on time scales by employing a novel analytical approach to develop the generalized Ostrowski type integral inequalities involving double integrals. Some inimitable cases are discussed for different parameters and parametric functions. Moreover, applications to some particular time scales are also presented.

    Citation: Atiqe Ur Rahman, Khuram Ali Khan, Ammara Nosheen, Muhammad Saeed, Thongchai Botmart, Nehad Ali Shah. Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales[J]. AIMS Mathematics, 2022, 7(9): 16657-16672. doi: 10.3934/math.2022913

    Related Papers:

  • In this paper, the Montgomery identity is generalized for double integrals on time scales by employing a novel analytical approach to develop the generalized Ostrowski type integral inequalities involving double integrals. Some inimitable cases are discussed for different parameters and parametric functions. Moreover, applications to some particular time scales are also presented.



    加载中


    [1] S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Springer Dordrecht, 2002. http://dx.doi.org/10.1007/978-94-017-2519-4
    [2] S. Hilger, Ein Mabkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten [thesis], Universitat Wurzburg, 1988.
    [3] A. Ekinci, Inequalities for convex functions on time scales, TWMS J. Appl. Eng. Math., 9 (2019), 64–72.
    [4] B. Benaissa, M. Z. Sarikaya, A. Senouci, On some new Hardy-type inequalities, Math. Method. Appl. Sci., 43 (2020), 8488–8495, http://dx.doi.org/10.1002/mma.6503 doi: 10.1002/mma.6503
    [5] M. Gürbüz, M. E. Özdemír, On some inequalities for product of different kinds of convex functions, Turk. J. Sci., 5 (2020), 23–27.
    [6] M. Hu, L. Wang, Dynamic inequalities on time scales with applications in permanence of predator-prey system, Discrete Dyn. Nat. Soc., 2012 (2012), 281052. http://dx.doi.org/10.1155/2012/281052 doi: 10.1155/2012/281052
    [7] S. H. Saker, Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comput. Model., 58 (2013), 1777–1790, http://dx.doi.org/10.1016/j.mcm.2013.04.006 doi: 10.1016/j.mcm.2013.04.006
    [8] M. Bohner, T. Matthews, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9 (2008), 8.
    [9] W. J. Liu, Q. A. Ngô, W. Chen, A new generalization of Ostrowski type inequality on time scales, An. St. Univ. Ovidius Constanta, 17 (2009), 101–114, http://dx.doi.org/10.48550/arXiv.0804.4310 doi: 10.48550/arXiv.0804.4310
    [10] G. Xu, Z. B. Fang, A new Ostrowski type inequality on time scales, J. Math. Inequal., 10 (2016), 751–760, http://dx.doi.org/10.7153/jmi-10-61 doi: 10.7153/jmi-10-61
    [11] W. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., 93 (2014), 551–571, https://doi.org/10.1080/00036811.2013.786045 doi: 10.1080/00036811.2013.786045
    [12] W. Liu, A. Tuna, Y. Jiang, New weighted Ostrowski and Ostrowski-Grüss type inequalities on time scales, Annals of the Alexandru Ioan Cuza University-Mathematics, 60 (2014), 57–76, http://dx.doi.org/10.2478/aicu-2013-0002 doi: 10.2478/aicu-2013-0002
    [13] W. Liu, A. Tuna, Diamond-$\alpha$ weighted Ostrowski type and Grüss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251–260, http://dx.doi.org/10.1016/j.amc.2015.06.132 doi: 10.1016/j.amc.2015.06.132
    [14] G. A. Anastassiou, Representations and Ostrowski type inequalities on time scales, Comput. Math. Appl., 62 (2011), 3933–3958, http://dx.doi.org/10.1016/j.camwa.2011.09.046 doi: 10.1016/j.camwa.2011.09.046
    [15] Q. Feng, F. Meng, Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables, J. Inequal. Appl., 2012 (2012), 74, http://dx.doi.org/10.1186/1029-242x-2012-74 doi: 10.1186/1029-242x-2012-74
    [16] B. Zheng, Q. Feng, Generalized dimensional Ostrowski type and Grüss type inequalities on time scales, J. Appl. Math., 2014 (2014), 434958. http://dx.doi.org/10.1155/2014/434958 doi: 10.1155/2014/434958
    [17] B. Meftah, B. Khaled, Some New Ostrowski type inequalities on time scales for functions of two independent variables, J. Interdiscip. Math., 20 (2017), 397–415, http://dx.doi.org/10.1080/09720502.2015.1026463 doi: 10.1080/09720502.2015.1026463
    [18] A. A. El-Deeb, H. A. Elsennary, E. R. Nwaeze, Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on time scales, Fasciculi Math., 60 (2018), 123–144, http://dx.doi.org/10.1515/fascmath-2018-0008 doi: 10.1515/fascmath-2018-0008
    [19] G. Xu, Z. B. Fang, A Generalization of Ostrowski type inequality on time scales with k points, J. Math. Inequal., 11 (2017), 41–48, http://dx.doi.org/10.7153/jmi-11-04 doi: 10.7153/jmi-11-04
    [20] S. Kermausuor, E. R. Nwaeze, New Generalized 2D Ostrowski type inequalities on time scales with k2 points using a parameter, Filomat, 32 (2018), 3155–3169, http://dx.doi.org/10.2298/fil1809155k doi: 10.2298/fil1809155k
    [21] S. Kermausuor, E. R. Nwaeze, Ostrowski-Grüss type inequalities and a 2D Ostrowski type inequality on time scales involving a combination of $\Delta$-integral means, Kragujev. J. Math., 44 (2020), 127–143, http://dx.doi.org/10.46793/kgjmat2001.127k doi: 10.46793/kgjmat2001.127k
    [22] H. Budak, E. Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals, AIMS Math., 5 (2020), 1960–1984, http://dx.doi.org/10.3934/math.2020131 doi: 10.3934/math.2020131
    [23] A. Tuna, E. R. Nwaeze, Ostrowski and generalized Trapezoid type inequalities on time scales, J. King Saud Univ. Sci., 32 (2020), 496–500, http://dx.doi.org/10.1016/j.jksus.2018.04.011 doi: 10.1016/j.jksus.2018.04.011
    [24] A. Tuna, A new generalization of Ostrowski type inequalities on arbitrary time scale, TWMS J. App. Eng. Math., 9 (2019), 172–185.
    [25] S. Fatima Tahir, M. Mushtaq, M. Muddassar, A note on integral inequalities on time scales associated with Ostrowski's type, J. Funct. Space., 2019 (2019), 4748373. http://dx.doi.org/10.1155/2019/4748373 doi: 10.1155/2019/4748373
    [26] A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. http://dx.doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3
    [27] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–558, http://dx.doi.org/10.7153/mia-04-48 doi: 10.7153/mia-04-48
    [28] R. Hilscher, A time scales version of a Wirtinger-type inequality and applications, J. Comput. Appl. Math., 141 (2002), 219–226, http://dx.doi.org/10.1016/S0377-0427(01)00447-2 doi: 10.1016/S0377-0427(01)00447-2
    [29] S. S. Dragomir, P. Cerone, J. Roumelitis, A new generalization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 19–25. https://doi.org/10.1016/S0893-9659(99)00139-1 doi: 10.1016/S0893-9659(99)00139-1
    [30] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001, http://dx.doi.org/10.1007/978-1-4612-0201-1
    [31] M. Bohner, G. Guseinov, A. Peterson, Introduction to the time scales calculus, In: Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003, http://dx.doi.org/10.1007/978-0-8176-8230-9_1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1220) PDF downloads(67) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog