Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Optimal variational iteration method for parametric boundary value problem

  • Received: 11 April 2022 Revised: 20 June 2022 Accepted: 30 June 2022 Published: 12 July 2022
  • MSC : 34B05, 65K05

  • Mathematical applications in engineering have a long history. One of the most well-known analytical techniques, the optimal variational iteration method (OVIM), is utilized to construct a quick and accurate algorithm for a special fourth-order ordinary initial value problem. Many researchers have discussed the problem involving a parameter c. We solve the parametric boundary value problem that can't be addressed using conventional analytical methods for greater values of c using a new method and a convergence control parameter h. We achieve a convergent solution no matter how huge c is. For the approximation of the convergence control parameter h, two strategies have been discussed. The advantages of one technique over another have been demonstrated. Optimal variational iteration method can be seen as an effective technique to solve parametric boundary value problem.

    Citation: Qura Tul Ain, Muhammad Nadeem, Shazia Karim, Ali Akgül, Fahd Jarad. Optimal variational iteration method for parametric boundary value problem[J]. AIMS Mathematics, 2022, 7(9): 16649-16656. doi: 10.3934/math.2022912

    Related Papers:

    [1] Saak Gabriyelyan . Limited type subsets of locally convex spaces. AIMS Mathematics, 2024, 9(11): 31414-31443. doi: 10.3934/math.20241513
    [2] Mahmut Karakuş . Spaces of multiplier σ-convergent vector valued sequences and uniform σ-summability. AIMS Mathematics, 2025, 10(3): 5095-5109. doi: 10.3934/math.2025233
    [3] Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481
    [4] Imran Ali, Faizan Ahmad Khan, Haider Abbas Rizvi, Rais Ahmad, Arvind Kumar Rajpoot . Second order evolutionary partial differential variational-like inequalities. AIMS Mathematics, 2022, 7(9): 16832-16850. doi: 10.3934/math.2022924
    [5] Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
    [6] Narjes Alabkary . Hyper-instability of Banach algebras. AIMS Mathematics, 2024, 9(6): 14012-14025. doi: 10.3934/math.2024681
    [7] Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709
    [8] Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Mathematics, 2023, 8(5): 11752-11780. doi: 10.3934/math.2023595
    [9] Sara Smail, Chafika Belabbaci . A characterization of Wolf and Schechter essential pseudospectra. AIMS Mathematics, 2024, 9(7): 17146-17153. doi: 10.3934/math.2024832
    [10] Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of n-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562
  • Mathematical applications in engineering have a long history. One of the most well-known analytical techniques, the optimal variational iteration method (OVIM), is utilized to construct a quick and accurate algorithm for a special fourth-order ordinary initial value problem. Many researchers have discussed the problem involving a parameter c. We solve the parametric boundary value problem that can't be addressed using conventional analytical methods for greater values of c using a new method and a convergence control parameter h. We achieve a convergent solution no matter how huge c is. For the approximation of the convergence control parameter h, two strategies have been discussed. The advantages of one technique over another have been demonstrated. Optimal variational iteration method can be seen as an effective technique to solve parametric boundary value problem.



    In this paper, we are interested in establishing the existence and nonexistence results of nontrivial solutions for the coupled fractional Schrödinger systems of Choquard type

    {(Δ)su+λ1u=(Iα|u|p)|u|p2u+βvin RN,(Δ)sv+λ2v=(Iα|v|p)|v|p2v+βuin RN, (1.1)

    where s(0,1), N3, α(0,N), p>1, λi>0 are constants for i=1, 2, β>0 is a parameter, and Iα(x) is the Riesz Potential defined as

    Iα(x)=Γ(Nα2)Γ(α2)πN22α|x|Nα,xRN{0},

    where Γ is the Gamma function.

    Here, the nonlocal Laplacian operator (Δ)s with s(0,1) of a function u:RNR is expressed by the formula

    (Δ)su(x)=C(N,s)P.V.RNu(x)u(z)|xz|N+2sdz,

    where P.V. stand for the Cauchy principal value on the integral, and C(N,s) is some positive normalization constant (see [1] for details).

    It can also be defined as a pseudo-differential operator

    F((Δ)sf)(ξ)=|ξ|2sF(f)(ξ)=|ξ|2sˆf(ξ),

    where F is the Fourier transform.

    The problem (1.1) presents nonlocal characteristics in the nonlinearity as well as in the (fractional) diffusion because of the appearance of the terms (Iα|u|p)|u|p2u and (Iα|v|p)|v|p2v. This phenomenon raises some mathematical puzzles that make the study of such problems particularly interesting. We point out that when s=1, λ1=1, p=2, N=3, α=2 and β=0, (1.1) reduces to the Choquard-Pekar equation

    Δu+u=(I2|u|2)u,in R3, (1.2)

    which appeared in 1954 by Pekar [2] describing a polaron at rest in the quantum theory. In 1976, Choquard [3] used this equation to model an electron trapped in its own hole and considered it as an approximation to Hartree-Fock theory of one-component plasma. Subsequently, in 1996 Penrose [4] investigated it as a model for the self-gravitating collapse of a quantum mechanical wave function; see also [5]. The first investigations for existence and uniqueness of ground state solutions of (1.2) go back to the work of Lieb [6]. Lions [7] generalized the result in [6] and proved the existence and multiplicity of positive solutions of (1.2). In addition, the existence and qualitative results of solutions of power type nonlinearities |u|p2u and for more generic values of α(0,N) are discussed by variational method, where N3, see [8,9,10,11,12]. Under almost necessary conditions on the nonlinearity F in the spirit of H. Berestycki and P. L. Lions [13], Moroz and Schaftingen [14] considered the existence of a ground state solution uH1(RN) to the nonlinear Choquard equation

    Δu+u=(IαF(u))F(u),in RN.

    When s(0,1), Laskin [15] introduced the fractional power of the Laplace operator in (1.1) as an extension of the classical local Laplace operator in the study of nonlinear Schrödinger equations, replacing the path integral over Brownian motions with Lévy flights [16]. This operator has concrete applications in a wide range of fields, see [1,17] and the references therein. Equations involving the fractional Laplacian together with local nonlinearities and the system of weakly coupled equations has been investigated extensively in recent years, and some research results can be found in [18,19,20,21].

    When β=0, the system (1.1) can be reduced to two single Choquard equations

    (Δ)su+λ1u=(Iα|u|p)|u|p2uin RN (1.3)

    and

    (Δ)sv+λ2v=(Iα|v|p)|v|p2vin RN. (1.4)

    Equations (1.3) and (1.4) arise from the search for standing wave solutions of the following time-dependent fractional Choquard equation:

    iΨt=(Δ)sΨ+λΨ(Iα|Ψ|p)|Ψ|p2Ψ,(t,x)R+×RN,

    where i denotes the imaginary unit.

    In [22], by minimizing

    S(u)=(Δ)s2u22+λ1u22(RN(Iα|u|p)|u|p)1p

    on Hs(RN){0}, the authors obtained the existence of ground state solution of (1.3) with p(1+αN,N+αN2s) (see [22, Theorem 4.2]).

    Of course, scalar problems can be extended to systems. It is easy to see that the system (1.1) can be regarded as a counterpart of the following systems with standard Laplace operator

    {Δu+u=(Iα|u|p)|u|p2u+λvin RN,Δv+v=(Iα|v|p)|v|p2v+λuin RN.

    In [23], Chen and Liu studied the systems of Choquard type, when p(1+αN,N+αN2), they obtained the existence of ground state solutions of the systems. Yang et al. [24] considered the corresponding critical case.

    Motivated by the above mentioned works, in this paper, we aim to study the existence of positive ground state solutions of the systems (1.1). This class of systems has two new characteristics: One is the presence of the fractional Laplace and the Choquard type functions which are nonlocal, the other is its lack of compactness inherent to problems defined on unbounded domains. In order to overcome such difficulties, next we introduce a special space where we are able to recover some compactness.

    First we use p denote the norm of Lp(RN) for any 1p<. The Hilbert space Hs(RN) is defined by

    Hs(RN):={uL2(RN):RNRN|u(x)u(z)|2|xz|N+2sdxdz<+}

    with the scalar product and norm given by

    u,v:=RN(Δ)s2u(Δ)s2vdx+RNuvdx,u:=((Δ)s2u22+u22)12,

    where

    (Δ)s2u22:=C(N,s)2RNRN|u(x)u(z)|2|xz|N+2sdxdz.

    The radial space Hsr(RN) of Hs(RN) is defined as

    Hsr(RN):={uHs(RN)|u(x)=u(|x|)}

    with the Hs(RN) norm.

    Let

    u2λi:=(Δ)s2u22+λiu22,i=1,2

    for convenience. It is easy to obtain that λi and are equivalent norms in Hs(RN). Denote H:=Hs(RN)×Hs(RN) and Hr:=Hsr(RN)×Hsr(RN). The norm of H is given by

    (u,v)2H=u2λ1+v2λ2,for all (u,v)H.

    The energy functional Eβ associated to (1.1) is

    Eβ(u,v)=12RN[|(Δ)s2u|2+|(Δ)s2v|2+λ1|u|2+λ2|v|2]dx12pRN(Iα|u|p)|u|pdx12pRN(Iα|v|p)|v|pdxβRNuvdx,for all (u,v)H. (1.5)

    It is easy to obtain that EβC1(H,R) and

    Eβ(u,v),(φ,ψ)=RN[(Δ)s2u(Δ)s2φ+(Δ)s2v(Δ)s2ψ+λ1uφ+λ2vψ]dxRN(Iα|u|p)|u|p2uφdxRN(Iα|v|p)|v|p2vψdxβRN(vφ+uψ)dx (1.6)

    for all (φ,ψ)H.

    (u,v) is called a nontrivial solution of (1.1) if uβ0, vβ0 and (u,v)H solves (1.1). A positive ground state solution (u,v) of (1.1) is a nontrivial solution of (1.1) such that u>0, v>0 which has minimal energy among all nontrivial solutions. In order to find positive ground state solutions of (1.1), we need to investigate the existence of the minimum value of Eβ, defined in (1.5) under the Nehari manifold constraint

    Nβ={(u,v)H{(0,0)}:Eβ(u,v),(u,v)=0}. (1.7)

    Define

    mβ=inf

    Furthermore, define E_{0, i}:H^{s}(\mathbb{R}^{N})\to \mathbb{R} by

    \begin{equation} E_{0, i}(u) = \frac{1}{2}\int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx+\frac{\lambda_{i}}{2}\int_{\mathbb{R}^{N}}u^{2}dx-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx, \ \ i = 1, 2. \end{equation} (1.8)

    We introduce the Nehari manifolds

    \begin{equation} \mathcal{N}_{0, i}: = \left\{u\in H^{s}(\mathbb{R}^{N})\setminus \{0\}: \|(-\Delta)^{\frac{s}{2}}u\|^{2}_{2}+\lambda_{i}\|u\|^{2}_{2}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx = 0\right\}, \ \ i = 1, 2. \end{equation} (1.9)

    A ground state solution of (1.3) (or (1.4)) is a solution with minimal energy E_{0, 1} (or E_{0, 2} ) and can be characterized as

    \begin{equation*} \min\limits_{u\in \mathcal{N}_{0, 1}}E_{0, 1}(u)\ (or \min\limits_{u\in \mathcal{N}_{0, 2}}E_{0, 2}(u)). \end{equation*}

    The main results of our paper are the following.

    Theorem 1.1. Suppose s\in(0, 1), \ N\geq 3, \ \alpha\in(0, N) and p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) , then the system (1.1) possesses a positive radial ground state solution (u_{\beta}, v_{\beta})\in \mathcal{N}_{\beta} with E_{\beta}(u_{\beta}, v_{\beta}) = m_{\beta} > 0 for any 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} . Moreover, (u_{\beta}, v_{\beta})\to(u_{0}, v_{0}) in H as \beta\to 0^+ , where (u_{0}, v_{0}) is a positive radial ground state solution for the system (1.1) with \beta = 0, namely, u_{0} and v_{0} are positive radial ground state solutions to problems (1.3) and (1.4), respectively.

    Remark 1.1. In comparison with [19], this paper has several new features. Firstly, the system (1.1) contains the Choquard type terms which are more difficult to deal with. Secondly, Lemma 3.11 in [19] shows that (u_{\beta}, v_{\beta})\to (u_{0}, v_{0}) in H as \beta\to 0^+ , where either v_{0}\equiv 0 and u_{0} is a ground state solution to one single equation, or u_{0}\equiv 0 and v_{0} is a ground state solution to the other single equation. While we prove that (u_{0}, v_{0}) is a positive radial ground state solution for the system (1.1) with \beta = 0. Finally, the difference in asymptotic behavior is that it is obtained in this paper that u_{0} > 0 and v_{0} > 0 are positive radial ground state solutions to problems (1.3) and (1.4), respectively (see Theorem 1.3 in [19]).

    Finally, by using the Pohožaev identity (4.1) of the system (1.1), we have the following non-existence result.

    Theorem 1.2. Suppose p\ge\frac{\alpha+N}{N-2s} or p\leq 1+\frac{\alpha}{N} , then the system (1.1) does not admit non-trivial solutions.

    Remark 1.2. According to Theorem 1.2, we can know that the range of p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) is optimal for the existence of nontrivial solutions to the system (1.1).

    The rest of this paper is as following. In Section 2, we introduce some preliminary results and notions. In Section 3, we obtain the existence of ground state solutions of the system (1.1) and we also investigate their asymptotic behaviour. In Section 4, we get the nonexistence result.

    Throughout this paper, we use " \rightarrow " and " \rightharpoonup " to denote the strong convergence and weak convergence in the correlation function space, respectively. o_{n}(1) denotes a sequence which converges to 0 as n\to \infty . C will always denote a positive constants, which may vary from line to line.

    It is well known that the following properties which follow from the fractional Sobolev embedding

    H^{s}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N}), \quad q\in[2, 2^{*}_{s}], \ \text{where} \ 2^{*}_{s}: = \frac{2N}{N-2s}.

    If 1+\frac{\alpha}{N} < p < \frac{\alpha+N}{N-2s} , we have that 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , the space H^{s}_{r}(\mathbb{R}^{N}) compactly embedded into L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) .

    First of all, let us recall the Hardy-Littlewood-Sobolev inequality.

    Lemma 2.1. (Hardy-Littlewood-Sobolev inequality [23]) Let 0 < \alpha < N , r, \ q > 1 and 1\leq s < t < \infty be such that

    \frac{1}{r}+\frac{1}{q} = 1+\frac{\alpha}{N}, \quad \frac{1}{s}-\frac{1}{t} = \frac{\alpha}{N}.

    (i) For any u\in L^{r}(\mathbb{R}^{N}) and v\in L^{q}(\mathbb{R}^{N}) , we have

    \begin{equation} \left|\int_{\mathbb{R}^{N}}(I_{\alpha}*u)v\right|\leq C(N, \alpha, q)\|u \|_{r}\|v \|_{q}. \end{equation} (2.1)

    If p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) and r = q = \frac{2N}{N+\alpha} , then

    \begin{equation} \left|\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}\right|\leq C(N, \alpha, p)\|u \|^{2p}_{\frac{2Np}{N+\alpha}}, \end{equation} (2.2)

    where the sharp constant C(N, \alpha, p) is

    C(N, \alpha, p) = C_{\alpha}(N) = \pi^{\frac{N-\alpha}{2}}\frac{\Gamma(\frac{\alpha}{2})}{\Gamma(\frac{N+\alpha}{2})}\left\{\frac{\Gamma(\frac{N}{2})}{\Gamma(N)}\right\}^{-\frac{\alpha}{N}}.

    (ii) For any u\in L^{s}(\mathbb{R}^{N}) , we have

    \begin{equation} \|I_{\alpha}*u \|_{t}\leq C(N, \alpha, s)\|u \|_{s}. \end{equation} (2.3)

    Here, C(N, \alpha, s) is a positive constant which depends only on N , \alpha and s , and satisfies

    \limsup\limits_{\alpha\to 0}\alpha C(N, \alpha, s)\leq\frac{2}{s(s-1)}\omega_{N-1},

    where \omega_{N-1} denotes the surface area of the N-1 dimensional unit sphere.

    Next, the following result is crucial in the proof of the Theorem 1.1.

    Lemma 2.2. Assumption N\in \mathbb{N} , 0 < \alpha < N and p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) . Let \{u_{n}\}\subset H^{s}(\mathbb{R}^{N}) be a sequence satisfying that u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty , then

    \begin{equation} \lim\limits_{n \to \infty}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}-u|^{p})|u_{n}-u|^{p} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}. \end{equation} (2.4)

    To show Lemma 2.2, we state the classical Brezis-Lieb lemma [25].

    Lemma 2.3. Let \Omega \subseteq \mathbb{R}^{N} be an open subset and 1\leq r < \infty . If

    (i) \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{r}(\Omega) .

    (ii) u_{n}\rightarrow u almost everywhere on \Omega as n\to \infty , then for every q\in[1, r] ,

    \begin{equation} \lim\limits_{n \to \infty}\int_{\Omega}||u_{n}|^{q}-|u_{n}-u|^{q}-|u|^{q}|^{\frac{r}{q}} = 0. \end{equation} (2.5)

    Here we also need to mention sufficient conditions for weak convergence (see for example [25, Proposition 4.7.12]).

    Lemma 2.4. Assume \Omega be an open subset of \mathbb{R}^{N} , 1 < q < \infty and the sequence \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{q}(\Omega) . If u_{n}\rightarrow u almost everywhere on \Omega as n\to \infty , we have that u_{n}\rightharpoonup u weakly in L^{q}(\Omega) .

    In view of Lemmas 2.3 and 2.4 we have the following proof.

    Proof of Lemma 2.2. For every n\in \mathbb{N} . We have that

    \begin{equation*} \begin{split} \int_{\mathbb{R}^{N}}&(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}-u|^{p})|u_{n}-u|^{p}\\ = &\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))(|u_{n}|^{p}-|u_{n}-u|^{p})\\ &+2\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))|u_{n}-u|^{p}. \end{split} \end{equation*}

    Since 1+\frac{\alpha}{N} < p < \frac{\alpha+N}{N-2s} , we have that 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , then the space H^{s}(\mathbb{R}^{N}) is embedded continuously in L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) . Moreover, u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty . Thus, the sequence \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) . By (2.5) with q = p and r = \frac{2Np}{N+\alpha} , we have that

    \begin{equation*} |u_{n}|^{p}-|u_{n}-u|^{p}\to |u|^{p} \end{equation*}

    strongly in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) as n\to\infty . By (2.3), we have that I_{\alpha} defines a linear continuous map from L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) to L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) , then

    \begin{equation*} I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p})\to I_{\alpha}* |u|^{p} \end{equation*}

    in L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) as n\to\infty . By (2.2), we have

    \begin{equation*} \int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))(|u_{n}|^{p}-|u_{n}-u|^{p}) = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+o_{n}(1). \end{equation*}

    In view of Lemma 2.4, we get |u_{n}-u|^{p}\rightharpoonup0 weakly in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) as n\to\infty . Thus,

    \begin{equation*} \int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))|u_{n}-u|^{p} = o_{n}(1). \end{equation*}

    The proof is thereby complete.

    Lemma 2.5. Let 0 < \alpha < N , p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) and the sequence \{u_{n}\}_{n\in\mathbb{N}}\subset H^{s}(\mathbb{R}^{N}) be such that u_{n}\rightharpoonup u\in H^{s}(\mathbb{R}^{N}) weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty . Let \phi\in H^{s}(\mathbb{R}^{N}) , we have

    \begin{equation} \lim\limits_{n \to \infty}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p-2}u_{n}\phi = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p-2}u\phi. \end{equation} (2.6)

    Proof. Since u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty , then u_{n}\rightarrow u a.e. in \mathbb{R}^{N} . By the fractional Sobolev embedding H^{s}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N}) with q\in[2, 2^{*}_{s}] , we see that \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{2}(\mathbb{R}^{N})\cap L^{2^{*}_{s}}(\mathbb{R}^{N}) . Since 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , then \{|u_{n}|^{p}\} and \{|u_{n}|^{q-2}u_{n}\} are bounded in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) and L^{\frac{q}{q-1}}(\mathbb{R}^{N}) with q\in [2, 2^{*}_{s}] , respectively, up to a subsequence, we get

    \begin{equation*} |u_{n}|^{q-2}u_{n}\rightharpoonup |u|^{q-2}u\ \text{weakly in}\ L^{\frac{q}{q-1}}(\mathbb{R}^{N}), \end{equation*}
    \begin{equation} |u_{n}|^{p}\rightharpoonup |u|^{p}\ \text{weakly in}\ L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}). \end{equation} (2.7)

    In view of the Rellich theorem, u_{n}\rightarrow u in L^{t}_{loc}(\mathbb{R}^{N}) for t\in [1, 2^{*}_{s}) and |u_{n}|^{p-2}u_{n}\rightarrow |u|^{p-2}u in L^{\frac{2Np}{(p-1)(N+\alpha)}}_{loc}(\mathbb{R}^{N}) (see [26, Theorem A.2]), then we have that |u_{n}|^{p-2}u_{n}\phi\rightarrow |u|^{p-2}u\phi in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) for any \phi\in C^{\infty}_{0}(\mathbb{R}^{N}) , where C^{\infty}_{0}(\mathbb{R}^{N}) denotes the space of the functions infinitely differentiable with compact support in \mathbb{R}^{N} . By (2.3), we get

    \begin{equation} I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi)\rightarrow I_{\alpha}*(|u|^{p-2}u\phi) \end{equation} (2.8)

    in L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) . Therefore, by (2.7) and (2.8) we get

    \begin{equation*} \begin{aligned} &\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p-2}u_{n}\phi-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p-2}u\phi\\ = &\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi))|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u|^{p-2}u\phi))|u|^{p}\\ = &\int_{\mathbb{R}^{N}}\left[I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi)-I_{\alpha}*(|u|^{p-2}u\phi)\right]|u_{n}|^{p}\\ \qquad\quad&+\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u|^{p-2}u\phi))(|u_{n}|^{p}-|u|^{p})\\ \rightarrow &\ 0 \end{aligned} \end{equation*}

    as n\to \infty . Since C^{\infty}_{0}(\mathbb{R}^{N}) is dense in H^{s}(\mathbb{R}^{N}) , we reach the conclusion.

    Lemma 2.6. (see [27, Theorem 3.7]) Let f , g and h be three non-negative Lebesgue measurable functions on \mathbb{R}^{N} . Let

    W(f, g, h): = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}f(x)g(y)h(x-y)dxdy,

    we get

    W(f^{*}, g^{*}, h^{*})\ge W(f, g, h),

    where f^{*} , g^{*} and h^{*} denote the symmetric radial decreasing rearrangement of f , g and h .

    Lemma 2.7. (see [22, Theorem 1.1]) Under the assumptions of Theorem 1.1, there exists a ground state solution u\in H^{s}(\mathbb{R}^{N}) ( v\in H^{s}(\mathbb{R}^{N}) ) to problem (1.3) (1.4) which is positive, radially symmetric. Moreover, the minima of the energy functional E_{0, 1} ( E_{0, 2} ) on the Nehari manifold \mathcal{N}_{0, 1} ( \mathcal{N}_{0, 2} ) defined in (1.9) satisfies \min _{u\in \mathcal{N}_{0, 1}}E_{0, 1}(u) > 0 ( \min _{u\in \mathcal{N}_{0, 2}}E_{0, 2}(u) > 0 ).

    For any (u, v)\in \mathcal{N}_{\beta}, we have

    \begin{equation*} \begin{split}E_{\beta}(u, v)& = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uvdx\right)\\ & = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}dx\right). \end{split} \end{equation*}

    This shows that E_{\beta} is coercive on \mathcal{N}_{\beta} . Next we show, through a series of lemmas, that m_{\beta} is attained by some (u, v)\in\mathcal{N}_{\beta} which is a critical point of E_{\beta} considered on the whole space H , and therefore a ground state solution to (1.1).

    We begin with some basic properties of E_{\beta} and \mathcal{N}_{\beta} .

    Lemma 3.1. For every (u, v)\in H\setminus \{(0, 0)\} , there exists some t > 0 such that (tu, tv)\in\mathcal{N}_{\beta} .

    Proof. Indeed, (tu, tv)\in\mathcal{N}_{\beta} is equivalent to

    \|(tu, tv)\|^{2}_{H} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|tu|^{p})|tu|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|tv|^{p})|tv|^{p}+2\beta t^{2}\int_{\mathbb{R}^{N}}uv,

    which is solved by

    \begin{equation} t = \left(\frac{\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}} \right)^{\frac{1}{2p-2}}. \end{equation} (3.1)

    By inequality

    \begin{equation*} \begin{split} 2\beta\int_{\mathbb{R}^{N}}uv < 2\sqrt{\lambda_{1}\lambda_{2}}\int_{\mathbb{R}^{N}}uv &\leq \int_{\mathbb{R}^{N}}\lambda_{1}u^{2}+\lambda_{2}v^{2}\\ &\leq\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{1}} = \|(u, v)\|^{2}_{H}, \end{split} \end{equation*}

    we have that

    \|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv > \|(u, v)\|^{2}_{H}-\|(u, v)\|^{2}_{H} = 0.

    Therefore we get t > 0 .

    Lemma 3.2. The following assertions hold:

    (i) There exists c > 0 such that \|(u, v)\|_{H}\ge c for any (u, v)\in\mathcal{N}_{\beta} .

    (ii) m_{\beta} = \inf_{(u, v)\in \mathcal{N}_{\beta}}E_{\beta}(u, v) > 0 for all fixed 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} .

    (iii) Let u_{1} , v_{1} are positive solutions of (1.3) and (1.4) respectively, and let t > 0 be such that (tu_{1}, tv_{1})\in \mathcal{N}_{\beta} , then 0 < t < 1 .

    Proof. (i) In view of the definition of \mathcal{N}_{\beta} , by the Hardy-Littlewood-Sobolev inequality (2.2), for any (u, v)\in\mathcal{N}_{\beta} , we have

    \begin{equation*} \begin{split} \|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}}& = \ \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}+2\beta\int_{\mathbb{R}^{N}}uv\\ &\leq C(N, \alpha, p)(\|u \|^{2p}_{\frac{2Np}{N+\alpha}}+\|v \|^{2p}_{\frac{2Np}{N+\alpha}})+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\left(2\sqrt{\lambda_{1}\lambda_{2}}\int_{\mathbb{R}^{N}}uv\right)\\ &\leq C_{1}C(N, \alpha, p)(\|u \|^{2p}_{\lambda_{1}}+\|v \|^{2p}_{\lambda_{2}})+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\left(\int_{\mathbb{R}^{N}}\lambda_{1}u^{2}+\lambda_{2}v^{2}\right)\\ &\leq C_{1}C(N, \alpha, p)(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}})^{p}+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}}), \end{split} \end{equation*}

    where C_{1} > 0 denotes the fractional Sobolev embedding constant and C_{1} does not depend on u and v . This means that

    \begin{equation*} \left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u, v)\|^{2}_{H}\leq C_{1}C(N, \alpha, p)\|(u, v)\|^{2p}_{H}. \end{equation*}

    Since 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} , we have \|(u, v)\|_{H}\ge c , where

    \begin{equation} c = \left(\frac{\sqrt{\lambda_{1}\lambda_{2}}-\beta}{C_{1}C(N, \alpha, p)\sqrt{\lambda_{1}\lambda_{2}}}\right)^{\frac{1}{2p-2}} > 0. \end{equation} (3.2)

    (ii) For any (u, v)\in\mathcal{N}_{\beta} , we have

    \begin{equation} \begin{aligned} E_{\beta}(u, v)& = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv\right)\\ &\ge \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}})\right)\\ &\ge\left(\frac{1}{2}-\frac{1}{2p}\right)\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u, v)\|^{2}_{H}. \end{aligned} \end{equation} (3.3)

    Since p > 1 , we obtain m_{\beta}\ge (\frac{1}{2}-\frac{1}{2p})(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}})c^{2} > 0 .

    (iii) Since u_{1} , v_{1} are positive solutions of (1.3) and (1.4) respectively, and (tu_{1}, tv_{1})\in \mathcal{N}_{\beta} , we have

    \begin{equation} \|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{1}|^{p})|u_{1}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{1}|^{p})|v_{1}|^{p} \end{equation} (3.4)

    and

    \begin{equation} t^{2}\left(\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}-2\beta \int_{\mathbb{R}^{N}}u_{1}v_{1}\right) = t^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{1}|^{p})|u_{1}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{1}|^{p})|v_{1}|^{p}\right). \end{equation} (3.5)

    Combining (3.4) and (3.5), we have

    \begin{equation*} t^{2p-2} = \frac{\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}-2\beta \int_{\mathbb{R}^{N}}u_{1}v_{1}}{\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}} < 1. \end{equation*}

    The proof is complete.

    Proof of Theorem 1.1. Let (u_{n}, v_{n})\in\mathcal{N}_{\beta} be a minimizing sequence for E_{\beta} , namely such that E_{\beta}(u_{n}, v_{n})\to m_{\beta} . By (3.3), we know that \{(u_{n}, v_{n})\}_{n\in\mathbb{N}} is bounded in H . In view of Lemma 3.1, there exists t_{n} > 0 such that (t_{n}|u_{n}|, t_{n}|v_{n}|)\in \mathcal{N}_{\beta} . Then

    \begin{equation*} \begin{split} t_{n}^{2p-2}& = \frac{\|(|u_{n}|, |v_{n}|)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}|u_{n}||v_{n}|}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}}\\ &\leq\frac{\|(u_{n}, v_{n})\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}} = 1. \end{split} \end{equation*}

    Hence, we have that 0 < t_{n}\leq1 . Since

    \begin{equation*} \begin{split} E_{\beta}(t_{n}|u_{n}|, t_{n}|v_{n}|)& = \left(\frac{1}{2}-\frac{1}{2p}\right) t_{n}^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}\right)\\ &\leq\left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}\right)\\ & = E_{\beta}(u_{n}, v_{n}). \end{split} \end{equation*}

    For this reason we can assume that u_{n}\ge0 and v_{n}\ge0 . Let u_{n}^{*} and v_{n}^{*} denote the symmetric decreasing rearrangement of u_{n} , respectively v_{n} . By Lemma 2.6 with f(x) = |u_{n}(x)|^{p} , g(y) = |u_{n}(y)|^{p} , h(x-y) = |x-y|^{\alpha-N} , we have

    \begin{equation} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}^{*}|^{p})|u_{n}^{*}|^{p}\ge \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}. \end{equation} (3.6)

    In addition, it is well known that

    \begin{equation} \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{n}^{*}|^{2}\leq \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{n}|^{2}\quad \text{and}\quad \int_{\mathbb{R}^{N}}|u_{n}^{*}|^{2} = \int_{\mathbb{R}^{N}}|u_{n}|^{2} \end{equation} (3.7)

    (see [28, Theorem 3]). By Hardy-Littlewood inequality and Riesz rearrangement inequality (see [28]),

    \begin{equation} \int_{\mathbb{R}^{N}}u_{n}^{*}v_{n}^{*}\ge\int_{\mathbb{R}^{N}}u_{n}v_{n}. \end{equation} (3.8)

    By (3.6)–(3.8) we have

    \begin{equation*} \begin{split} E_{\beta}(u_{n}^{*}, v_{n}^{*})& = \frac{1}{2}(\|u_{n}^{*} \|^{2}_{\lambda_{1}}+\|v_{n}^{*} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}^{*}|^{p})|u_{n}^{*}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}^{*}|^{p})|v_{n}^{*}|^{p}-\beta\int_{\mathbb{R}^{N}}u_{n}^{*}v_{n}^{*}\\ &\leq \frac{1}{2}(\|u_{n} \|^{2}_{\lambda_{1}}+\|v_{n} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}-\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}\\ & = E_{\beta}(u_{n}, v_{n}). \end{split} \end{equation*}

    Therefore, we can further assume that (u_{n}, v_{n})\in H_{r} . By (3.3), we have that \{(u_{n}, v_{n})\} is bounded in H , there exists (u_{\beta}, v_{\beta})\in H and u_{\beta}\ge 0 , v_{\beta}\ge 0 such that up to subsequences, (u_{n}, v_{n})\rightharpoonup(u_{\beta}, v_{\beta}) weakly in H . Moreover, we also can assume that u_{n}\to u_{\beta} , v_{n}\to v_{\beta} a.e. in \mathbb{R}^{N} and (u_{\beta}, v_{\beta})\in H_{r} . Since \{(u_{n}, v_{n})\}_{n\in\mathbb{N}}\subset\mathcal{N}_{\beta} , we have

    \begin{equation*} \begin{split} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}& = \ \|u_{n} \|^{2}_{\lambda_{1}}+\|v_{n} \|^{2}_{\lambda_{2}}-2\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}\\ & \ge\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u_{n}, v_{n}) \|^{2}_{H}\ge\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right) c^{2}. \end{split} \end{equation*}

    By (2.4), we obtain

    \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\ge \left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right) c^{2} > 0,

    which means u_{\beta}\not\equiv 0 or v_{\beta}\not\equiv 0 .

    By (2.4) and Fatou's lemma, we have

    \|u_{\beta}\|^{2}_{\lambda_{1}}+\|v_{\beta}\|^{2}_{\lambda_{2}}-2\beta\int_{\mathbb{R}^{N}}u_{\beta}v_{\beta}\leq\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}.

    Let t > 0 such that (tu_{\beta}, tv_{\beta})\in\mathcal{N}_{\beta} , we have

    t = \left(\frac{\|(u_{\beta}, v_{\beta})\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}u_{\beta}v_{\beta}}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}} \right)^{\frac{1}{2p-2}}\leq1.

    Hence,

    \begin{equation*} \begin{split} m_{\beta}&\leq E_{\beta}(tu_{\beta}, tv_{\beta}) = \ \left(\frac{1}{2}-\frac{1}{2p}\right)t^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\right)\\ &\leq\left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\right)\\ & = \lim\limits_{n\to\infty}E_{\beta}(u_{n}, v_{n}) = m_{\beta}. \end{split} \end{equation*}

    Thus, we can deduce that t = 1 and m_{\beta} is achieved by (u_{\beta}, v_{\beta})\in \mathcal{N}_{\beta} with u_{\beta}\ge0 , v_{\beta}\ge0 . Now we know that (u_{\beta}, v_{\beta}) be non-negative and radial ground state solution of (1.1). Since (1.1) has no semitrivial solution, namely (u_{\beta}, 0) and (0, v_{\beta}) are no solutions of (1.1), we infer that u_{\beta}\not\equiv 0 and v_{\beta}\not\equiv 0 . By the strong maximum principle, we get u_{\beta} > 0 and v_{\beta} > 0 , then (u_{\beta}, v_{\beta}) be positive and radial ground state solution of (1.1).

    Next we consider the asymptotic behavior of the ground state solution.

    Suppose \{\beta_{n}\} be a sequence which satisfies \beta_{n}\in(0, \min\{\frac{1}{2}, \sqrt{\lambda_{1}\lambda_{2}}\}) and \beta_{n}\to 0 as n\to\infty . Let (u_{\beta_{n}}, v_{\beta_{n}}) be the positive radial ground state solution of (1.1) obtained above, we claim \{(u_{\beta_{n}}, v_{\beta_{n}})\} is bounded in H . Indeed, let \phi , \psi are the positive solutions of (1.3) and (1.4) respectively. By (iii) of Lemma 3.2, we have that (t_{n}\phi, t_{n}\psi)\in \mathcal{N}_{\beta_{n}} , where 0 < t_{n} < 1 . Hence, by (1.5) and (1.6), we have

    \begin{equation*} \begin{aligned} E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})&\leq E_{\beta_{n}}(t_{n}\phi, t_{n}\psi) = E_{\beta_{n}}(t_{n}\phi, t_{n}\psi)-\frac{1}{2p} \langle E'_{\beta_{n}}(t_{n}\phi, t_{n}\psi), (t_{n}\phi, t_{n}\psi)\rangle\\ & = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(t_{n}\phi, t_{n}\psi)\|_{H}^{2}-2\beta_{n}t_{n}^{2}\int_{\mathbb{R}^{N}}\phi\psi\right)\\ & < \left(\frac{1}{2}-\frac{1}{2p}\right)\|(\phi, \psi)\|_{H}^{2}: = D. \end{aligned} \end{equation*}

    Therefore, let c_{0} = \min\{\frac{1}{2}, \sqrt{\lambda_{1}\lambda_{2}}\} , for n large enough, we have

    \begin{equation*} \begin{aligned} D& > E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}}) = E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})-\frac{1}{2p} \langle E'_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}}), (u_{\beta_{n}}, v_{\beta_{n}})\rangle\\ &\ge\left(\frac{1}{2}-\frac{1}{2p}\right)(1-\beta_{n})\|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2} > c_{0}\left(\frac{1}{2}-\frac{1}{2p}\right)\|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2}, \end{aligned} \end{equation*}

    from which we deduce that \{(u_{\beta_{n}}, v_{\beta_{n}})\} is bounded in H . Thus, there exists (u_{0}, v_{0})\in H such that, up to a subsequences, (u_{\beta_{n}}, v_{\beta_{n}})\rightharpoonup (u_{0}, v_{0}) in H as n\to\infty and u_{0}\geq 0, v_{0}\geq 0 . Moreover by (3.2) we have that

    \begin{equation*} c_{n} = \left(\frac{\sqrt{\lambda_{1}\lambda_{2}}-\beta_{n}}{C_{1}C(N, \alpha, p)\sqrt{\lambda_{1}\lambda_{2}}}\right)^{\frac{1}{2p-2}} \end{equation*}

    is an increasing sequence and \|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2} > c_{1} > 0 , hence we have that u_{0}\not\equiv 0 or v_{0}\not\equiv0 . It is easy to observe that E'_{0}(u_{0}, v_{0}) = 0 , thus u_{0} , v_{0} are the solutions of (1.3) and (1.4), respectively. Since

    \begin{equation} \begin{aligned} &\|(u_{\beta_{n}}, v_{\beta_{n}})-(u_{0}, v_{0})\|_{H}^{2}\\ = &\ \langle E'_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})-E'_{0}(u_{0}, v_{0}), (u_{\beta_{n}}, v_{\beta_{n}})-(u_{0}, v_{0})\rangle+\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta_{n}}|^{p})|u_{\beta_{n}}|^{p}\\ &+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta_{n}}|^{p})|v_{\beta_{n}}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta_{n}}|^{p})|u_{\beta_{n}}|^{p-2}u_{\beta_{n}}u_{0}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta_{n}}|^{p})|v_{\beta_{n}}|^{p-2}v_{\beta_{n}}v_{0}\\ &+\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})(|u_{0}|^{p}-|u_{0}|^{p-2}u_{0}u_{\beta_{n}})+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}|^{p})(|v_{0}|^{p}-|v_{0}|^{p-2}v_{0}v_{\beta_{n}})\\ &+\beta_{n}\int_{\mathbb{R}^{N}}(2u_{\beta_{n}}v_{\beta_{n}}-u_{\beta_{n}}v_{0}-v_{\beta_{n}}u_{0}), \end{aligned} \end{equation} (3.9)

    by Lemmas 2.1, 2.2, 2.5 and above equality (3.9), we can conclude that (u_{\beta_{n}}, v_{\beta_{n}})\to (u_{0}, v_{0}) in H as n\to\infty .

    In view of Lemma 2.7, we can assume that u_{1} , v_{1} are positive ground state solutions to (1.3) and (1.4) respectively, and let t_{n} > 0 such that (t_{n}u_{1}, t_{n}v_{1})\in \mathcal{N}_{\beta_{n}} . In view of (iii) of Lemma 3.2, we know that 0 < t_{n} < 1 . Furthermore, by (3.1) we have that

    \begin{equation*} t_{n} = \left(\frac{\|(u, v)\|^{2}_{H}-2\beta_{n}\int_{\mathbb{R}^{N}}uv}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}} \right)^{\frac{1}{2p-2}} \end{equation*}

    is an increasing sequence and t_{n} > t_{1} > 0 , then we know that t_{n}\to 1 . Consequently, we have

    \begin{equation} E_{0}(u_{1}, v_{1})\leq E_{0}(u_{0}, v_{0}) = \lim\limits_{n\to\infty}E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})\leq \lim\limits_{n\to\infty}E_{\beta_{n}}(t_{n}u_{1}, t_{n}v_{1}) = E_{0}(u_{1}, v_{1}). \end{equation} (3.10)

    Obviously E_{0}(u_{0}, v_{0}) is the sum of the energy of u_{0} and v_{0} for the single equation (1.3) and (1.4) respectively, namely

    \begin{equation*} E_{0}(u_{0}, v_{0}) = E_{0, 1}(u_{0})+E_{0, 2}(v_{0}), \end{equation*}

    where E_{0, 2}:H^{s}(\mathbb{R}^{N})\to \mathbb{R} is the energy functional of (1.4), which is defined similarly to E_{0, 1} , and E_{0}(u_{1}, v_{1}) is the sum of the energy of u_{1} and v_{1} for the single equation (1.3) and (1.4), respectively, namely

    \begin{equation*} E_{0}(u_{1}, v_{1}) = E_{0, 1}(u_{1})+E_{0, 2}(v_{1}). \end{equation*}

    Since u_{1} , v_{1} are positive ground state solutions to (1.3) and (1.4) respectively, we have

    \begin{equation*} E_{0, 1}(u_{0})\ge E_{0, 1}(u_{1})\quad\text{and}\quad E_{0, 2}(v_{0})\ge E_{0, 2}(v_{1}). \end{equation*}

    By (3.10), we get E_{0, 1}(u_{0}) = E_{0, 1}(u_{1}) and E_{0, 2}(v_{0}) = E_{0, 2}(v_{1}) . By Lemma 2.7, we know that u_{0} , v_{0} are positive ground state solutions of (1.3) and (1.4) respectively.

    Let u_{0}^{*} and v_{0}^{*} denote the symmetric decreasing rearrangement of u_{0} and v_{0} respectively. By Lemma 2.6 with f(x) = |u_{0}(x)|^{p} , g(y) = |u_{0}(y)|^{p} , h(x-y) = |x-y|^{\alpha-N} , we have

    \begin{equation} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}^{*}|^{p})|u_{0}^{*}|^{p}\ge \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})|u_{0}|^{p}. \end{equation} (3.11)

    In addition, we know that

    \begin{equation} \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{0}^{*}|^{2}\leq \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{0}|^{2}\quad \text{and}\quad \int_{\mathbb{R}^{N}}|u_{0}^{*}|^{2} = \int_{\mathbb{R}^{N}}|u_{0}|^{2} \end{equation} (3.12)

    (see [28, Theorem 3]). By (3.11) and (3.12) we have

    \begin{equation*} \begin{split} E_{0}(u_{0}^{*}, v_{0}^{*})& = \frac{1}{2}(\|u_{0}^{*} \|^{2}_{\lambda_{1}}+\|v_{0}^{*} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}^{*}|^{p})|u_{0}^{*}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}^{*}|^{p})|v_{0}^{*}|^{p}\\ &\leq \frac{1}{2}(\|u_{0} \|^{2}_{\lambda_{1}}+\|v_{0} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})|u_{0}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}|^{p})|v_{0}|^{p}\\ & = E_{0}(u_{0}, v_{0}). \end{split} \end{equation*}

    Therefore, we can further assume that (u_{0}, v_{0})\in H_{r} . This completes the proof of Theorem 1.1.

    In this section, in order to prove the nonexistence of nontrivial solutions, we need to use the following Pohožaev identity type:

    Lemma 4.1. Let N\ge 3 and (u, v)\in H be any solution of (1.1). Then, (u, v) satisfies the Pohožaev identity

    \begin{equation} \begin{aligned} \frac{N-2s}{2}\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+&\ |(-\Delta)^{\frac{s}{2}}v|^{2}]dx+\frac{N}{2}\int (\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2})dx\\ & = \frac{N+\alpha}{2p}\left(\int(I_{\alpha}*|u|^{p})|u|^{p}dx+\int(I_{\alpha}*|v|^{p})|v|^{p}dx\right)+N\beta\int uvdx. \end{aligned} \end{equation} (4.1)

    Proof. The proof is similar to the argument of Theorem 1.13 in [22].

    Proof of Theorem 1.2. Let \langle E_{\beta}'(u, v), (u, v)\rangle = 0 , by (1.6), we have

    \begin{equation} \begin{split} \int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}+\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}]dx = &\int(I_{\alpha}*|u|^{p})|u|^{p}dx\\ &+\int(I_{\alpha}*|v|^{p})|v|^{p}dx+2\beta\int uvdx \end{split} \end{equation} (4.2)

    for all (u, v)\in H .

    Combining the Pohožaev identity (4.1) and (4.2), we can see that

    \begin{equation} \begin{split} 0 = &\ \left(N-2s-\frac{N+\alpha}{p}\right)\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}]dx\\ &+\left(N-\frac{N+\alpha}{p}\right)\int(\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2})dx+\left(\frac{N+\alpha}{p}-N \right)\int2\beta uvdx. \\ = &\ \left(N-2s-\frac{N+\alpha}{p}\right)\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}]dx\\ &+\left(N-\frac{N+\alpha}{p}\right)\int(\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}-2\beta uv)dx. \end{split} \end{equation} (4.3)

    Since \lambda_{1} > 0 , \lambda_{2} > 0 and 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} , we have

    \begin{equation*} \lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}\ge 2\sqrt{\lambda_{1}\lambda_{2}}uv > 2\beta uv. \end{equation*}

    Thus, if both the coefficients are non-positive, that is

    \begin{equation*} N-2s-\frac{N+\alpha}{p}\leq 0\quad \text{and}\quad N-\frac{N+\alpha}{p}\leq0, \end{equation*}

    then we get p\leq1+\frac{\alpha}{N} , which jointly with (4.3) leads us to a contradiction. Therefore, the solution of (1.1) is the trivial one. Similarly, if they are nonnegative, that is p\ge \frac{N+\alpha}{N-2s} , we get that nontrivial solutions of (1.1) cannot exist. Therefore, the range of 1+\frac{\alpha}{N} < p < \frac{N+\alpha}{N-2s} is optimal for the existence of nontrival solutions of the problem (1.1). This completes the proof.

    In this present paper, we combine the critical point theory and variational method to investigate a class of coupled fractional systems of Choquard type. By using constrained minimization method and Hardy-Littlewood-Sobolev inequality, we establish the existence and asymptotic behaviour of positive ground state solutions of the systems. Furthermore, nonexistence of nontrivial solutions is also obtained. In the next work, we will focus on the research of normalized solutions to fractional couple Choquard systems.

    This research was funded by the National Natural Science Foundation of China (61803236) and Natural Science Foundation of Shandong Province (ZR2018MA022).

    The authors declare that they have no conflicts of interest.



    [1] Q. T. Ain, N. Anjum, A. Din, A. Zeb, S. Djilali, Z. A. Khan, On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model, Alex. Eng. J., 61 (2022), 5123–5131. https://doi.org/10.1016/j.aej.2021.10.016 doi: 10.1016/j.aej.2021.10.016
    [2] Q. T. Ain, A. Khan, M. I. Ullah, M. A. Alqudah, T. Abdeljawad, On fractional impulsive system for methanol detoxification in human body, Chaos Soliton. Fract., 160 (2022), 112235. https://doi.org/10.1016/j.chaos.2022.112235 doi: 10.1016/j.chaos.2022.112235
    [3] Q. T. Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. K. Mwanakatwe, ABC fractional derivative for the alcohol drinking model using two-scale fractal dimension, Complexity, 2022 (2022), 8531858. https://doi.org/10.1155/2022/8531858 doi: 10.1155/2022/8531858
    [4] A. Din, Q. T. Ain, Stochastic optimal control analysis of a mathematical model: Theory and application to non-singular kernels, Fractal Fract., 6 (2022), 279. https://doi.org/10.3390/fractalfract6050279 doi: 10.3390/fractalfract6050279
    [5] S. Abbasbandy, E. Shivanian, K. Vajravelu, Mathematical properties of \hbar -curve in the frame work of the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4268–4275. https://doi.org/10.1016/j.cnsns.2011.03.031 doi: 10.1016/j.cnsns.2011.03.031
    [6] M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Physica D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
    [7] M. A. Abdou, A. A. Soliman, Variational iteration method for solving Burger's and coupled Burger's equations, J. Comput. Appl. Math., 181 (2005), 245–251. https://doi.org/10.1016/j.cam.2004.11.032 doi: 10.1016/j.cam.2004.11.032
    [8] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl., 57 (2009), 483–487. https://doi.org/10.1016/j.camwa.2008.09.045 doi: 10.1016/j.camwa.2008.09.045
    [9] J. H. He, Variational iteration method—some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), 3–17. https://doi.org/10.1016/j.cam.2006.07.009 doi: 10.1016/j.cam.2006.07.009
    [10] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123. https://doi.org/10.1016/S0096-3003(99)00104-6 doi: 10.1016/S0096-3003(99)00104-6
    [11] J. H. He, Variational iteration method—a kind of non-linear analytical technique: Some examples, Int. J. Nonlin. Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
    [12] A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighth-order boundary value problems, Appl. Math. Comput., 191 (2007), 334–346. https://doi.org/10.1016/j.amc.2007.02.091 doi: 10.1016/j.amc.2007.02.091
    [13] M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, Var. Method Mech. solids, 33 (1978), 156–162.
    [14] S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910–919. https://doi.org/10.1016/j.camwa.2006.12.037 doi: 10.1016/j.camwa.2006.12.037
    [15] Z. M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27–34. https://doi.org/10.1515/IJNSNS.2006.7.1.27 doi: 10.1515/IJNSNS.2006.7.1.27
    [16] M. Turkyilmazoglu, An optimal variational iteration method, Appl. Math. Lett., 24 (2011), 762–765. https://doi.org/10.1016/j.aml.2010.12.032 doi: 10.1016/j.aml.2010.12.032
    [17] S. Momani, M. A. Noor, Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput., 191 (2007), 218–224. https://doi.org/10.1016/j.amc.2007.02.081 doi: 10.1016/j.amc.2007.02.081
    [18] S. X. Liang, D. J. Jeffrey, An efficient analytical approach for solving fourth order boundary value problems, Comput. Phys. Commun., 180 (2009), 2034–2040. https://doi.org/10.1016/j.cpc.2009.06.006 doi: 10.1016/j.cpc.2009.06.006
    [19] M. Farman, A. Akgül, K. S. Nisar, D. Ahmad, A. Ahmad, S. Kamangar, et al., Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel, AIMS Mathematics, 7 (2022), 756–783. https://doi.org/10.3934/math.2022046 doi: 10.3934/math.2022046
    [20] M. M. A. Khater, S. H. Alfalqi, J. F. Alzaidi, S. A. Salama, F. Z. Wang, Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity, AIMS Mathematics, 7 (2022), 54–81. https://doi.org/10.3934/math.2022004 doi: 10.3934/math.2022004
  • This article has been cited by:

    1. Hamza El-Houari, Hicham Moussa, On a class of generalized Choquard system in fractional Orlicz-Sobolev spaces, 2024, 540, 0022247X, 128563, 10.1016/j.jmaa.2024.128563
    2. Huiqin Lu, Kexin Ouyang, Existence of Positive Ground State Solutions for Fractional Choquard Systems in Subcritical and Critical Cases, 2023, 11, 2227-7390, 2938, 10.3390/math11132938
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1442) PDF downloads(65) Cited by(11)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog