This paper presents the stability theorem for the T-Picard iteration scheme and establishes the existence and uniqueness theorem for fixed points concerning T-mean nonexpansive mappings within b-metric-like spaces. The outcome of our fixed point theorem substantiated the existence and uniqueness of solutions to the Fredholm-Hammerstein integral equations defined on time scales. Additionally, we provided two numerical examples from distinct time scales to support our findings empirically.
Citation: Zeynep Kalkan, Aynur Şahin, Ahmad Aloqaily, Nabil Mlaiki. Some fixed point and stability results in b-metric-like spaces with an application to integral equations on time scales[J]. AIMS Mathematics, 2024, 9(5): 11335-11351. doi: 10.3934/math.2024556
[1] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599 |
[2] | Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393 |
[3] | Soon-Mo Jung, Jaiok Roh . Local stability of isometries on 4-dimensional Euclidean spaces. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897 |
[4] | Lijun Ma, Shuxia Liu, Zihong Tian . The binary codes generated from quadrics in projective spaces. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421 |
[5] | Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072 |
[6] | Uğur Gözütok, Hüsnü Anıl Çoban . Detecting isometries and symmetries of implicit algebraic surfaces. AIMS Mathematics, 2024, 9(2): 4294-4308. doi: 10.3934/math.2024212 |
[7] | Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570 |
[8] | Yuqi Sun, Xiaoyu Wang, Jing Dong, Jiahong Lv . On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces. AIMS Mathematics, 2024, 9(8): 22500-22512. doi: 10.3934/math.20241094 |
[9] | Su-Dan Wang . The q-WZ pairs and divisibility properties of certain polynomials. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227 |
[10] | Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868 |
This paper presents the stability theorem for the T-Picard iteration scheme and establishes the existence and uniqueness theorem for fixed points concerning T-mean nonexpansive mappings within b-metric-like spaces. The outcome of our fixed point theorem substantiated the existence and uniqueness of solutions to the Fredholm-Hammerstein integral equations defined on time scales. Additionally, we provided two numerical examples from distinct time scales to support our findings empirically.
This paper considers a fractional coupled system on an infinite interval involving the Erdélyi-Kober derivative:
{Dγ,δ1βu(x)+F(x,u(x),v(x))=0,x∈(0,+∞),Dγ,δ2βv(x)+G(x,u(x),v(x))=0,x∈(0,+∞),limx→0xβ(2+γ)Iδ1+γ,2−δ1u(x)=0,limx→∞xβ(1+γ)Iδ1+γ,2−δ1u(x)=0,limx→0xβ(2+γ)Iδ2+γ,2−δ2v(x)=0,limx→∞xβ(1+γ)Iδ2+γ,2−δ2v(x)=0, | (1.1) |
where δ1,δ2∈(1,2], γ∈(−2,−1), and β>0. Dγ,δ1β, Dγ,δ2β are Erdélyi-Kober fractional derivatives (EKFDs for short), and Iδ1+γ,2−δ1,Iδ2+γ,2−δ2 are the Erdélyi-Kober fractional integrals. F,G are continuous functions. We discuss the existence of positive solutions for (1.1).
During the past several decades, fractional equations have been studied widely; see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] for instance. From the literature, we can see that there are many fractional derivatives used in differential equations. Among these various definitions, the widely used ones are the Riemann-Liouville and Caputo fractional derivatives, in many works. To generalize the Riemann-Liouville fractional derivative, Erdélyi-Kober defined a new fractional derivative, and we call it the Erdélyi-Kober fractional derivative. Moreover, the Erdélyi-Kober operator is very useful; we can refer to [6,9,14,15,16,17] and the references therein. The Erdélyi-Kober operator is a fractional integration operation which was given by Arthur Erdélyi and Hermann Kober in 1940 [23]. Some of these definitions and results were given in Samko et al. [3], Kiryakova [19], and McBride [20].
Nowadays, the theory of fractional operators in the Erdélyi-Kober frame has attracted much interest from researchers. The study of fractional systems is also very important, as these systems appear in various applications, especially in biological sciences. Recently, some problems of Erdélyi-Kober type fractional differential equations on infinite intervals received widespread attention from many scholars; see [8,21,22] for example.
Recently, in [8], the authors investigated the following equation:
{(Dϑ,σθu)(x)+F(u(x))=0,0≤x<∞,limt→0xθ(2−σ)Iσ+ϑ,2−σu(x)=0,limt→+∞xθ(2−σ)Iσ+ϑ,2−σu(x)=0, |
where σ∈(1,2), ϑ∈(1,2), θ>0, and F is a given continuous function, Dϑ,σθ denotes the EKFD, and Iσ+ϑ,2−σ denotes the Erdélyi-Kober fractional integral. The authors studied the existence and nonexistence of positive solutions for this problem by utilizing a fixed point result which uses the strongly positive-like operators and eigenvalue criteria.
In [9], the authors studied a fractional coupled system:
{cDϱu(τ)=F(τ,u(τ),z(τ),cDς1z(τ),Iξz(τ)),τ∈[0,T]:=K,2<ϱ≤3,1<ς1<2,cDςz(τ)=G(τ,u(τ),cDϱ1u(τ),Iζu(τ),z(τ),τ∈[0,T]:=K,2<ς≤3,1<ϱ1<2,u(0)=ϕ1(z),u′(0)=ε1z′(k1),u(T)=γρϑ−ρ(ϖ+v)Γ(ϖ)∫ϑ0σρv+ρ−1z(σ)(ϑρ−σρ)1−ϖdσ:=γJv,ϖρv(ϑ),z(0)=ϕ2(u),z′(0)=ε2z′(k2),z(T)=δvφ−v(θ+ω)Γ(θ)∫φ0σvω+υ−1u(σ)(φv−σv)1−θdσ:=δJω,θvu(φ), |
where cDϱ,cDς1,cDς,cDϱ1 are the Liouville-Caputo fractional derivatives of order 2<ϱ,ς≤3, 1<ς1,ϱ1<2. Iξ,Iζ are the Riemann-Liouville fractional integrals of order 1<ξ,ζ<2. Jυ,ϖρ,Jω,θv are the Erdélyi-Kober fractional integrals of order ϖ,θ>0, with v,ω>0, ρ, ϑ∈(−∞,+∞). F,G:K×(−∞,+∞)4→(−∞,+∞) and ϕ1,ϕ2:C(K,(−∞,+∞))→(−∞,+∞) are continuous functions. γ,δ,ε1,ε2 are positive real constants. The existence result was given by the Leray-Schauder alternative, and the uniqueness result was obtained due to Banach's fixed-point theorem. By the same methods, Arioua and Titraoui [18] studied system (1.1). Moreover, In [10], Arioua and Titraoui also investigated a new fractional problem involving the Erdélyi-Kober derivative. Inspired by the above articles, we use different methods to consider the fractional coupled system involving Erdélyi-Kober derivative (1.1). We employ the Guo-Krasnosel'skii fixed point theorem to discuss (1.1) in a special Banach space, and we also use the monotone iterative technique to study this system. Some existence results of positive solutions for system (1.1) are obtained, including the existence results of at least two positive solutions.
Definition 2.1. (see [2]) Let α∈(−∞,+∞). Cnα, n∈N, denotes a set of all functions f(t),t>0, with f(t)=tpf1(t) with p>α and f1∈Cn[0,∞).
Definition 2.2. (see [1,2]) For a function u∈Cα, the σ-order right-hand Erdélyi-Kober fractional integral is
(Iγ,σβu)(t)=βt−β(γ+σ)Γ(σ)∫t0sβ(γ+1)−1u(s)(tβ−sβ)1−σds,σ,β>0,γ∈(−∞,+∞), |
in which, Γ is the Euler gamma function.
Definition 2.3. (see [2]) Let n−1<δ≤n,n∈N, and for u∈Cα, the σ-order right-hand Erdélyi-Kober fractional derivative is
(Dγ,σβu)(t)=n∏j=1(γ+j+tβddt)(Iγ+σ,n−σβu)(t), |
where
n∏j=1(γ+j+tβddt)(Iγ+σ,n−σβu)=(γ+1+tβddt)⋯(γ+n+tβddt)(Iγ+σ,n−σβu). |
Lemma 2.1. (see [10]) Let 1<σ≤2, −2<γ<−1, β>0, and h∈C2α, with ∫∞0sβ(γ+m)−1h(τ)dτ<∞, m=1,2. The fractional problem
{Dγ,σβu(x)+h(x)=0,x>0,limx→0xβ(2+γ)Iσ+γ,2−δu(x)=0,limx→∞xβ(1+γ)Iσ+γ,2−σu(x)=0, |
has a unique solution given by u(x)=∫∞0Gσ(x,s)sβ(γ+1)−1h(s)ds, where
Gσ(x,s)={βΓ(σ)[x−β(γ+1)−x−β(δ+γ)(xβ−sβ)σ−1],0<s≤x<∞,βΓ(σ)x−β(γ+1),0<x≤s<∞. | (2.1) |
Lemma 2.2. (see [10]) For 1<σ≤2, −2<γ<−1, and β>0, the function Gσ, defined in (2.1), has the following properties:
(i) Gσ(x,s)1+x−β(1+γ)>0, for x,s>0;
(ii) Gσ(x,s)1+x−β(1+γ)≤βΓ(σ), for x,s>0;
(iii) for 0<τλ≤x≤τ and s>τλ2, where λ>1,τ>0, we have
Gσ(x,s)1+x−β(1+γ)≥β(σ−1)τ−β(1+γ)Γ(σ)λ−β(1−γ)(1+τ−β(1+γ))=βp(τ)Γ(σ), |
where p(τ)=(σ−1)τ−β(1+γ)λβ(1+γ)(1+τ−β(1+γ)).
Lemma 2.3. (see [18]) Let 0<σ1,σ2≤1 and F,G∈C2α with
∫∞0sβ(γ+m)−1F(s,u(s),v(s))ds<∞,m=1,2, |
∫∞0sβ(γ+m)−1G(s,u(s),v(s))ds<∞,m=1,2. |
Then, (1.1) has a unique solution given by
u(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds, |
v(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds, |
where
Gσ1(x,s)={βΓ(σ1)[x−β(γ+1)−x−β(σ1+γ)(xβ−sβ)σ1−1],0<s≤x<∞,βΓ(σ1)x−β(γ+1),0<x≤s<∞, | (2.2) |
Gσ2(x,s)={βΓ(σ2)[x−β(γ+1)−x−β(σ2+γ)(xβ−sβ)σ2−1],0<s≤x<∞,βΓ(σ2)x−β(γ+1),0<x≤s<∞. | (2.3) |
The following result is our main tool.
Lemma 2.4. (Guo-Krasnosel'skii fixed point theorem; see [37]) P is a cone in a Banach space E, and D1 and D2 are bounded open sets in E with θ∈D1, ¯D1⊂D2. A:P∩(¯D2∖D1)→P is a completely continuous operator. Consider the following conditions (ⅰ), (ⅱ):
(i) ‖Aw‖≤‖w‖ for w∈P∩∂D1, ‖Aw‖≥‖w‖ for w∈P∩∂D2;
(ii) ‖Aw‖≥‖w‖ for w∈P∩∂D1, ‖Aw‖≤‖w‖ for w∈P∩∂D2.
If one of the preceding conditions (ⅰ), (ⅱ) holds, then A has at least one fixed point in P∩(¯D2∖D1).
Next, we present some hypotheses that will play an important role in the subsequent discussion:
(H1) F,G:(0,+∞)×(−∞,+∞)×(−∞,+∞)→(0,+∞) are continuous and nondecreasing with respect to the second, third variables on (0,+∞).
(H2) For (x,u,v)∈(0,+∞)×(−∞,+∞)×(−∞,+∞),
F1(x,u,v)=xβ(1+γ)−1F(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v), |
F2(x,u,v)=xβ(1+γ)−1G(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v), |
such that
F1(x,u,v)≤φ1(x)ω1(∣u∣)+ψ1(x)ω2(∣v∣), |
F2(x,u,v)≤φ2(x)~ω1(∣u∣)+ψ2(x)~ω2(∣v∣), |
with ωi,~ωi∈C((0,+∞),(0,+∞)) nondecreasing and φi,ψi∈L1(0,+∞), i=1,2.
(H3) There are positive functions qi,˜qi,i=1,2, with
q∗i=∫∞0(1+x−β(1+γ))qi(x)dx<∞, |
˜q∗i=∫∞0(1+x−β(1+γ))˜qi(x)dx<∞, |
such that
xβ(γ+1)−1∣F(x,u,v)−F(x,˜u,˜v)∣≤q1(x)∣u−˜u∣+˜q1(x)∣v−˜v∣, |
xβ(γ+1)−1∣G(x,u,v)−G(x,˜u,˜v)∣≤q2(x)∣u−˜u∣+˜q2(t)∣v−˜v∣, |
for any u,v,˜u,˜v∈(−∞,+∞) and x∈(0,+∞).
(H4) F,G:(0,+∞)×(0,+∞)×(0,+∞)→(0,+∞) are continuous, such that
xβ(1+γ)−1F(x,u,v)=a1(x)F1(x,u,v), |
xβ(1+γ)−1G(x,u,v)=a2(x)G1(x,u,v), |
where a1,a2∈L1((0,+∞),(0,+∞)), F1,G1∈C((0,+∞)×(0,+∞)×(0,+∞),(0,+∞)), 0<∫ττλa1(x)dx<∞, 0<∫ττλa2(x)dx<∞, with τ>0, λ>1. Moreover, xβ(1+γ)−1F(x,u,v), xβ(1+γ)−1G(x,u,v):[0,+∞)×(0,+∞)×(0,+∞)→[0,+∞) also are continuous.
Remark 2.1. These conditions ensure the continuity and integrability of nonlinear terms in an infinite interval, which play a very important role in the proof of completely continuity for the relevant integral operators.
In this section, we use two Banach spaces defined by
X={u∈C((0,+∞),(−∞,+∞))∣limx→0u(x)1+x−β(1+γ) and limt→+∞u(x)1+x−β(1+γ) exist}, |
with the norm
‖u‖X=supx>0∣u(x)1+x−β(1+γ)∣, |
and
Y={v∈C((0,+∞),(−∞,+∞))∣limx→0v(x)1+x−β(1+γ) and limx→+∞v(x)1+x−β(1+γ) exist}, |
with the norm
‖v‖Y=supx>0∣v(x)1+x−β(1+γ)∣. |
So, (X×Y,‖(u,v)‖X×Y) is a Banach space, with the norm ‖(u,v)‖X×Y=‖u‖X+‖v‖Y.
Lemma 3.1. If F,G are continuous, then (u,v)∈X×Y is a solution of system (1.1)⇔(u,v)∈X×Y is a solution of the following equations:
{u(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds,v(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds. |
For (u,v)∈X×Y, we define an operator A:X×Y→X×Y as follows:
A(u,v)(x)=(A1(u,v)(x),A2(u,v)(x)), |
where
A1(u,v)(x)=∫∞0Gσ1(x,s)sβ(γ+1)−1F(s,u(s),v(s))ds, |
A2(u,v)(x)=∫∞0Gσ2(x,s)sβ(γ+1)−1G(s,u(s),v(s))ds, |
with Gσi(x,s),i=1,2, given by (2.2) and (2.3).
Remark 3.1. Let σ1,σ2,β,γ,λ,τ∈R, such that 1<σ1,σ2≤2,β>0,−2<γ<−1,λ>1,τ>0. If (H2) and (H4) hold, then for (u,v)∈X×Y with u(x),v(x)>0,
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds, |
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds, |
where η=max{η1,η2} with η1=1+ιϱ1(λ2−1),η2=1+ι∗ϱ2(λ2−1)>1, ϱ1,ϱ2,ι,ι∗>0.
Proof. By (H4), for x∈[τλ2,τ], we know that there exist two constants ϱ1,ϱ2>0, such that
xβ(γ+1)−1F(s,u,v)≥ϱ1,xβ(γ+1)−1G(s,u,v)≥ϱ2,u,v∈(0,+∞). |
So, for (u,v)∈X×Y with u(x),v(x)>0,
∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥∫ττλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥τ(λ2−1)λ2ϱ1, |
∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥∫ττλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥τ(λ2−1)λ2ϱ2, |
and hence,
λ2τ(λ2−1)ϱ1∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥1, |
λ2τ(λ2−1)ϱ2∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds≥1. |
By (H4), we know that there exist two constants ι,ι∗>0, such that
xβ(γ+1)−1F(x,u(x),v(x))≤ι,xβ(γ+1)−1G(x,u(x),v(x))≤ι∗,for ∀x∈[0,τλ2]. |
Thus,
∫τλ20sβ(γ+1)−1F(s,u(s),v(s))ds≤ιτλ2, |
∫τλ20sβ(γ+1)−1G(s,u(s),v(s))ds≤ι∗τλ2. |
Therefore, we can obtain
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds=∫τλ20sβ(γ+1)−1F(s,u(s),v(s))ds+∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≤ιτλ2+∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≤(1+ιϱ1(λ2−1))∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds=η1∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds. |
Similarly,
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤(1+ιϱ2(λ2−1))∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds=η2∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds. |
Take η=max{η1,η2}, and thus
∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1F(s,u(s),v(s))ds, |
∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds≤η∫∞τλ2sβ(γ+1)−1G(s,u(s),v(s))ds, |
hold.
Define two cones
K1={u∈X∣u(x)>0,x>0;minx∈[τλ,τ]u(x)1+x−β(1+γ)≥p(τ)η‖u‖X}, |
K2={v∈Y∣v(x)>0,x>0;minx∈[τλ,τ]v(x)1+x−β(1+γ)≥p(τ)η‖v‖Y}. |
Obviously, K1×K2={(u,v)∈X×Y∣u(x)>0,v(x)>0,∀x>0; minx∈[τλ,τ]u(x)1+x−β(1+γ)≥p(τ)η‖u‖X,minx∈[τλ,τ]v(x)1+x−β(1+γ)≥p(τ)η‖v‖Y} is also a cone. For convenience, we first list the following definitions:
F0=lim(u,v)→(0+,0+)supx>0F1(t,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
f∞=lim(u,v)→(+∞,+∞)infx>0F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
f0=lim(u,v)→(0+,0+)infx>0F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
F∞=lim(u,v)→(+∞,+∞)supx>0F1(t,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
G∗0=lim(u,v)→(0+,0+)supx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
g∗∞=lim(u,v)→(+∞,+∞)infx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
g∗0=lim(u,v)→(0+,0+)infx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v, |
G∗∞=lim(u,v)→(+∞,+∞)supx>0G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)u+v. |
Lemma 4.1. If assumptions (H1) and (H2) hold, then A:K1×K2→K1×K2 is completely continuous.
Proof. First, we show A:K1×K2→K1×K2. By (H1) and (H2), for (u,v)∈K1×K2,
‖A1(u,v)‖X=supt>0|A1(u,v)(x)|1+x−β(1+γ)=supx>0∣∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds∣≤βΓ(σ1)∫∞0∣sβ(γ+1)−1F(s,u(s),v(s))∣ds=βΓ(σ1)∫∞0∣sβ(γ+1)−1F(s,(1+s−β(1+γ))u(s)1+s−β(1+γ),(1+s−β(1+γ))v(s)1+s−β(1+γ))∣ds=βΓ(σ1)∫∞0∣F1(s,u(s)1+s−β(1+γ),v(s)1+s−β(1+γ))∣≤βΓ(σ1)[ω1(‖u‖X)∫∞0φ1(s)ds+ω2(‖v‖Y)∫∞0ψ1(s)ds]<+∞. |
Similarly,
‖A2(u,v)‖Y≤βΓ(σ1)[~ω1(‖u‖X)∫∞0φ2(s)ds+~ω2(‖v‖Y)∫∞0ψ2(s)ds]<+∞. |
By (H1) and Lemma 2.2, for (u,v)∈K1×K2, we have A1(u,v)(x)>0,A2(u,v)(x)>0,x>0. From Lemma 2.2 and Remark 3.1, for x∈[τλ,τ],τ>0, and λ>1,
|A1(u,v)(x)|1+x−β(1+γ)=∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds=∫τλ20Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds+∫0τλ2Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≥∫0τλ2Gσ1(t,s)1+t−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≥βp(τ)Γ(σ1)∫0τλ2sβ(γ+1)−1F(s,u(s),v(s))ds≥βp(τ)ηΓ(σ1)∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds≥p(τ)η‖A1(u,v)‖X. |
So, A1(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A1(u,v)‖X. Similarly, A2(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A2(u,v)‖Y. Therefore,
minx∈[τλ,τ]A1(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A1(u,v)‖X, |
minx∈[τλ,τ]A2(u,v)(x)1+x−β(1+γ)≥p(τ)η‖A2(u,v)‖Y. |
That is, A:K1×K2→K1×K2 is true.
Second, it will give a simply prove that A is continuous. Let D={(u,v)|(u,v)∈K1×K2,‖(u,v)‖X×Y≤K,K>0}, a bounded subset in K1×K2. Let (un,vn)∈D be a sequence that converges to (u,v) in ∈K1×K2. Then ‖(un,vn)‖X×Y≤K. From Lemma 2.2,
‖A1(un,vn)−A1(u,v)‖X=supx>0∣A1(un,vn)(x)−A1(u,v)(x)1+x−β(1+γ)∣≤βΓ(σ1)∣∫∞0sβ(γ+1)−1F(s,un(s),vn(s))ds−∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds∣≤βΓ(σ1)∫∞0∣sβ(γ+1)−1(F(s,un(s),vn(s))−F(s,u(s),v(s)))∣ds. |
By (H2),
∣sβ(γ+1)−1F(s,un(s),vn(s))∣=∣sβ(γ+1)−1F(s,(1+s−β(1+γ))un(s)1+s−β(1+γ),(1+s−β(1+γ))vn(s)1+s−β(1+γ))∣=F1(s,un(s)1+s−β(1+γ),vn(s)1+s−β(1+γ))≤φ1(s)ω1(‖un‖X)+ψ1(s)ω2(‖vn‖Y)∈L1(0,∞). |
By the continuity of sβ(γ+1)−1F(s,u(s),v(s)) and the Lebesgue dominated convergence theorem,
∫∞0sβ(γ+1)−1F(s,un(s),vn(s))ds→∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds,n→∞. |
Therefore, ‖A1(un,vn)−A1(u,v)‖X→0,n→∞. Similarly, ‖A2(un,vn)−A2(u,v)‖Y→0,n→∞.
So, ‖A(un,vn)−A(u,v)‖X×Y→0,n→∞. That is, A is continuous in D. In the end, we know that A(D) is relatively compact on (0,∞) and is equi-convergent at ∞ by [18]. Therefore, A:K1×K2→K1×K2 is completely continuous.
Theorem 4.1. Assume that (H2) and (H4) hold. If F0=0,G∗0=0,f∞=∞,g∗∞=∞, then the system (1.1) has at least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A:K1×K2→K1×K2 is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist R1>0 and D1={(u,v)∈X×Y,‖(u,v)‖X×Y<R1} such that ‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, (u,v)∈(K1×K2)∩∂D1.
Because F0=0,G∗0=0, we choose R1>0, such that
F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≤ϵ1(u+v), |
G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≤ϵ2(u+v), |
for 0<u+v≤R1,x>0, where ϵ1,ϵ2>0 satisfy
ϵ1≤12Γ(σ1)β∫∞0a1(s)ds,ϵ2≤12Γ(σ2)β∫∞0a2(s)ds. |
So, for (u,v)∈K1×K2 and ‖(u,v)‖X×Y=R1, by Lemma 2.2,
A1(u,v)(x)1+x−β(1+γ)=∫∞0Gσ1(x,s)1+x−β(1+γ)sβ(γ+1)−1F(s,u(s),v(s))ds≤βΓ(σ1)∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds, |
A2(u,v)(x)1+x−β(1+γ)=∫∞0Gσ2(x,s)1+x−β(1+γ)sβ(γ+1)−1G(s,u(s),v(s))ds≤βΓ(σ2)∫∞0sβ(γ+1)−1G(s,u(s),v(s))ds. |
By (H4),
A1(u,v)(x)1+x−β(1+γ)≤βΓ(σ1)∫∞0a1(s)F1(s,u(s),v(s))ds=βΓ(σ1)∫∞0a1(s)F1(s,(1+s−β(1+γ))u(s)1+s−β(1+γ),(1+s−β(1+γ))v(s)1+s−β(1+γ))ds≤βΓ(σ1)∫∞0a1(s)ϵ1u(s)+v(s)1+s−β(1+γ)ds≤βΓ(σ1)ϵ1‖(u,v)‖X×Y∫∞0a1(s)ds≤12‖(u,v)‖X×Y. |
Similarly,
A2(u,v)(x)1+x−β(1+γ)≤βΓ(σ2)ϵ2‖(u,v)‖X×Y∫∞0a2(s)ds≤12‖(u,v)‖X×Y. |
Therefore,
‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, for (u,v)∈K1×K2, and ‖(u,v)‖X×Y=R1. |
Let D1={(u,v)∈X×Y,‖(u,v)‖X×Y<R1}. Then,
‖A(u,v)‖X×Y≤‖(u,v)‖X×Y, for (u,v)∈(K1×K2)∩∂D1. |
Step 3. We show that there exist R2>0 and D2={(u,v)∈X×Y,‖(u,v)‖X×Y<R2} such that
‖A(u,v)‖X×Y≥‖(u,v)‖X×Y, for (u,v)∈(K1×K2)∩∂D2. |
Because f∞=∞,g∗∞=∞, there exists R>0, such that
F1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≥m1(u+v), |
G1(x,(1+x−β(1+γ))u,(1+x−β(1+γ))v)≥m2(u+v), |
for u+v≥R,x>0, where m1,m2>0 satisfy
m1≥12η1ηΓ(σ1)βp2(τ)∫τλτa1(s)ds,m2≥12η2ηΓ(σ2)βp2(τ)∫τλτa2(s)ds,η=max{η1,η2}. |
Let R2≥max{R1,ηRp(τ)}, and D2={(u,v)∈X×Y,‖(u,v)‖X×Y<R2}. Then, D1⊂D2.
Thus, for (u,v)∈K1×K2, ‖(u,v)‖X×Y=R2, we have
u(x)1+x−β(1+γ)≥minx∈[τλ,τ]u(x)1+x−β(1+γ)≥p(τ)η1‖u‖X, |
v(x)1+x−β(1+γ)≥minx∈[τλ,τ]v(x)1+x−β(1+γ)≥p(τ)η2‖v‖Y. |
So,
u(x)+v(x)1+x−β(1+γ)≥p(τ)η1‖u‖X+p(τ)η2‖v‖Y≥p(τ)η(‖u‖X+‖v‖Y)=p(τ)η‖(u,v)‖X×Y=p(τ)ηR2≥R. |
By (H4), for x∈[τλ,τ], we can obtain
A1(u,v)(x)1+x−β(1+γ)≥βp(τ)η1Γ(σ1)∫∞0sβ(γ+1)−1F(s,u(s),v(s))ds=βp(τ)η1Γ(σ1)∫∞0a1(s)F1(s,u(s),v(s))ds=βp(τ)η1Γ(σ1)∫∞0a1(s)F1(s,(1+s−β(1+γ))u(s)1+s−β(1+γ),(1+s−β(1+γ))v(s)1+s−β(1+γ))ds≥βp(τ)η1Γ(σ1)m1∫∞0a1(s)u(s)+v(s)1+s−β(1+γ)ds≥βp(τ)η1Γ(σ1)m1∫∞0a1(s)dsp(τ)η1‖u‖X+βp(τ)η1Γ(σ1)m1∫∞0a1(s)dsp(τ)η2‖v‖Y≥βp(τ)η1Γ(σ1)m1∫τλτa1(s)dsp(τ)η1‖u‖X+βp(τ)η1Γ(σ1)m1∫τλτa1(s)dsp(τ)η2‖v‖Y=βp2(τ)η1Γ(σ1)m1∫τλτa1(s)ds(1η1‖u‖X+1η2‖v‖Y)≥βp2(τ)η1Γ(σ1)m1∫τλτa1(s)ds1η‖(u,v)‖X×Y≥12‖(u,v)‖X×Y. |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore,
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}. |
Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, (1.1) has at least one positive solution.
Theorem 4.2. Assume that (H_{2}) and (H_{4}) hold. If f_{0} = \infty, g_{0}^{\ast} = \infty, F_{\infty} = 0, G_{\infty}^{\ast} = 0, then (1.1) has at least one positive solution.
Proof. We divide the proof into several steps.
Step 1. A:K_{1}\times K_{2}\rightarrow K_{1}\times K_{2} is completely continuous. This result easily follows from Lemma 4.1.
Step 2. We show that there exist r_1 > 0 and D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} such that
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}. |
Because f_{0} = \infty, g_{0}^{\ast} = \infty , there exists r_{1} > 0 such that
F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{1}(u+v), |
G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{2}(u+v), |
for 0 < u+v\leq r_{1}, x > 0 , where M_{1}, M_{2} > 0 , satisfy
M_{1}\geq \frac{1}{2}\frac{\eta_{1}\eta\Gamma(\sigma_{1})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{1}(s)ds}, M_{2}\geq \frac{1}{2}\frac{\eta_{2}\eta\Gamma(\sigma_{2})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{2}(s)ds}, \eta = \max\{\eta_{1}, \eta_{2}\}. |
Let D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} . So, for (u, v)\in K_{1}\times K_{2} with \|(u, v)\|_{X\times Y} = r_{1} , and x\in [\frac{\tau}{\lambda}, \tau] , then by (H_{4}) ,
\begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ & = &\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds(\frac{1}{\eta_{1}}\|u\|_{X}+\frac{1}{\eta_{2}}\|v\|_{Y}) \\ &\geq&\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{1}{\eta}\|(u, v)\|_{X\times Y} \\ &\geq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Thus,
\|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}. |
Step 3. We show that there exist r_2 > 0 and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\} such that
\|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y}\ \mbox{for}\ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}. |
Because F_{\infty} = 0, G_{\infty}^{\ast} = 0 , there exists r > 0 , such that
F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{1}(u+v), |
G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{2}(u+v), |
for u+v > r, x > 0 , where \epsilon_{1}, \epsilon_{2} > 0 satisfy
\epsilon_{1}\leq \frac{1}{2}\frac{\Gamma(\sigma_{1})}{\beta\int_0^\infty a_{1}(s)ds}, \epsilon_{2}\leq \frac{1}{2}\frac{\Gamma(\sigma_{2})}{\beta\int_0^\infty a_{2}(s)ds}. |
Let D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\}, where r_{2} > \max\{r_{1}, r\} . Then D_{1}\subset D_{1} . We define two functions U_{1}, U_{2} as follows:
U_{1}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{1}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v), |
U_{2}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{2}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v). |
For (u, v)\in K_{1}\times K_{2} and \|(u, v)\|_{X\times Y} = r_{2} ,
\begin{eqnarray*} U_{1}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{1}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{1}r_{2} = \epsilon_{1}\|(u, v)\|_{X\times Y}, \end{eqnarray*} |
\begin{eqnarray*} U_{2}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{2}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{2}r_{2} = \epsilon_{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
By Lemma 2.2 and (H_{4}) ,
\begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)U_{1}(r_{2})ds\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)ds\epsilon_{1}\|(u, v)\|_{X\times Y}\\ &\leq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*} |
Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\leq\frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore, \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y} , for (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2} . Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, the system (1.1) has at least one positive solution.
In the section, we obtain the multiplicity of positive solution of (1.1) by using the monotone iterative technique.
Theorem 5.1. If (H_{1}) and (H_{2}) hold, then (1.1) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying 0\leq\|(u^{\ast}, v^{\ast})\|_{X\times Y}\leq \Upsilon and 0\leq\|(w^{\ast}, z^{\ast})\|_{X\times Y}\leq \Upsilon , where \Upsilon is a positive preset constant. Moreover, \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) , where (u_{n}, v_{n}) and (w_{n}, z_{n}) are given by
\begin{align} \begin{array}{ll} (u_{n}(x), v_{n}(x)) = (A_{1}(u_{n-1}, v_{n-1})(x), A_{2}(u_{n-1}, v_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} | (5.1) |
with
(u_{0}(x), v_{0}(x)) = (\Upsilon_{1}[1+x^{-\beta(\gamma+1)}], \Upsilon_{2}[1+x^{-\beta(\gamma+1)}]), \Upsilon_{1}, \Upsilon_{2} > 0, \Upsilon_{1}+\Upsilon_{2}\leq\Upsilon, |
and
\begin{align} \begin{array}{ll} (w_{n}(x), z_{n}(x)) = (A_{1}(w_{n-1}, z_{n-1})(x), A_{2}(w_{n-1}, z_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} | (5.2) |
with (w_{0}(x), z_{0}(x)) = (0, 0) . In addition,
\begin{align} \begin{array}{ll} (w_{0}(x), z_{0}(x))\leq(w_{1}(x), z_{1}(x))\leq\cdots\leq(w_{n}(x), z_{n}(x))\leq\cdots\leq(w^{\ast}, z^{\ast})\leq(u^{\ast}, v^{\ast})\\ \leq\cdots\leq(u_{n}(x), v_{n}(x))\leq\cdots\leq(u_{1}(x), v_{1}(x))\leq(u_{0}(x), v_{0}(x)). \end{array} \end{align} | (5.3) |
Proof. First, from Lemma 4.1, A(K_{1}\times K_{2})\subset K_{1}\times K_{2} for (u, v)\in K_{1}\times K_{2} . Let
\Upsilon_{1} = \frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] < \infty, |
\Upsilon_{2} = \frac{\beta}{\Gamma(\sigma_{2})}[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] < \infty, |
and \Upsilon\geq\Upsilon_{1}+\Upsilon_{2} with D_{\Upsilon} = \{(u, v)\in K_{1}\times K_{2}:\|(u, v)\|_{X\times Y}\leq\Upsilon\} . For any (u, v)\in D_{\Upsilon} , from (H_{2}) and Lemma 2.2,
\begin{eqnarray*} \|A_{1}(u, v)\|_{X}& = &\sup\limits_{x > 0}\frac{|A_{1}(u, v)(x)|}{1+x^{-\beta(1+\gamma)}}\\ & = &\sup\limits_{x > 0}\mid\int_0^\infty \frac{G_{\sigma_{1}}(x, s)}{1+t^{-\beta(1+\gamma)}}s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty \mid s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\frac{\mid u(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\|u\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v\|_{Y})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] = \Upsilon_{1}. \end{eqnarray*} |
Similarly, \|A_{2}(u, v)\|_{Y}\leq\Upsilon_{2} for (u, v)\in D_{\Upsilon} . Thus,
\|A(u, v)\|_{X\times Y} = \|A_{1}(u, v)\|_{X}+\|A_{2}(u, v)\|_{Y}\leq\Upsilon_{1}+\Upsilon_{2}\leq\Upsilon. |
That is, A(D_{\Upsilon})\subset D_{\Upsilon} . We construct two sequences as follows:
(u_{n}, v_{n}) = A(u_{n-1}, v_{n-1}), (w_{n}, z_{n}) = A(w_{n-1}, z_{n-1}), \ \ n = 1, 2, 3, \ldots. |
Obviously, (u_{0}(x), v_{0}(x)), (w_{0}(x), z_{0}(x))\in D_{\Upsilon} . Because A(D_{\Upsilon})\subset D_{\Upsilon} , (u_{n}, v_{n}), (w_{n}, z_{n})\in D_{\Upsilon}, n = 1, 2, \ldots . We need to show that there exist (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) which are two monotone sequences for approximating positive solutions of the system (1.1).
For x\in(0, +\infty), (u_{n}, v_{n})\in D_{\Upsilon} , from Lemma 2.2 and (5.1),
\begin{eqnarray*} u_{1}(x)& = &A_{1}(u_{0}, v_{0})(x) = \int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty (1+t^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\|u_{0}\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v_{0}\|_{Y})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{1} = u_{0}(x) \end{eqnarray*} |
and
\begin{eqnarray*} v_{1}(x) = A_{2}(u_{0}, v_{0})(x)& = &\int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}\int_0^\infty (1+x^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\|u_{0}\|_{X})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\|v_{0}\|_{Y})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+x^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{2} = v_{0}(x), \end{eqnarray*} |
that is,
(u_{1}(x), v_{1}(x)) = (A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)). |
So, by the condition (H_{1}) ,
(u_{2}(x), v_{2}(x)) = (A_{1}(u_{1}, v_{1})(x), A_{2}(u_{1}, v_{1})(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)). |
For x\in(0, +\infty) , the sequences \{(u_{n}, v_{n})\}_{n = 0}^{\infty} satisfy (u_{n+1}(x), v_{n+1}(x))\leq(u_{n}(x), v_{n}(x)) . By the iterative sequences (u_{n+1}, v_{n+1}) = A(u_{n}, v_{n}) and the complete continuity of the operator A , (u_{n}, v_{n})\rightarrow (u^{\ast}, v^{\ast}) , and A(u^{\ast}, v^{\ast}) = (u^{\ast}, v^{\ast}) .
Similarly, for the sequences \{(w_{n}, z_{n})\}_{n = 0}^{\infty} , we have
\begin{eqnarray*} (w_{1}(x), z_{1}(x))& = &(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\\ & = &(\int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, w_{0}(s), z_{0}(s))ds, \int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, w_{0}(s), z_{0}(s))ds)\\ &\geq&(0, 0) = (w_{0}(x), z_{0}(x)). \end{eqnarray*} |
Then, by the condition (H_{1}) ,
(w_{2}(x), z_{2}(x)) = (A_{1}(w_{1}, z_{1})(x), A_{2}(w_{1}, z_{1})(x))\geq(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x)) = (w_{1}(x), z_{1}(x)). |
Analogously, for x\in(0, +\infty) , we have (w_{n+1}(x), z_{n+1}(x))\geq(w_{n}(x), z_{n}(x)) . By the iterative sequences (w_{n+1}, z_{n+1}) = A(w_{n}, z_{n}) and the complete continuity of the operator A , (w_{n}, z_{n})\rightarrow (w^{\ast}, z^{\ast}) , and A(w^{\ast}, z^{\ast}) = (w^{\ast}, z^{\ast}) .
Finally, we prove that (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) are the minimal and maximal positive solutions of (1.1). Assume that (\varsigma(x), \mu(x)) is any positive solution of (1.1). Then, A(\varsigma(x), \mu(x)) = (\varsigma(x), \mu(x)) , and
(w_{0}(x), z_{0}(x)) = (0, 0)\leq(\varsigma(x), \mu(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)). |
Therefore,
(w_{1}(x), z_{1}(x)) = (A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\leq(\varsigma(x), \mu(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2} (u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)). |
That is, (w_{1}(x), z_{1}(x))\leq(\varsigma(x), \mu(x))\leq(u_{n}(x), v_{n}(x)) . So, (5.3) holds. By (H_{1}) , (0, 0) is not a solution of (1.1). From (5.1), (w^{\ast}, z^{\ast}) and (u^{\ast}, v^{\ast}) are two extreme positive solutions of (1.1), which can be constructed via limitS of two monotone iterative sequences in (5.1) and (5.2).
Example 6.1. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}e^{-x}+x^{\frac{3}{2}} (\frac{v}{1+x^{\frac{1}{2}}})^{2}e^{-x} = 0, t\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u} {1+x^{\frac{1}{2}}})^{2}) +x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}), x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} | (6.1) |
where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{3}{2}}e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}], |
G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})]. |
First, for F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}(u^{2}, v^{2}) , we choose \omega_{1}(u) = u^{2}\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = v^{2}\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(t)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}}[u^{2}\ln(u^{2}+1)+ v^{2}\ln(v^{2}+1)] , we choose \widetilde{\omega_{1}}(u) = u^{2}\ln(u^{2}+1)\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = v^{2}\ln(v^{2}+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = xe^{-2x^{2}}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
So, the condition (H_{2}) holds. Obviously, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous.
x^{-\frac{3}{2}}F(x, u, v) = e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}] = a_{1}(x)F_{1}(x, u, v), |
x^{-\frac{3}{2}}G(x, u, v) = xe^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})] = a_{2}(x)G_{1}(x, u, v), |
where a_{1}(x) = e^{-x}, a_{2}(x) = xe^{-2x^{2}} , F_{1}(x, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2} , G_{1}(t, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) . So, x^{-\frac{3}{2}}f(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. Hence, the condition (H_{4}) holds. Finally,
F_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}+v^{2}}{u+v} = 0, G_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = 0, |
f_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}+v^{2}}{u+v} = \infty, g_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = \infty. |
Therefore, from Theorem 4.1, (6.1) has at least one positive solution (u(x), v(x)) . Further,
\begin{cases} u(x) = \frac 3{2\Gamma(\frac 23)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-x^{-\frac 83}\int_x^\infty (x-s)^{\frac 23}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases} |
Example 6.2. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{3}{2}}u(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+ x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\pi] = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{7}{6}}v(x)+x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+ x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1], x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0 \frac{1}{2}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \end{cases} \end{align} | (6.2) |
where \sigma_{1} = \frac{3}{2}, \sigma_{2} = \frac{7}{6}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}], |
G(x, u, v) = x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1]. |
First, for
F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}[\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi], |
we choose \omega_{1}(u) = \arctan u^{2}+\frac{1}{\pi}\in C((0, +\infty), (0, +\infty)), \omega_{2}(v) = \arctan v^{2}+\pi\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = xe^{-2x^{2}+1}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for
F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}g(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}[\arctan(\ln(u^{2}+1))+ \frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1], |
we choose \widetilde{\omega_{1}}(u) = \arctan(\ln(u^{2}+1))+\frac{3}{2}\pi\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \arctan(\ln(v^{2}+1))+1\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
That is, (H_{2}) holds. Second, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous. And
x^{-\frac{3}{2}}F(x, u, v) = xe^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v} {1+x^{\frac{1}{2}}})^{2}+\pi] = a_{1}(x)F_{1}(x, u, v), |
x^{-\frac{3}{2}}G(x, u, v) = e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v} {1+x^{\frac{1}{2}}})^{2}+1))+1] = a_{2}(x)G_{1}(x, u, v), |
where a_{1}(x) = xe^{-2x^{2}+1}, a_{2}(x) = e^{-x} , F_{1}(x, u, v) = \arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v}{1+x^{\frac{1}{2}}})^{2}+\pi , G_{1}(x, u, v) = \arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1 . So, x^{-\frac{3}{2}}F(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. That is, (H_{4}) holds. In addition,
f_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = \infty, |
g_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = \infty, |
F_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = 0, |
G_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = 0. |
Therefore, from Theorem 4.2, (6.2) has at least one positive solution (u(x), v(x)) . Further,
\begin{cases} u(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 6{\Gamma(\frac 16)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-x^{\frac 13}\int_x^\infty (x-s)^{\frac 16}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases} |
Example 6.3. We consider the following system:
\begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ x^{\frac{5}{2}}\ln(\mid\frac{v}{1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10} = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ \frac{1}{\sqrt{\pi}})+x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid = 0, x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} | (6.3) |
where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,
F(x, u, v) = x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+x^{\frac{5}{2}}\ln(\mid\frac{v} {1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10}, |
G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+\frac{1}{\sqrt{\pi}})+ x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid. |
Obviously, F, G:(0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty)\rightarrow (0, +\infty) are continuous and nondecreasing with respect to the second and the third variables on (0, +\infty) . That is, (H_{1}) holds. Next,
F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = \frac{e^{-x}}{3}\mid u\mid+x\frac{e^{-2x^{2}+1}}{10}\ln(\mid v\mid+1). |
We choose \omega_{1}(u) = \mid u\mid\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = \ln(\mid v\mid+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \frac{e^{-x}}{3}, \psi_{1}(x) = \frac{xe^{-2x^{2}+1}}{10}\in L^{1}(0, +\infty) . Then,
\mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
Similarly, for
F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}\arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})+x\frac{e^{-2x^{2}+1}}{5}\mid v\mid, |
we choose \widetilde{\omega_{1}}(u) = \arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \mid v\mid\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = xe^{-2x^{2}+1}, \psi_{2}(x) = x\frac{e^{-2x^{2}+1}}{5}\in L^{1}(0, +\infty) . Then,
\mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty). |
That is, (H_{2}) holds. Therefore, from Theorem 5.1, (6.3) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) with (0, 0)\leq (u^{\ast}(x), v^{\ast}(x)), (w^{\ast}(x), z^{\ast}(x))\leq ((1+x^{\frac 12})\Upsilon_{1}, (1+x^{\frac 12})\Upsilon_{2}) , where \Upsilon_{1}+\Upsilon_{2}\leq \Upsilon , and \Upsilon satisfies
\frac{95.58}{191.86}\Upsilon-0.69\arctan (\Upsilon+0.56)\geq \frac 1{36}. |
This paper studies the Erdélyi-Kober fractional coupled system (1.1), where the variable is in an infinite interval. We give some proper conditions and set a special Banach space. We obtain the existence of at least one positive solution for (1.1) by using the Guo-Krasnosel'skii fixed point theorem, and we get the existence of at least two positive solutions for (1.1) by using the monotone iterative technique. Our methods and results are different from ones in [18]. Moreover, we give three examples to show the plausibility of our main results. For future work, we intend to use other fixed point theorems to solve some Erdélyi-Kober fractional differential equations.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
This paper is supported by the Fundamental Research Program of Shanxi Province (202303021221068).
The authors declare that they have no competing interests.
[1] |
S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications, Fund. Math., 3 (1922), 133–187. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
![]() |
[2] |
R. P. Agarwal, Ü. Aksoy, E. Karapınar, İ. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral eqautions on time scales, RACSAM, 114 (2020). https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5
![]() |
[3] |
D. R. Kumar, Common fixed point results under w-distance with applications to nonlinear integral equations and nonlinear fractional differential equations, Math. Slovaca, 71 (2021), 1511–1528. https://doi.org/10.1515/ms-2021-0068 doi: 10.1515/ms-2021-0068
![]() |
[4] |
M. Younis, I. Altun, V. Chauhan, Graphical structure of extended b-metric spaces: An application to the transverse oscillations of a homogeneous bar, Int. J. Nonlin. Sci. Num., 23 (2022), 1239–1252. https://doi.org/10.1515/ijnsns-2020-0126 doi: 10.1515/ijnsns-2020-0126
![]() |
[5] |
D. R. Kumar, Common solution to a pair of nonlinear Fredholm and Volterra integral equations and nonlinear fractional differential equations, J. Comput. Appl. Math., 404 (2022). https://doi.org/10.1016/j.cam.2021.113907 doi: 10.1016/j.cam.2021.113907
![]() |
[6] |
W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
![]() |
[7] |
A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via A\nu-\alpha-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
![]() |
[8] |
M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
![]() |
[9] | M. Younis, D. Singh, L. Chen, M. Metwali, A study on the solutions of notable engineering models, Math. Model. Anal., 27 (2022), 492–509. https://doi.org/10.3846/mma.2022.15276 |
[10] |
M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023). https://doi.org/10.1016/j.geomphys.2023.104955 doi: 10.1016/j.geomphys.2023.104955
![]() |
[11] |
F. E. Browder, Nonexpansive nonlinear operators in a Banach spaces, P. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
![]() |
[12] |
D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
![]() |
[13] | S. Zhang, About fixed point theory for mean nonexpansive mapping in Banach spaces, J. Sichuan Univ., 2 (1975), 67–68. |
[14] |
A. A. Mebawondu, C. Izuchukwu, H. A. Abass, O. T. Mewomo, Some results on generalized mean nonexpansive mapping in complete metric spaces, Bol. Soc. Parana. Mat., 40 (2022), 1–16. https://doi.org/10.5269/bspm.44174 doi: 10.5269/bspm.44174
![]() |
[15] | J. Morales, E. Rojas, Some results on T Zamfirescu operators, Rev. Notas Mat., 5 (2009), 64–71. |
[16] | I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[17] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[18] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[19] |
A. A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory A., 2012 (2021). https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
![]() |
[20] |
M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013 (2013). https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402
![]() |
[21] |
N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in b-metric-like spaces, The Scientific World J., 2014 (2014). https://doi.org/10.1155/2014/981578 doi: 10.1155/2014/981578
![]() |
[22] |
H. H. Alsulami, S. Gülyaz, E. Karapınar, İ. M. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Math., 14, (2016), 1087–1103. https://doi.org/10.1515/math-2016-0097 doi: 10.1515/math-2016-0097
![]() |
[23] |
K. Jain, J. Kaur, Some fixed point results in b-metric spaces and b-metric-like spaces with new contractive mappings, Axioms, 10 (2021). https://doi.org/10.3390/axioms10020055 doi: 10.3390/axioms10020055
![]() |
[24] |
S. K. Prakasam, A. J. Gnanaprakasam, Ö. Ege, G. Mani, S. Haque, N. Mlaiki, Fixed point for an \mathbb{O}g\mathfrak{F} -c in \mathbb{O} -complete b-metric-like spaces, AIMS Math., 8 (2023), 1022–1039. https://doi.org/10.3934/math.2023050 doi: 10.3934/math.2023050
![]() |
[25] |
Z. Kalkan, A. Şahin, Some new results in partial cone b-metric space, Commun. Adv. Math. Sci., 3 (2020), 67–73. https://doi.org/10.33434/cams.684102 doi: 10.33434/cams.684102
![]() |
[26] |
D. R. Kumar, M. Prabavathy, S. Radenovic, On existence and approximation of common fixed points in b-metric spaces, Asian-Eur. J. Math., 15 (2022). https://doi.org/10.1142/S1793557122500309 doi: 10.1142/S1793557122500309
![]() |
[27] |
I. D. Arandelovic, Z. D. Mitrovic, A. Aloqaily, N. Mlaiki, The results of common fixed points in b-metric spaces, Symmetry, 15 (2023), 1344. https://doi.org/10.3390/sym15071344 doi: 10.3390/sym15071344
![]() |
[28] | A. Beiranvand, S. Moradi, M. Omid, H. Pazandeh, Two fixed point theorems for special mappings, arXiv Preprint, 2009. |
[29] |
M. Öztürk, M. Başarır, On some common fixed point theorems for f-contraction mappings in cone metric spaces, Int. J. Math. Anal., 5 (2011), 119–127. https://doi.org/10.1186/1687-1812-2011-93 doi: 10.1186/1687-1812-2011-93
![]() |
[30] |
C. T. Aage, P. G. Golhare, On fixed point theorems in dislocated quasi b-metric spaces, Int. J. Adv. Math., 2016 (2016), 55–70. https://doi.org/10.1186/s13663-016-0565-9 doi: 10.1186/s13663-016-0565-9
![]() |
[31] | K. Zoto, P. S. Kumari, Fixed point theorems for s-\alpha contractions in dislocated and b-dislocated metric spaces, Thai J. Math., 17 (2019), 263–276. |
[32] | A. M. Zaki, A. O. Ismail, A note on cone metric spaces, Curr. Sci. Int., 11 (2022), 319–328. |
[33] |
H. Aydi, A. Felhi, S. Sahmim, On common fixed points for \alpha -\psi contractions and generalized cyclic contractions in b-metric-like spaces and consequences, J. Nonlinear Sci. Appl., 9 (2016), 2492–2510. https://doi.org/10.22436/jnsa.009.05.48 doi: 10.22436/jnsa.009.05.48
![]() |
[34] |
K. Calderón, A. Padcharoen, J. M. Moreno, Some stability and strong convergence results for the algorithm with perturbations for a T-Ciric quasicontraction in CAT(0) spaces, J. Inequal. Appl., 2023 (2023). https://doi.org/10.1186/s13660-022-02911-z doi: 10.1186/s13660-022-02911-z
![]() |
[35] | A. M. Harder, T. L. Hicks, Some stability results for fixed point iteration procedures, Math. Japon., 33 (1988), 693–706. |
[36] | V. Berinde, Iterative approximation of fixed points, Berlin: Springer-Verlag, 2007. https://doi.org/10.1109/SYNASC.2007.49 |
[37] |
S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
![]() |
[38] | M. Bohner, A. Peterson, Dynamic equations on time scales, Boston/Berlin: Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[39] |
R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. https://doi.org/10.7153/mia-04-48 doi: 10.7153/mia-04-48
![]() |
[40] |
G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285 (2003), 107–127. https://doi.org/10.1016/S0022-247X(03)00361-5 doi: 10.1016/S0022-247X(03)00361-5
![]() |
[41] | S. Georgiev, Integral equations on time scales, Paris: Atlantis Press, 2016. https://doi.org/10.2991/978-94-6239-228-1 |
[42] |
Z. Kalkan, A. Şahin, Some new stability results of Volterra integral equations on time scales, Maltepe J. Math., 4 (2022), 44–54. https://doi.org/10.47087/mjm.1145159 doi: 10.47087/mjm.1145159
![]() |
[43] |
X. Hu, Y. Li, Multiplicity result to a system of over-determined Fredholm fractional integro-differential equations on time scales, AIMS Math., 7 (2022), 2646–2665. https://doi.org/10.3934/math.2022149 doi: 10.3934/math.2022149
![]() |
[44] |
A. Pouria, The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions, Filomat, 33 (2019), 667–682. https://doi.org/10.2298/FIL1903667A doi: 10.2298/FIL1903667A
![]() |
[45] |
U. Kohlenbach, Some logical metatheorems with applications in functional analysis, T. Am. Math. Soc., 357 (2004), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9
![]() |