In this paper, we studied the generalizations of quantum calculus on finite intervals. We presented the new definitions of the quantum derivative and quantum integral of a function with respect to another function and studied their basic properties. We gave an application of these newly defined quantum calculi by obtaining a new Hermite-Hadamard inequality for a convex function. Moreover, an impulsive boundary value problem involving quantum derivative, with respect to another function, was studied via the Banach contraction mapping principle.
Citation: Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon. Quantum calculus with respect to another function[J]. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
In this paper, we studied the generalizations of quantum calculus on finite intervals. We presented the new definitions of the quantum derivative and quantum integral of a function with respect to another function and studied their basic properties. We gave an application of these newly defined quantum calculi by obtaining a new Hermite-Hadamard inequality for a convex function. Moreover, an impulsive boundary value problem involving quantum derivative, with respect to another function, was studied via the Banach contraction mapping principle.
[1] | F. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[2] | T. Ernst, A comprehensive treatment of $q$-calculus, Basel: Birkhäuser, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
[3] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[4] | W. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, P. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/s0013091500011469 doi: 10.1017/s0013091500011469 |
[5] | R. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/s0305004100045060 doi: 10.1017/s0305004100045060 |
[6] | M. Annaby, Z. Mansour, $q$-Fractional calculus and equations, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-30898-7 |
[7] | G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/cbo9780511526251 |
[8] | J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional $q$-difference equation, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 92. https://doi.org/10.14232/ejqtde.2011.1.92 doi: 10.14232/ejqtde.2011.1.92 |
[9] | C. Yang, Positive solutions for a three-point boundary value problem of fractional $q$-difference equations, Symmetry, 10 (2018), 358. https://doi.org/10.3390/sym10090358 doi: 10.3390/sym10090358 |
[10] | C. Guo, J. Guo, S. Kang, H. Li, Existence and uniqueness of positive solutions for nonlinear $q$-difference equation with integral boundary conditions, J. Appl. Anal. Comput., 10 (2020), 153–164. https://doi.org/10.11948/20190055 doi: 10.11948/20190055 |
[11] | R. Ouncharoen, N. Patanarapeelert, T. Sitthiwirattham, Nonlocal $q$-symmetric integral boundary value problem for sequential $q$-symmetric integrodifference equations, Mathematics, 6 (2018), 218. https://doi.org/10.3390/math6110218 doi: 10.3390/math6110218 |
[12] | C. Zhai, J. Ren, Positive and negative solutions of a boundary value problem for a fractional $q$-difference equation, Adv. Differ. Equ., 2017 (2017), 82. https://doi.org/10.1186/s13662-017-1138-x doi: 10.1186/s13662-017-1138-x |
[13] | J. Ren, C. Zhai, Nonlocal $q$-fractional boundary value problem with Stieltjes integral conditions, Nonlinear Anal.-Model., 24 (2019), 582–602. https://doi.org/10.15388/na.2019.4.6 doi: 10.15388/na.2019.4.6 |
[14] | K. Ma, X. Li, S. Sun, Boundary value problems of fractional $q$-difference equations on the half-line, Bound. Value Probl., 2019 (2019), 46. https://doi.org/10.1186/s13661-019-1159-3 doi: 10.1186/s13661-019-1159-3 |
[15] | A. Wongcharoen, A. Thatsatian, S. K. Ntouyas, J. Tariboon, Nonlinear fractional $q$-difference equation with fractional Hadamard and quantum integral nonlocal conditions, J. Funct. Space., 2020 (2020), 9831752. https://doi.org/10.1155/2020/9831752 doi: 10.1155/2020/9831752 |
[16] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282 |
[17] | B. Ahmad, S. K. Ntouyas, J. Tariboon, Quantum calculus: new concepts, impulsive IVPs and BVPs, inequalities, Singapore: World Scientific, 2016. https://doi.org/10.1142/10075 |
[18] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[19] | N. Alp, M. Sarikaya, M. Kunt, İ. İşcan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007 |