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1. Introduction

Quantum calculus, also known as g-calculus, is the study of calculus without the notion of limits,
which presents alternative flavors of calculus. More precisely, instead of defining the derivatives and
integrals of real value functions by means of limits, quantum calculus makes use of their respective
g-analog versions. Quantum calculus is also used to study calculus on discrete or even finite sets.
Historically, Euler had obtained some basic formulae in g-calculus in the eighteenth century. However,
it is Jackson [1] who established what is now known as g-derivative and g-integral. Interests in the
research of g-calculus are currently flourishing due to its several applications in many areas, such as
physics, number theory, orthogonal polynomials, hypergeometric functions, and combinatorics [2, 3].
Al-Salam [4] and Agarwal [5] have generalized g-derivatives and g-integrals into orders other than
integers, as seen in the monograph [6]. Many interesting results in such areas of research were also
presented by several authors in the literature [7—15] and references therein. Tariboon and Ntouyas


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024510

10447

introduced in [16] the notion of quantum calculus on finite intervals. The interested reader is referred
to the monograph [17] for further details.

The basic aid of the present paper is to give new definitions of quantum calculus on finite intervals
with respect to another function. We give the new definitions of the quantum derivative and quantum
integral and study their basic properties. Also, we apply the new defined quantum calculus with respect
to another function and obtain a new Hermite-Hadamard inequality for a convex function. Our results
are new and, in special cases, correspond to the existing results in literature. Finally, an impulsive
boundary value problem involving the quantum derivative with respect to another function is studied.
An existence and uniqueness result is established via the Banach contraction mapping principle.

The rest of the paper is arranged as follows: In Section 2, we present the new results on quantum
calculus with respect to another function. We give the new definitions and investigate their properties.
In Section 3, we obtain a new Hermite-Hadamard inequality for a convex function by applying the new
quantum calculus, while in Section 4 we study an impulsive quantum boundary value problem. An
example illustrating the obtained result is also presented.

2. Quantum calculus with respect to another function

Let g € (0, 1) be a quantum number, a > 0 be a point in real line, and define a g-shifting operator by

D) = qt + (1 — g)a. 2.1

Let ¥(7) be a strictly increasing function defined on [a, b]. We now present a notion of the quantum
derivative with respect to .

Definition 2.1. The g-derivative of a function f with respect to a function ¥ on [a, b), is given by
JO = [P(0) _ f@) - flgt+ 1 - q)a)
aDq,l//f(t) = = ’
Y1) = (a@(0)  ¥(0) —Ylgt + (1 - g)a)
and aDq,l//f(a) = limtaa{aDq,wf(t)}-
Remark 2.1. (i) If y(t) = t, then we obtain the Tariboon-Ntouyas g-derivative defined in [16] as
J@) - flgr+ 1 -g)a)
(I-@tt-a)
Furthermore, if a = 0, it is reduced to the classical Jackson g-derivative, which was defined in 1910 by
Jackson [1] as ) - Flab
1 — f(qt
D, f(t) = ———.
0 q,tf() (1—q)t
(@) If Y(t) = logt, where logt = log, t and t € [a,b],a > 0, then we have
J@ - flgt+ 1 -g)a)
logt —log(gt + (1 — q)a)’

which is the g-analog for the derivative of Hadamard sense. To see this, consider as g — 1 (using the
L’Hopital’s rule with respect to q),

t#a, (2.2)

aDq,tf(t) =

aDq,log tf(t) =

(2.3)

JO-flgt+d-qa) _ d
gt —Toggr+ A —qa) _ 'ar’

which is a special case of the Hadamard derivative (see [18, Chapters 2.5 and 2.7]).
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Corollary 2.1. Let f(t) = ¢"(t) in (2.2), where n is a positive integer, then the following formula holds:

n—1
Dyt @) = > Wi (gr + (1 - ga). (2.4)

i=0

Proof. From (2.2), we have

aDg " (1)
(1) — (o Dy (1))
(1) — Y@y (1))
W (@) = Y@ N)W" (1) + Y 2O (D (D) + - - - + YO (D (1)) + " (,Dy(1)))
Y1) — Y D@y(1))

n—1

= DT Ow@,0),

i=0
which completes the proof. O

Example 2.1. Let us consider two examples for computation of the q-derivative with respect to another
function.

(i) Let n > m > 0 be constants and y(t) = (t — a)", then
_ (t - a)n - (Cl(l - a))n — I- qn (t _ a)n—m
(t—ay" —(qt—a)" 1-g" ’

where ,O,(1) —a = qt+ (1 —q)a—a = q(t—a). If m = 1, it is reduced to the g-derivative of polynomial
Jormula

aDq,(t—a)”’ (t - a)n

aDq,(l—a)(t - a)n = [n]q(t - a)n—l’

where [n], = (1 —¢")/(1 — q) is a g-number of value n. When a = 0, m = 1/2, and n = 2, we have the

w

—q? 3
special case oD, Gt = (f_—f/q)t .

(ii) A special case of (2.4), when n = 3, is

[T}

Dyl (O = Y1) + YOY(Dy(D) + Y (D (1))
Ifa =1 and y(t) = logt, then we get
1Dg10g: (log’ #) = log £ + (log 1) (log(q(t — 1) + 1)) + log*(g(t — 1) + 1).

Observe that lim,_,, {qu,log ,(log3 t)} =3 log2 t, which is an analogue to the relation (td% log3 t):3 log2 L.

Some basic properties of the quantum derivative with respect to another function can be presented
as follows.

Lemma 2.1. (i) Let a, 8 be constants. The following linear property holds:
aDay(af(t) + Bg(t) = @uDyy f(t) + BaDyyg(1).
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(i) The quantum derivative of the product of two functions can be expressed as
aDq,t//(fg)(t) = f(t)aDq,wg(t) + g(qt + (1 - Q)a)aDq,wf(t)
= g(t)aDq,wf(t) + f(C[t + (1 - Q)a)aDq,t//g(t)-
(iii) The quantum derivative of the quotient of two functions can be expressed as

f _ g(t)aDq,wf(t) - f(t)aDq,z//g(t)
aDq,t// - (t) -

g g()g(qt + (1 — g)a)
where g(t)g(qt + (1 — q)a) # 0 for all t € [a, b].

Proof. To prove (i), we see that
Qf(l) +:8g(t) - af(aq)q(t)) _ﬁg(aq)q(l))
Y (1) = YDy (1))
a|£(0) = £ D)) + B[8(1) — 2D (1)]
B Y(0) = Y Dy(1)
= aaDq,l//f(t) +BaDq,l//g(t)-
Next, the first equation in (if) follows from

(fe)®) — (f8)(aDy(1))
l//(t) - (y[/(a(bq(t))
J0g@) — g(uDy(0))f (1) — f(u P (1))g(Py(D) + (D (D)) f(2)

aDgy(af(t) +Bg(t) =

aDq,d/(fg)(t) =

Y(1) = Y(aD@y(0))
f(t)aDq,wg(t) + g(a(Dq(t))aDq,lﬁf(t)-

The second equation can be proved similarly. To claim (iii), we have

J_c) o - (£) @ = (£) (@y(1))
g (1) — (@)
FD8@y(1)) + f(D)g(1) — [P (1)g(1) - f(D)g(D)
208 Dy(1)) (W (1) — YDy (1)))
8Dy f(1) = f(0)aDyyg(t)
- 8(N8(Dy(1)) ‘

aDq,w(

With that, we are done.

O

To derive the quantum integral with respect to another function, let us consider the g-shifting

operator acting on a function f(f) by

D f(1) = fD(1) = flgt + (1 = a), with Df(1) = f(1).

We then can see the n-times iteration P f( = f(a(I)Z(t)) = f(g"t + (1 — g"a), for all n € Zy,. To
claim this, for n = 0, we have ,®)f(r) = f(¢°t + (1 — ¢")a) = f(r). Now, suppose that @ f(1) =

f(g*t + (1 — g")a) holds for n = k, then we get

D) = D, (D (D)
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o0, (F(g't + (1 - ¢"a))
f(g'lat + (1 = @al + (1 - g)a)
= f(@"'t+ (1 -4 Da).
By mathematical induction, the n-times iteration of the g-shifting operator to a function f(¢) is well-

defined.
Next, from (2.2), we set

J®) — flgt+ (A =-qa) _ (1 =,D,)f(®)
() —ylgt+ (1 —g)a) Y0 — (gt + (1 — g)a)’

in which we can solve for f(¢) and obtain

h(t) =

f@®

-0, [ (@) — w(gt + (1 = @)a)] h(t)

DMe 1D

@) (1) =Ygt + (1 - @)a)] h(2)

(gt + (1 = gDa) — (g™t + (1 = ¢ NNa) | (gt + (1 = ¢a),

J

Il
(=]

provided that the righthand side is convergent. With this concept of the quantum antiderivative, we
give a new definition of quantum integration with respect to another function.

Definition 2.2. The definite g-integral of a function f on [a,b] with respect to the function ¥ and
quantum number q is defined by

alq,wf(t) = ff(s)adgs

D@+ (1 = gha) - wi@ 't + (1 = ¢a)| fg't + (1 - ¢)a)
=0
[0 D3(0) - w0 )] FDL), 2.5)

J=0

provided that the righthand side exists. In addition, if ¢ € (a,b), then the definite g-integral can be

written as
!
[ sorass
C

f(S)ang - fc f(s)adqws

(o0

D@’ + (1= gha) - p(g™' 1 + (1 - ¢ )a)| f(g't + (1 - g)a)

J=0

D w@e + (1 = gha) - w(@ e + (1 = ¢*Ha)| fgle + (1 = g))a).
j=0

J

AIMS Mathematics Volume 9, Issue 4, 10446-10461.



10451

Remark 2.2. (i) If y(t) = t, then we have the Tariboon-Ntouyas [16] definite g-integral given by
T f0 = (=gt -@) Y ¢ f(gt+ (1 - g,
J=0
which, for a = 0, gives the Jackson [1] definite g-integral as
olg f (1) = (1 = q)ti q'fg’D.
J=0

(ii) For a > 0, if y(t) = logt, t € [a, b], then the Hadamard definite q-integral is presented by

ad J 1—-g/ , .
algiog (1) = Z log(q.q il qu?)a)f(qjt +(1-¢q")a)

= M+ (1—-g¢

= D) ] .
= ) log|—— [ /(D).

jZ() aq)i;l(t) q

Remark 2.3. Ifa = 0 in (2.5), then

(o)

fo Fldls = ) [wian —wi@'n] fig'n,

J=0

which is Eq (19.9) in [3], although there were no generalizations into the g-integral with respect to
other functions as explored in our work.

Example 2.2. Ify(t) = (t —a)", f(t) = (t — a)", when m,n > 0, then we have

f G-ard s = Y [(@a-a) - (¢ -)] (¢ - )’

j=0

a)m+n [Z (qm+n)j —q" Z (qm+n)j]
Jj=0 j=0
1-q"
t— aq)"m ,
( 61) ( 1 — qm+n)
since ad)é(t) —a=q/(t—a). Ifm = 1, we have the g-integral of the power function formula as

(t _ a)n+1
(n+1],

an,(t—a)(t - a)n =

Ifm=1/2 and n = 2, we have the special case .1, = (t — a)’ = (t —a)? ( Sq)

1-g2
Remark 2.4. Since we only have the closed form formula (the geometric series) of infinite series, we
can only compute as in Example 2.2 for power function with respect to power function. In addition, it
is easy to find that

alqu(1)(0) = Y (2) = Y(a). (2.6)
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We now present some g-analog of the fundamental theorem of calculus.
Theorem 2.1. The following formulas hold:

(D) aDyu (alyuf) () = F(O).

(i) algy (Dguf) (©) = f(8) = fla), where t € (a,b].

Proof. From the definitions of the g-derivative and g-integral with respect to another function ¢, in (2.2)
and (2.5), respectively, we have

Do (g ) @ =aDw{ZHMﬂ%m—¢M%“®ﬂﬂﬂﬂm}

j=0
1 > ) ‘ .
:lwrw@mﬁzﬁm%m‘mﬁwﬂﬂ@w»
J=

—EHMQrm%wwfmwﬂ@rmﬁ
Jj=0
1

Y1) = Y Dy(0))
4@@—M@NMﬂnﬂwﬂmm—wﬂwMﬂ@m»
+ (VD20 = WD) FDUD) + -
~{ (W @y () — Y DPUD)) FPy(1)
+ (U300 — UGDF0) S0 + |

= f,

which proves (i).
Also, we have

1) — (D, (t
alqy (“Dq,wf) (1) L, {f( ) = Ja®@y( ))}

W(t) — Y@y (1))
N : 1 FGLDAD) ~ fLO) @)
= WD (1) — gD (1)) . R
;[ ! ‘ ]m%m—m%%m
= f(0) = F@y0) + (fDy(1) - FLDLD))
+ (fLOUD) = FDN) + -+
= f() - f(a),

with lim, . f(¢“t + (1 — ¢*)a) = f(a). Thus (ii) is proved. O

The next theorem shows that the double definite g-integral with respect to another function can be
reduced to a single integral.
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Theorem 2.2. The following formula

f f f (1) odyr odys = f W(0) = Y@y (IS (8) udly s, (2.7)

holds.

Proof. From Definition 2.5, we have

! N
fff(r)ad;”radfs

f D7 [ — @I ()] FLDI(s)) ud
a ji=0

DU [ @) = w@ )] {p @ (1) — w7 ()

m=0 j=0

X [0 (1)
= v - w0, )| {w) - Y@ )} £

+ [w(0) = Y@ )| {Y (@ (1) = WD)} FDy(0)) + ...

+ [Wa®y(0)) — W OUN | {(@y(1) = Y( D2} F( D (1)

+ [Wa®y(0)) — W QLN | {W(PUD) — Y DI} FD2D) + -+

+ [w@UD) = Y @Y | {( D@L — (DY)} (DD

+ [W®30) — W@ | {W @) — YD) F DY) + - -
= v - p( D) | {wt) — w0} £ ()

+ [w(0) = (@) (Y@ (1) — YDL)] £ Dy(0))

+ [w(0) = (@0 (Y PUD) — YO FLDLD) + -+

[0e]

= D [w) = v (@) (@) — Y@ )] £ P0)

i=0

f () = Y D(5))) f(5) udls.

The proof is completed. O
3. Quantum Hermite-Hadamard inequality

In this section, we apply quantum calculus with respect to another function to establish a new
Hermite-Hadamard inequality for a convex function f on [a, b]. Recall that a function f is convex if

fla+ (1 =0b) < Af(a) + (1 = D) fD),
forall 1 € [0, 1].
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Theorem 3.1. Suppose that f : [a,b] — R is a convex differentiable function on (a, b), then the
g-integral of f with respect to Y(t) = (t — a)”, m > 0 satisfies

i (3.1)

b(1 - g™ +aq"(1 - q) 1 b o (L=g"f®) +¢q"(1 - g)f(a)
1-— qm+l ) < (b )m f f(s) “dq § < 1-— qm+l :

— b=¢")+aq"(1-¢q)
1 qm+1

Proof. Define the point ¢ : , then ¢ € [a, b]. To see this, note that lim,_,oc = b and

. b(l-g"+aq™(1-q) mb+a
lim =
g—1 1 —gm*! m+ 1

€ (a,b),

for all m > 0, using the L’Hopital rule with respect to g.
Since f is a differentiable convex function on (a, b), there exists a tangent line A4(¢) under the curve
of f(1),1.e., fort € (a,b),
h(t) = f(o) + f'(o)(t — ¢) < f(D).
To prove the left-hand side of (3.1), by taking the g-integral with respect to a function ¥(¢) = (t — a)",
m > 0, and applying the formula in Example 2.2 for n = 0, 1, we have

b
L[‘ h(s)ad“—wmds

f [f(c) + f'(c)(s = )] udi™"d

(b - a)"f(c) + © f (5= a—(c - a) odl"ds

b — m+1 1 =g™ b — m+1 1= g™
(b= a)"f(c) + f(©) [( s Tl R s Tl
—q l-¢g

. m m _ b
(b—a)’"f(b(l ql)quﬁl(l Q))s f () od""ds.

On the other side of the inequality, we set the line k(#) that connects the two points (a, f(a)) and
(b, f(b)), i.e., for t € (a,b),

k(1) = f(a) +

CGES LI

which implies that f(¢) < k() for all ¢ € [a, b] by the convexity of f. Therefore, we obtain

b b
f K(s) ad{(j—a)'"ds f [f(a) + (‘M) (s — a)] aa"(jf—a)mds

A -g"f®) +4"( -g9f(a)
1 - qm+1

(b)[

b
\f" f(s)adS " ds.

Combining both cases, we obtain (3.1), and the proof is completed. O

v
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Remark 3.1. If m = 1, then (3.1) is presented by

b+qa L f®b) +qf(@
1555 s g [ 1 s T,

which has appeared in [19].
4. Impulsive boundary value problem

Letty <t <ty <---<t, <ty befixed pointsin [0, T], where ty = 0, ¢,,.1 =T, g : [0,T]XR - R
be a nonlinear function, and {c;}, {d;}, i = 1,2,...,m, be given sequences of real numbers. Consider
the boundary value problem involving the quantum derivative with respect to another function

Dq,.’,piX(l) = g(t, .X(t)), telt, tl'+1), i=0,1,...,m,

xtH) = cx(t) +di,  i=1,2,...,m, 4.1
x(0) = yx(T),
with constants 0 < g; < 1, ¥;(?) a strictly increasing function on [0, 7], foralli = 1,2,...,m, y € R,

and g : [0, T]XR — R a given function. Note that if y = 1, then (4.1) is reduced to a periodic boundary
value problem, and if y = —1, it is an anti-periodic boundary value problem.

Our first task is to transform the boundary value problem (4.1) into an integral equation by
considering a linear variant of (4.1).

Lemmad4.1. Leth € C([0,T],R) and A = 1 —y[]L, ¢; # 0, then the linear impulsive boundary value
problem

[iDqM/’ix(t) = h(t)’ re [ti’ t[+1)a l = 09 la ce., M,
xt) = ex(t) +di,  i=1,2,...,m, (4.2)
x(0) = yx(T),

has the unique solution

x(t) = %[mzﬂ[ﬁc,f h(s),,_ ld’”’ ]+zm:(ﬁ crd,-]]ﬁc,-
i=1 \r=i .

i=1 \r=i+l1 i=1
j i Jo(
+ Z[ﬂcf h(s), ,d%-! s]+2[l—[crdi]
i=1 \ r=i i-1 i=1 \r=i+1
t
+fh(s)tjd;?;s, teltytin), j=0,1,...,m. (4.3)
t

Proof. For the first interval [0, ), taking the operator , I, ,, to both sides of the first equation in (4.2),
we obtain t
x(r) = x(0) + f h(s),od”;(?s. “4.4)
fo

The second condition for i = 1 yields

x(t)) = ¢ (x(O) + fl h(s),odfé)s) +d,.

fo
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The second interval [#;, #,) shows
f 1 f
x(t) = x(1]) + f h(s),ldglls =c (x(O) + f h(s)tod”qb(;’s) +d; + f h(s),ldgl' S,
1 0] |

by applying the operator I, 4, to problem (4.2) for ¢t € [t1,1,). Repeating this process for any ¢ €
[1j,j+1), it follows that

x(t) = x(0) ﬁ ci + ZJ: [ﬁ cr fti h(s);,._ldq‘/’l_"_-l1 s] + zjl [ ﬁ crd,-] + ft h(s)ljdg_;’s. 4.5)
=1 i=1 \ r=i li-1 1

i i=1 \r=i+l J

To prove this, we see that (4.5) holds for j = 0 by (4.4). For 1 € [t;,1,;.2), we have

t
Vs
x(t7,,) + f h(s),, dy ) s

i+

!
_ /e
= cj+1x(tj+1) +dj + f h(s)tjﬂdqﬁs

i+

x(t)

J

J J i
= Cj [x(O) n ci + Z [n Cr[ h(S)t,_,d,ﬁfll s]
i=1 i=1 \ r=i -1

+ ZJ: [ﬁ c,d,-] + ft#l h(S)zjdj_}fs]
]

i=1 \r=i+l

!
Wjr
+dj + f h(s),,.,dy ) s

Lj+1

j+1 j+1 [ j+1 1
_ x(O)]—[ci+Z[H ¢ f h(s)t”dg;;lls]
i=1 i=1 \ r=i li-1
j+l j+l ¢
+ ¢ d; | + f h(s),,.,do" s,
) R R e

i=1 \r=i+l

which shows that (4.5) is true by mathematical induction.
In particular, r = T implies that j = m and

m m+l [ m t; m m
MT)=xO) [ [ei+ )] []—[ ¢ f h(s);,d"- s) >y ( [ c,d,.].

i=1 i=1 \ r=i li-1 i=1 \r=i+l

Solving the boundary condition of problem (4.2) for a constant x(0), we obtain
y m+1 m i m m
x(0) = {Z [n ¢ f, h(s), ,d%-! s) + Z(]—[ c,d,-ﬂ.
i=1 \ r=i i-1 i=1 \r=i+1

Substituting a constant x(0) in (4.5), the nonlinear integral Eq (4.3) is proved.

On the other hand, the converse can be proved by direct computation. The proof is finished. O
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To prove the existence and uniqueness of solution to the problem (4.1), we define the space of
piecewise continuous functions by the fact that PC([0,T],R) = {x : [0,7] — R : x(¢) is continuous
everywhere except for some #;, such that x(#) and x(¢;) exist and x(¢7) = x(t;) for alli = 1,2,...,m}.
PC([0,T],R) is a Banach space with norm ||x|| = sup{x(?) : t € [0, T]}.

In view lemma of (4.2), we define an operator A : PC([0,T],R) — PC([0,T],R) by

Ax(t) = %[ mZH (ﬁ Cr f[i 8(s, x(s))’f—ldtl;iijll S] + i ( ﬁ Crdl]] ﬁ “
i=1 \ r=i

li- i=1 \r=i+1

S0 o] £

t i=1 \r=i+1
f (S7x(s))l‘jdqjsa re [t]’t]+1)’ .] _0’ 13"'am' (4'6)
L
By using the Banach contraction principle we will prove the existence and uniqueness of solutions
for the impulsive boundary value problem (4.1). For computational convenience we put

m+1 m
B Z [1_[ e/l [Wio () — 'ﬁi—l(ti—l)]) ,

i=1 \ r=i

z[ﬂ|c,||d|) D= [l &=Doer

=1 \r=i+l i=1

C

Theorem 4.1. Suppose that the nonlinear function g : [0, T] X R — R satisfies
lg(t,x) —gt, I < LIx—yl, L>0forall x,y eR. 4.7)
If LBE < 1, then the boundary value problem (4.1) has a unique solution on [0, T].

Proof. Let us define a ball B, = {x € PC([0,T],R) : ||x]| < r}, where a radius satisfies

S EMB +C)
1-LBE

when M := sup{|g(z,0)| : £ € [0,T]}. For any x € B, and ¢ € [0, T], we have, by (4.7),
lg (2, x(1)] < |g(2, x(1)) — g(£,0)] + |g(£,0)| < Llx(D)] + M < L||xl| + M < Lr+ M.

For any x € B,, from (2.6), we have

m

m+1 m m
\Ax(D)| < %[ (l_[| ,|f lg(s, x(s)),.,diy! s] + Z{n lc.|d; I]] 1—[ lcil

i=1 \r=i+1

: J J
* Z(]—[ o f 1g(s, X(s)), s]+2[ﬂ |c,||di|]
i=1 \ r=i li-1 i=1 \r=i+l
!
+ f lg(s, x()), s
lj
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m

m+l ( m £ m
Kﬂ[“”*”ZU ! ft,-_l(l)”"dg"i‘ls] ’ Zl it 'c’”d l] i [ Jle
m+1 m m m
+ u:r+M>Z(f le/] f (1), ,d ls] + Z(]‘[ |c,||d,.|]

i=1 \r=i+l
m+1
_ '7' (Lr +M)Z[—[|0rl [Wim1(8) — Wi (8- n])

IA
|

|A|

m+l1 m
+ Z(ﬂl e, l\d; |]] ]_[|c|+ (£r+M)Z[n e [t (8) — Wi (1 1)])
+ Z (]—[1 lc,IId; |]

8[(£r+M)B+C] <r

which implies that A(B,) C B,. Next, we will prove that the operator A is a contraction. To do this,
for any elements x,y € B,, we have

|Ax(r) = Ay (@)

< ||/<||[m+1 [ﬁ Icrlf lg(s, x) — g(s, y)|f'1dw;fs]]ljlcil
e[ [ s
f 18(s, ) — g(s, ), dy’s
<

m+l [ m m
||Z||[£II —yIIZ(]—[ |c,|f (1), 1d*{_f;s)]l_[|c,.|
i=1
m+1
+ Lx - y||2(]—[|cr| f (1) ldw;;s)

= LBEllx -yl

which means that ||[Ax — Ay|| < LBE|lx — y|l. As LBE < 1, this implies that the operator A is
a contraction on B, and there exists a unique fixed point in B,, which is a unique solution of the
problem (4.1) on [0, T']. Therefore, the theorem is proved. m]

Example 4.1. Consider the following impulsive boundary value problem containing quantum
derivative with respect to another function as

AIMS Mathematics Volume 9, Issue 4, 10446-10461.
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5 " 5 (P20 20, 1 i+l
i LD i+ i+ X = = >
37 loe(H5 ) 6(t+ 7\ 1+ x®) 2 )

i\ i3\ (iT\ i+4

x(i)_(m)x(§)+m, i 1.2.3.4 4.8)
3 (5

X(O)—EX(E)

From the given problem, we have ¢; = (i + 1)/(i + 2), yi(t) = log((i + 2)/(i +3) + 1), t; = i/2,
i=0,1,2,3,4,m= 4,2tm+1 =T =5/2,¢;=0+3)/(+4).,d =((+4/(+5),i=123,4,y=3/2
and g(r, x(1) = 52 (D220 4 1 r e |4, 4. This information leads to A = 1/4, 8 ~ 1.005099546,
C =~ 2.818204365, D = 1/2,and & = 4. Also, the nonlinear function g satisfies the Lipschitz condition,

as

)9 i:0’1,2’3’4’

5
t,x)—gt,y) < —lx -
18t %) = g(t. Y < 57 lx =y,
forall x,y e Rand r € [0,5/2]. Setting L = 5/21, the following inequality holds
LBE ~0.9572376629 < 1.

Thus, the Theorem 4.1 quarantees that the boundary value problem (4.8) has a unique solution
on [0,5/2].

5. Conclusions

In the present paper, we initiated the study of quantum calculus with respect to another function. The
definitions of the quantum derivative and integral with respect to another function were given and their
basic properties were investigated. A new Hermite-Hadamard type inequality for a convex function
was obtained as an application of these newly defined notions. Moreover, an impulsive boundary value
problem involving the quantum derivative with respect to another function was studied via the Banach
contraction mapping principle. The results are new and enrich the existing results on quantum calculus.
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