Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

One kind two-term exponential sums weighted by third-order character

  • We give a correction to the previous paper of S. F. Cao and T. T. Wang (2021). Additionally, provide a conversion formula of the power mean of a certain exponential sums weighted by a Dirichlet character χ3 and some of its applications.

    Citation: Guohui Chen, Wenpeng Zhang. One kind two-term exponential sums weighted by third-order character[J]. AIMS Mathematics, 2024, 9(4): 9597-9607. doi: 10.3934/math.2024469

    Related Papers:

    [1] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [2] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [3] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [4] Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408
    [5] Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
    [6] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [7] Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
    [8] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
    [9] Xiaoge Liu, Yuanyuan Meng . On the $ k $-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
    [10] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
  • We give a correction to the previous paper of S. F. Cao and T. T. Wang (2021). Additionally, provide a conversion formula of the power mean of a certain exponential sums weighted by a Dirichlet character χ3 and some of its applications.



    Let q,m,nZ+ with q>2 and m>n1. For any u,vZ, we are concerned with the two-term exponential sums

    G(u,v,m,n;q)=qj=1eq(ujm+vjn),

    where eq(x)=exp(2πix/q) and i2=1.

    For convenience, the following letters and symbols are commonly used in this paper and should be interpreted in the following sense unless otherwise stated.

    χ is Dirichlet character.

    χk is k-order Dirichlet character.

    ϕ(a) is Euler function.

    α is uniquely determined by 4p=α2+27β2 and α1mod3.

    τ(χ) is Gauss sums defined by

    τ(χ)=qs=1χ(s)eq(s).

    The mean value calculation and upper bound estimation of exponential sums has always been a classical problem in analytic number theory. As a special kind of exponential sums, Gauss sums have had an important effect on both cryptography and analytic number theory. Analytic number theory and cryptography will benefit greatly from any significant advancements made in this area. In this paper, we will estimate and calculate the fourth power mean value of two-term exponential sums weighted by a character χ3. In this field, many scholars have investigated the results of G(u,v,m,n;q) in various forms, and obtained many meaningful results, see [3,5,7,8,11,15]. For instance, Zhang and Zhang [9] obtained the power mean about G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2 if3p1,

    where p is an odd prime and v is not divisible by p.

    Wang and Zhang [6] obtained the eighth power mean of G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|8={7(2p53p4)if6p5,14p575p48p3α2if6p1.

    In addition, Zhang and Han [12] shown the power mean of G(1,v,3,1;p)

    p1v=1|pi=1ep(i3+vi)|6=5p48p3p2, (1.1)

    where p is an odd prime with 3ϕ(p).

    But if 3ϕ(p), whether there exists an exact formula for (1.1). Consider the mean of the simplest

    p1v=1|pi=1ep(i3+vi)|4. (1.2)

    It is worth mentioning that, Zhang and Zhang [10] studied the power mean of the exponential sums weight by χ2, one has the identities

    p1u=1χ2(u)|pi=1ep(ui3+i)|4={p2(ζ+3)if6p5,p2(ζ3)if6p1,

    where ζ=p1t=1(t1+¯tp) with ζZ satisfies inequality |ζ|2p.

    Cao and Wang (see Lemma 3 in [2]) proved the following conclusion, that is, if p is a prime with 3ϕ(p), then for any χ3modp, one has the identity

    p1u=1χ3(u)(pi=1ep(ui3+i))4=(¯χ3(3)3p¯χ3(3)p)τ2(¯χ3)αpτ(χ3).

    Unfortunately, this lemma is incorrect, there is a calculation error in it. It is precisely because of the computational error in this lemma that the main result in the whole text is wrong.

    The following year, Zhang and Meng [16] studied the power mean of G(u,1,3,1;p) weighted by χ2. In this paper, We intend to correct the error in [2] and give a correct conclusion. At the same time, as an application, we give an exact result for (1.2). That is, it will prove these two conclusions:

    Theorem 1. If p is a prime with 3ϕ(p), then we have

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=αpτ(χ3)3pτ2(¯χ3).

    Theorem 2. If p is a prime with 3ϕ(p), then we have

    p1v=1|pi=1ep(i3+vi)|4=2p3p23pA2kpαAk,

    where Ak=ωk[αp2+((αp2)2p3)12]13+ωk[αp2((αp2)2p3)12]13, k=1,2 or 3 is dependent on p, and ω=1+3i2.

    Corollary 1. If p is a prime with 3ϕ(p), then we have the asymptotic formula

    p1v=1|pi=1ep(i3+vi)|4=2p3+O(p2).

    Corollary 2. If p is a prime with 3ϕ(p), then for any integer l, we have recursive formula

    Vl(p)=p1u=1ϑl(u)|pj=1ep(uj3+j)|4=αpp1u=1ϑl3(u)|pj=1ep(uj3+j)|4+3pp1u=1ϑl2(u)|pj=1ep(uj3+j)|4=αpVl3(p)+3pVl2(p),

    when l take 13, the following equations hold

    V1(p)=p1u=1ϑ(u)|pj=1ep(uj3+j)|4=5αp2,V2(p)=p1u=1ϑ2(u)|pj=1ep(uj3+j)|4=4p420p3α2p2,V3(p)=p1u=1ϑ3(u)|pj=1ep(uj3+j)|4=2αp422αp3,

    where ϑ(u)=pi=1ep(ui3).

    In fact, with the third-order linear recursive formula in Corollary 2 and its three initial values V1(p), V2(p) and V3(p), we can easily give the general term formula for the sequence {Vl(p)}.

    Corollary 3. If p is a prime with 3ϕ(p), then we have

    p1u=1|pj=1ep(uj3+j)pi=1ep(ui3)|4=54p3α4p2α227p2α4+2pα21.

    Before starting our proofs of main results, we present the proofs of several key equations in preparation for the next chapter. The properties of Gauss sums and reduced (complete) residue systems are used repeatedly in the proof. In addition, we will refer to the basic contents of number theory in references [1] and [14].

    Lemma 1. If p is a prime with 3ϕ(p), then

    τ3(χ3)+τ3(¯χ3)=αp. (2.1)

    Proof. This is consequence of [4] or [13], herein we omit it.

    Lemma 2. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s31)=p(α3)+3τ3(¯χ3).

    Proof. Recall that τ(χ3)τ(¯χ3)=p and (2.1), we have

    pi=1pj=1ps=1¯χ3(i3+j3s31)=1τ(χ3)p1t=1χ3(t)pi=1pj=1ps=1ep(t(i3+j3s31))=1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2(ps=1ep(st3))=1τ(χ3)p1t=1χ3(t)ep(t)(1+p1i=1(1+χ3(i)+¯χ3(i))ep(it))3=1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))3=1τ(χ3)p1t=1χ3(t)ep(t)[τ3(χ3)+τ3(¯χ3)+3p(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))]=αp+3pτ(χ3)τ(χ3)p1t=1ep(t)+3pτ(χ3)τ(¯χ3)p1t=1χ23(t)ep(t)=p(α3)+3pτ2(¯χ3)τ(χ3)=p(α3)+3τ3(¯χ3).

    This completes the proof.

    Lemma 3. If p is a prime with 3ϕ(p), then

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    Proof. Recall that τ(χ3)τ(¯χ3)=p, we obtain

    pi=1χ3(i21)=pi=1χ3(i2+2i)=1τ(¯χ3)p1j=1¯χ3(j)p1i=1χ3(i)ep(j(i+2))=τ(χ3)τ(¯χ3)p1j=1χ3(j)ep(2j)=¯χ3(2)τ2(χ3)τ(¯χ3)=¯χ3(2)τ3(χ3)p. (2.2)

    From another perspective, we have

    pi=1χ3(i21)=1τ(¯χ3)p1j=1¯χ3(j)pi=1ep(j(i21))=1τ(¯χ3)p1j=1¯χ3(j)ep(j)pi=1ep(i2j)=1τ(¯χ3)p1j=1¯χ3(j)ep(j)[1+p1i=1(1+χ2(i))ep(ij)]=1τ(¯χ3)p1j=1¯χ3(j)ep(j)p1i=1χ2(i)ep(ij)=τ(χ2)τ(¯χ3)p1j=1¯χ3χ2(j)ep(j)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(¯χ3)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(χ3)p. (2.3)

    Combining (2.2) and (2.3), we determine the relationship equation between τ(¯χ3χ2), τ(χ3) and τ(χ2)

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    This completes the proof.

    Lemma 4. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=¯χ3(3)τ3(¯χ3)p.

    Proof. Using Lemma 3, we have

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=pi=1pj=1ps=1i+j1modp¯χ3(i3+j3+3j2s+3js21)=χ3(4)pi=1pj=1ps=1i+j1modp¯χ3(4i3+j3+3j(2s+j)24)=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ps=1ep(t(4i3+j3+3js24))=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))[1+p1s=1(1+χ2(s))ep(3jst)]=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))χ2(3jt)τ(χ2)=χ3(4)χ2(3)τ(χ2)τ(χ3)pi=1pj=1i+j1modpχ2(j)τ(χ3χ2)¯χ3χ2(4i3+j34)=χ3(4)χ2(3)τ(χ2)τ(χ3χ2)τ(χ3)pi=1χ2(1i)¯χ3χ2(3i3+3i23i3)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3((i+2)2i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3(i)χ3(i+2)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1χ3(1+2¯i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)(1+pi=1χ3(i))=χ2(1)¯χ3(6)τ(χ2)τ(¯χ3)τ(χ3χ2)p=¯χ3(3)τ3(¯χ3)p.

    This completes the proof.

    Lemma 5. If p is a prime and 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=3p+¯χ3(3)τ3(¯χ3).

    Proof. Note that τ(χ3)τ(¯χ3)=p and ¯χ3(i3)=1 with i is an integer relatively prime to p. Therefore we have

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=pi=1pj=1¯χ3(i3+j3)ep(i+j)+pi=1pj=1ps=1¯χ3(i3+j31)ep(s(i+j1))pi=1pj=1¯χ3(i3+j31)=pi=1¯χ3(i3)ep(i)+pi=1pj=1¯χ3(i3+1)ep(j(i+1))pi=1¯χ3(i3+1)+ppi=1pj=1i+j1modp¯χ3(i3+j31)1τ(χ3)p1t=1χ3(t)pi=1pj=1ep(t(i3+j31))=p1i=1ep(i)+ppi=1i+10modp¯χ3(i3+1)1p1i=1(1+χ3(i)+¯χ3(i))¯χ3(i+1)+ppi=1pj=1i+j0modp¯χ3(i3+j3+3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2=1pi=1¯χ3(i+1)p1i=1χ3(i)¯χ3(i+1)p1i=1¯χ3(i)¯χ3(i+1)+ppj=1¯χ3(3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)[1+p1i=1(1+χ3(i)+¯χ3(i))ep(it)]2=1p1i=1¯χ3(1+¯i)p1i=1¯χ3(i2+i)+p¯χ3(3)p1j=1¯χ3(j2+j)1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))2=1τ(χ3)(τ2(χ3)p1t=1¯χ3(t)ep(t)+τ2(¯χ3)p1t=1ep(t)+2pp1t=1χ3(t)ep(t))+(1+p¯χ3(3))1τ(χ3)p1s=1χ3(s)p1i=1¯χ3(i)ep(s(i+1))=1τ(χ3)(τ2(χ3)τ(¯χ3)τ2(¯χ3)+2pτ(χ3))τ2(¯χ3)τ(χ3)+p¯χ3(3)τ2(¯χ3)τ(χ3)=¯χ3(3)τ3(¯χ3)3p.

    This proves Lemma 5.

    Proof of Theorem 1. Recall that ¯χ3(i3)=1 with (i,p)=1. Hence

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=pi=1pj=1ps=1pt=1p1u=1χ3(u)ep(u(i3+j3s3t3)+i+jst)=τ(χ3)pi=1pj=1ps=1pt=1¯χ3(i3+j3s3t3)ep(i+jst)=τ(χ3)pi=1pj=1ps=1p1t=1¯χ3(i3t3+j3t3s3t3t3)ep(it+jtstt)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)pt=1ep(t(i+js1))+τ(χ3)p1i=0pj=1ps=1¯χ3(i3+j3s3)ep(i+js)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)=pτ(χ3)pi=1pj=1ps=1i+js1modp¯χ3(i3+j3s31)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js).

    Applying Lemmas 2, 4 and 5 we obtain

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=τ(χ3)¯χ3(3)τ3(¯χ3)τ(χ3)(p(α3)+3τ3(¯χ3))+τ(χ3)(¯χ3(3)τ3(¯χ3)3p)=αpτ(χ3)3pτ2(¯χ3).

    Proof of Theorem 2. Based on Theorem 1 and the identities obtained in [9]

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2if3p1.

    We have

    p1v=1|pi=1ep(i3+vi)|4=p1v=1|pi=1ep((¯vi)3+i)|4=p1v=1(1+χ3(v)+¯χ3(v))|pi=1ep(vi3+i)|4=p1v=1|pi=1ep(vi3+i)|4+p1v=1χ3(v)|pi=1ep(vi3+i)|4+p1v=1¯χ3(v)|pi=1ep(vi3+i)|4=2p37p2αpτ(χ3)3pτ2(¯χ3)αpτ(¯χ3)3pτ2(χ3)=2p3p23p(τ(χ3)+τ(¯χ3))2αp(τ(χ3)+τ(¯χ3)). (3.1)

    Now we need to determine the value of the real number τ(χ3)+τ(¯χ3) in (3.1). For convenience, write the A=τ(χ3)+τ(¯χ3), we construct cubic equation A33pAαp=0 based on (2.1) and τ(χ3)τ(¯χ3)=p. According to Cardans formula (formula of roots of a cubic equation), the three roots of the equation are

    A1=[αp2+((αp2)2+(p)3)12]13+[αp2((αp2)2+(p)3)12]13,A2=ω[αp2+((αp2)2+(p)3)12]13+ω2[αp2((αp2)2+(p)3)12]13,A3=ω2[αp2+((αp2)2+(p)3)12]13+ω[αp2((αp2)2+(p)3)12]13,

    where ω=1+3i2.

    It is clear that all Ak (k=1,2 or 3) are real numbers, So A=A1,A2 or A3. Therefore, the proof of theorem is complete.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors gratefully appreciates the referees and editor for their helpful and detailed comments.

    This work is supported by Hainan Provincial Natural Science Foundation of China (123RC473) and Natural Science Foundation of China (12126357).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.
    [2] S. F. Cao, T. T. Wang, On the hybrid power mean of two-term exponential sums and cubic Gauss sums, J. Math., 8 (2021), 6638156. https://doi.org/10.1155/2021/6638156 doi: 10.1155/2021/6638156
    [3] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212.
    [4] J. Greene, D. Stanton, The triplication formula for Gauss sums, Aequat. Math., 30 (1986), 143–141. https://doi.org/10.1007/BF02189920 doi: 10.1007/BF02189920
    [5] X. X. Li, Z. F. Xu, The fourth power mean of the generalized two-term exponential sums and its upper and lower bound estimates, J. Inequal. Appl., 2013 (2013), 504. https://doi.org/10.1186/1029-242X-2013-504 doi: 10.1186/1029-242X-2013-504
    [6] T. T. Wang, W. P. Zhang, On the eighth power mean of the two-term exponential sums, Finite Fields Appl., 92 (2023), 102285. https://doi.org/10.1016/j.ffa.2023.102285 doi: 10.1016/j.ffa.2023.102285
    [7] X. X. Wang, L. Wang, A new two-term exponential sums and its fourth power mean, Rendiconti Circolo Mate. Palermo, 8 (2023), 4041–4052. https://doi.org/10.1007/s12215-023-00879-3 doi: 10.1007/s12215-023-00879-3
    [8] J. M. Yu, R. J. Yuan, T. T. Wang, The fourth power mean value of one kind two-term exponential sums, AIMS Math., 9 (2022), 17045–17060. https://doi.org/10.3934/math.2022937 doi: 10.3934/math.2022937
    [9] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep. (Bucureşti), 96 (2017), 75–83.
    [10] J. Zhang, W. P. Zhang, A certain two-term exponential sum and its fourth power means, AIMS Math., 6 (2020), 7500–7509. https://doi.org/10.3934/math.2020480 doi: 10.3934/math.2020480
    [11] W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory, 2 (2002), 304–314. https://doi.org/10.1006/jnth.2001.2715 doi: 10.1006/jnth.2001.2715
    [12] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [13] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation modp, Math. Rep., 20 (2018), 73–80.
    [14] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
    [15] W. P. Zhang, Y. Y. Meng, On the fourth power mean of one special two-term exponential sums, AIMS Math., 4 (2023), 8650–8660. https://doi.org/10.3934/math.2023434 doi: 10.3934/math.2023434
    [16] W. P. Zhang, Y. Y. Meng, On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p, AIMS Math., 7 (2021), 6961–6974. https://doi.org/10.3934/math.2021408 doi: 10.3934/math.2021408
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(985) PDF downloads(95) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog