We give a correction to the previous paper of S. F. Cao and T. T. Wang (2021). Additionally, provide a conversion formula of the power mean of a certain exponential sums weighted by a Dirichlet character χ3 and some of its applications.
Citation: Guohui Chen, Wenpeng Zhang. One kind two-term exponential sums weighted by third-order character[J]. AIMS Mathematics, 2024, 9(4): 9597-9607. doi: 10.3934/math.2024469
[1] | Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183 |
[2] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[3] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[4] | Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408 |
[5] | Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480 |
[6] | Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881 |
[7] | Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434 |
[8] | Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359 |
[9] | Xiaoge Liu, Yuanyuan Meng . On the $ k $-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093 |
[10] | Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864 |
We give a correction to the previous paper of S. F. Cao and T. T. Wang (2021). Additionally, provide a conversion formula of the power mean of a certain exponential sums weighted by a Dirichlet character χ3 and some of its applications.
Let q,m,n∈Z+ with q>2 and m>n≥1. For any u,v∈Z, we are concerned with the two-term exponential sums
G(u,v,m,n;q)=q∑j=1eq(ujm+vjn), |
where eq(x)=exp(2πix/q) and i2=−1.
For convenience, the following letters and symbols are commonly used in this paper and should be interpreted in the following sense unless otherwise stated.
● χ is Dirichlet character.
● χk is k-order Dirichlet character.
● ϕ(a) is Euler function.
● α is uniquely determined by 4p=α2+27β2 and α≡1mod3.
● τ(χ) is Gauss sums defined by
τ(χ)=q∑s=1χ(s)eq(s). |
The mean value calculation and upper bound estimation of exponential sums has always been a classical problem in analytic number theory. As a special kind of exponential sums, Gauss sums have had an important effect on both cryptography and analytic number theory. Analytic number theory and cryptography will benefit greatly from any significant advancements made in this area. In this paper, we will estimate and calculate the fourth power mean value of two-term exponential sums weighted by a character χ3. In this field, many scholars have investigated the results of G(u,v,m,n;q) in various forms, and obtained many meaningful results, see [3,5,7,8,11,15]. For instance, Zhang and Zhang [9] obtained the power mean about G(u,v,3,1;p)
p−1∑u=1|p∑i=1ep(ui3+vi)|4={2p3−p2 if3∤p−1,2p3−7p2 if3∣p−1, |
where p is an odd prime and v is not divisible by p.
Wang and Zhang [6] obtained the eighth power mean of G(u,v,3,1;p)
p−1∑u=1|p∑i=1ep(ui3+vi)|8={7(2p5−3p4)if6∣p−5,14p5−75p4−8p3α2if6∣p−1. |
In addition, Zhang and Han [12] shown the power mean of G(1,v,3,1;p)
p−1∑v=1|p∑i=1ep(i3+vi)|6=5p4−8p3−p2, | (1.1) |
where p is an odd prime with 3∤ϕ(p).
But if 3∣ϕ(p), whether there exists an exact formula for (1.1). Consider the mean of the simplest
p−1∑v=1|p∑i=1ep(i3+vi)|4. | (1.2) |
It is worth mentioning that, Zhang and Zhang [10] studied the power mean of the exponential sums weight by χ2, one has the identities
p−1∑u=1χ2(u)|p∑i=1ep(ui3+i)|4={p2(ζ+3)if6∣p−5,p2(ζ−3)if6∣p−1, |
where ζ=∑p−1t=1(t−1+¯tp) with ζ∈Z satisfies inequality |ζ|≤2√p.
Cao and Wang (see Lemma 3 in [2]) proved the following conclusion, that is, if p is a prime with 3∣ϕ(p), then for any χ3modp, one has the identity
p−1∑u=1χ3(u)(p∑i=1ep(ui3+i))4=(¯χ3(3)−3p−¯χ3(3)p)τ2(¯χ3)−αpτ(χ3). |
Unfortunately, this lemma is incorrect, there is a calculation error in it. It is precisely because of the computational error in this lemma that the main result in the whole text is wrong.
The following year, Zhang and Meng [16] studied the power mean of G(u,1,3,1;p) weighted by χ2. In this paper, We intend to correct the error in [2] and give a correct conclusion. At the same time, as an application, we give an exact result for (1.2). That is, it will prove these two conclusions:
Theorem 1. If p is a prime with 3∣ϕ(p), then we have
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=−αpτ(χ3)−3p⋅τ2(¯χ3). |
Theorem 2. If p is a prime with 3∣ϕ(p), then we have
p−1∑v=1|p∑i=1ep(i3+vi)|4=2p3−p2−3pA2k−pαAk, |
where Ak=ωk[αp2+((αp2)2−p3)12]13+ω−k[αp2−((αp2)2−p3)12]13, k=1,2 or 3 is dependent on p, and ω=−1+√3i2.
Corollary 1. If p is a prime with 3∣ϕ(p), then we have the asymptotic formula
p−1∑v=1|p∑i=1ep(i3+vi)|4=2p3+O(p2). |
Corollary 2. If p is a prime with 3∣ϕ(p), then for any integer l, we have recursive formula
Vl(p)=p−1∑u=1ϑl(u)|p∑j=1ep(uj3+j)|4=αpp−1∑u=1ϑl−3(u)|p∑j=1ep(uj3+j)|4+3pp−1∑u=1ϑl−2(u)|p∑j=1ep(uj3+j)|4=αpVl−3(p)+3pVl−2(p), |
when l take 1–3, the following equations hold
V1(p)=p−1∑u=1ϑ(u)|p∑j=1ep(uj3+j)|4=−5αp2,V2(p)=p−1∑u=1ϑ2(u)|p∑j=1ep(uj3+j)|4=4p4−20p3−α2p2,V3(p)=p−1∑u=1ϑ3(u)|p∑j=1ep(uj3+j)|4=2αp4−22αp3, |
where ϑ(u)=p∑i=1ep(ui3).
In fact, with the third-order linear recursive formula in Corollary 2 and its three initial values V1(p), V2(p) and V3(p), we can easily give the general term formula for the sequence {Vl(p)}.
Corollary 3. If p is a prime with 3∣ϕ(p), then we have
p−1∑u=1|p∑j=1ep(uj3+j)p∑i=1ep(ui3)|4=54p3α4−p2α2−27p2α4+2pα2−1. |
Before starting our proofs of main results, we present the proofs of several key equations in preparation for the next chapter. The properties of Gauss sums and reduced (complete) residue systems are used repeatedly in the proof. In addition, we will refer to the basic contents of number theory in references [1] and [14].
Lemma 1. If p is a prime with 3∣ϕ(p), then
τ3(χ3)+τ3(¯χ3)=αp. | (2.1) |
Proof. This is consequence of [4] or [13], herein we omit it.
Lemma 2. If p is a prime with 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=p(α−3)+3τ3(¯χ3). |
Proof. Recall that τ(χ3)⋅τ(¯χ3)=p and (2.1), we have
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=1τ(χ3)p−1∑t=1χ3(t)p∑i=1p∑j=1p∑s=1ep(t(i3+j3−s3−1))=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(p∑i=1ep(it3))2(p∑s=1ep(−st3))=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(1+p−1∑i=1(1+χ3(i)+¯χ3(i))ep(it))3=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(¯χ3(t)⋅τ(χ3)+χ3(t)⋅τ(¯χ3))3=1τ(χ3)p−1∑t=1χ3(t)ep(−t)[τ3(χ3)+τ3(¯χ3)+3p(¯χ3(t)⋅τ(χ3)+χ3(t)⋅τ(¯χ3))]=αp+3pτ(χ3)⋅τ(χ3)⋅p−1∑t=1ep(−t)+3pτ(χ3)⋅τ(¯χ3)⋅p−1∑t=1χ23(t)ep(−t)=p(α−3)+3p⋅τ2(¯χ3)τ(χ3)=p(α−3)+3τ3(¯χ3). |
This completes the proof.
Lemma 3. If p is a prime with 3∣ϕ(p), then
τ(¯χ3χ2)=¯χ3(2)⋅τ2(χ3)⋅τ(χ2)p. |
Proof. Recall that τ(χ3)⋅τ(¯χ3)=p, we obtain
p∑i=1χ3(i2−1)=p∑i=1χ3(i2+2i)=1τ(¯χ3)p−1∑j=1¯χ3(j)p−1∑i=1χ3(i)ep(j(i+2))=τ(χ3)τ(¯χ3)p−1∑j=1χ3(j)ep(2j)=¯χ3(2)⋅τ2(χ3)τ(¯χ3)=¯χ3(2)⋅τ3(χ3)p. | (2.2) |
From another perspective, we have
p∑i=1χ3(i2−1)=1τ(¯χ3)p−1∑j=1¯χ3(j)p∑i=1ep(j(i2−1))=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)p∑i=1ep(i2j)=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)[1+p−1∑i=1(1+χ2(i))ep(ij)]=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)p−1∑i=1χ2(i)ep(ij)=τ(χ2)τ(¯χ3)p−1∑j=1¯χ3χ2(j)ep(−j)=χ2(−1)⋅τ(χ2)⋅τ(¯χ3χ2)τ(¯χ3)=χ2(−1)⋅τ(χ2)⋅τ(¯χ3χ2)⋅τ(χ3)p. | (2.3) |
Combining (2.2) and (2.3), we determine the relationship equation between τ(¯χ3χ2), τ(χ3) and τ(χ2)
τ(¯χ3χ2)=¯χ3(2)⋅τ2(χ3)⋅τ(χ2)p. |
This completes the proof.
Lemma 4. If p is a prime with 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1i+j−s−1≡0modp¯χ3(i3+j3−s3−1)=−¯χ3(3)⋅τ3(¯χ3)p. |
Proof. Using Lemma 3, we have
p∑i=1p∑j=1p∑s=1i+j−s−1≡0modp¯χ3(i3+j3−s3−1)=p∑i=1p∑j=1p∑s=1i+j≡1modp¯χ3(i3+j3+3j2s+3js2−1)=χ3(4)p∑i=1p∑j=1p∑s=1i+j≡1modp¯χ3(4i3+j3+3j(2s+j)2−4)=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)p∑s=1ep(t(4i3+j3+3js2−4))=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)ep(t(4i3+j3−4))[1+p−1∑s=1(1+χ2(s))ep(3jst)]=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)ep(t(4i3+j3−4))χ2(3jt)τ(χ2)=χ3(4)⋅χ2(3)⋅τ(χ2)τ(χ3)p∑i=1p∑j=1i+j≡1modpχ2(j)τ(χ3χ2)¯χ3χ2(4i3+j3−4)=χ3(4)⋅χ2(3)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p∑i=1χ2(1−i)¯χ3χ2(3i3+3i2−3i−3)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1¯χ3((i+2)2i)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1¯χ3(i)χ3(i+2)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1χ3(1+2⋅¯i)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)(−1+p∑i=1χ3(i))=−χ2(−1)⋅¯χ3(6)⋅τ(χ2)⋅τ(¯χ3)⋅τ(χ3χ2)p=−¯χ3(3)⋅τ3(¯χ3)p. |
This completes the proof.
Lemma 5. If p is a prime and 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=−3p+¯χ3(3)⋅τ3(¯χ3). |
Proof. Note that τ(χ3)⋅τ(¯χ3)=p and ¯χ3(i3)=1 with i is an integer relatively prime to p. Therefore we have
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=p∑i=1p∑j=1¯χ3(i3+j3)ep(i+j)+p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−1)ep(s(i+j−1))−p∑i=1p∑j=1¯χ3(i3+j3−1)=p∑i=1¯χ3(i3)ep(i)+p∑i=1p∑j=1¯χ3(i3+1)ep(j(i+1))−p∑i=1¯χ3(i3+1)+pp∑i=1p∑j=1i+j≡1modp¯χ3(i3+j3−1)−1τ(χ3)p−1∑t=1χ3(t)p∑i=1p∑j=1ep(t(i3+j3−1))=p−1∑i=1ep(i)+pp∑i=1i+1≡0modp¯χ3(i3+1)−1−p−1∑i=1(1+χ3(i)+¯χ3(i))¯χ3(i+1)+pp∑i=1p∑j=1i+j≡0modp¯χ3(i3+j3+3j2+3j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)(p∑i=1ep(it3))2=−1−p∑i=1¯χ3(i+1)−p−1∑i=1χ3(i)¯χ3(i+1)−p−1∑i=1¯χ3(i)¯χ3(i+1)+pp∑j=1¯χ3(3j2+3j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)[1+p−1∑i=1(1+χ3(i)+¯χ3(i))ep(it)]2=−1−p−1∑i=1¯χ3(1+¯i)−p−1∑i=1¯χ3(i2+i)+p¯χ3(3)p−1∑j=1¯χ3(j2+j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))2=−1τ(χ3)(τ2(χ3)p−1∑t=1¯χ3(t)ep(−t)+τ2(¯χ3)p−1∑t=1ep(−t)+2pp−1∑t=1χ3(t)ep(−t))+(−1+p¯χ3(3))1τ(χ3)p−1∑s=1χ3(s)p−1∑i=1¯χ3(i)ep(s(i+1))=−1τ(χ3)(τ2(χ3)⋅τ(¯χ3)−τ2(¯χ3)+2p⋅τ(χ3))−τ2(¯χ3)τ(χ3)+p⋅¯χ3(3)⋅τ2(¯χ3)τ(χ3)=¯χ3(3)⋅τ3(¯χ3)−3p. |
This proves Lemma 5.
Proof of Theorem 1. Recall that ¯χ3(i3)=1 with (i,p)=1. Hence
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=p∑i=1p∑j=1p∑s=1p∑t=1p−1∑u=1χ3(u)ep(u(i3+j3−s3−t3)+i+j−s−t)=τ(χ3)p∑i=1p∑j=1p∑s=1p∑t=1¯χ3(i3+j3−s3−t3)ep(i+j−s−t)=τ(χ3)p∑i=1p∑j=1p∑s=1p−1∑t=1¯χ3(i3t3+j3t3−s3t3−t3)ep(it+jt−st−t)+τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)p∑t=1ep(t(i+j−s−1))+τ(χ3)p−1∑i=0p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)−τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=pτ(χ3)p∑i=1p∑j=1p∑s=1i+j−s≡1modp¯χ3(i3+j3−s3−1)−τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)+τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s). |
Applying Lemmas 2, 4 and 5 we obtain
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=−τ(χ3)⋅¯χ3(3)⋅τ3(¯χ3)−τ(χ3)(p(α−3)+3τ3(¯χ3))+τ(χ3)(¯χ3(3)⋅τ3(¯χ3)−3p)=−αp⋅τ(χ3)−3p⋅τ2(¯χ3). |
Proof of Theorem 2. Based on Theorem 1 and the identities obtained in [9]
p−1∑u=1|p∑i=1ep(ui3+vi)|4={2p3−p2 if3∤p−1,2p3−7p2if3∣p−1. |
We have
p−1∑v=1|p∑i=1ep(i3+vi)|4=p−1∑v=1|p∑i=1ep((¯vi)3+i)|4=p−1∑v=1(1+χ3(v)+¯χ3(v))|p∑i=1ep(vi3+i)|4=p−1∑v=1|p∑i=1ep(vi3+i)|4+p−1∑v=1χ3(v)|p∑i=1ep(vi3+i)|4+p−1∑v=1¯χ3(v)|p∑i=1ep(vi3+i)|4=2p3−7p2−αpτ(χ3)−3p⋅τ2(¯χ3)−αpτ(¯χ3)−3p⋅τ2(χ3)=2p3−p2−3p(τ(χ3)+τ(¯χ3))2−αp(τ(χ3)+τ(¯χ3)). | (3.1) |
Now we need to determine the value of the real number τ(χ3)+τ(¯χ3) in (3.1). For convenience, write the A=τ(χ3)+τ(¯χ3), we construct cubic equation A3−3pA−αp=0 based on (2.1) and τ(χ3)⋅τ(¯χ3)=p. According to Cardans formula (formula of roots of a cubic equation), the three roots of the equation are
A1=[αp2+((αp2)2+(−p)3)12]13+[αp2−((αp2)2+(−p)3)12]13,A2=ω[αp2+((αp2)2+(−p)3)12]13+ω2[αp2−((αp2)2+(−p)3)12]13,A3=ω2[αp2+((αp2)2+(−p)3)12]13+ω[αp2−((αp2)2+(−p)3)12]13, |
where ω=−1+√3i2.
It is clear that all Ak (k=1,2 or 3) are real numbers, So A=A1,A2 or A3. Therefore, the proof of theorem is complete.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors gratefully appreciates the referees and editor for their helpful and detailed comments.
This work is supported by Hainan Provincial Natural Science Foundation of China (123RC473) and Natural Science Foundation of China (12126357).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976. |
[2] |
S. F. Cao, T. T. Wang, On the hybrid power mean of two-term exponential sums and cubic Gauss sums, J. Math., 8 (2021), 6638156. https://doi.org/10.1155/2021/6638156 doi: 10.1155/2021/6638156
![]() |
[3] | R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212. |
[4] |
J. Greene, D. Stanton, The triplication formula for Gauss sums, Aequat. Math., 30 (1986), 143–141. https://doi.org/10.1007/BF02189920 doi: 10.1007/BF02189920
![]() |
[5] |
X. X. Li, Z. F. Xu, The fourth power mean of the generalized two-term exponential sums and its upper and lower bound estimates, J. Inequal. Appl., 2013 (2013), 504. https://doi.org/10.1186/1029-242X-2013-504 doi: 10.1186/1029-242X-2013-504
![]() |
[6] |
T. T. Wang, W. P. Zhang, On the eighth power mean of the two-term exponential sums, Finite Fields Appl., 92 (2023), 102285. https://doi.org/10.1016/j.ffa.2023.102285 doi: 10.1016/j.ffa.2023.102285
![]() |
[7] |
X. X. Wang, L. Wang, A new two-term exponential sums and its fourth power mean, Rendiconti Circolo Mate. Palermo, 8 (2023), 4041–4052. https://doi.org/10.1007/s12215-023-00879-3 doi: 10.1007/s12215-023-00879-3
![]() |
[8] |
J. M. Yu, R. J. Yuan, T. T. Wang, The fourth power mean value of one kind two-term exponential sums, AIMS Math., 9 (2022), 17045–17060. https://doi.org/10.3934/math.2022937 doi: 10.3934/math.2022937
![]() |
[9] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep. (Bucureşti), 96 (2017), 75–83. |
[10] |
J. Zhang, W. P. Zhang, A certain two-term exponential sum and its fourth power means, AIMS Math., 6 (2020), 7500–7509. https://doi.org/10.3934/math.2020480 doi: 10.3934/math.2020480
![]() |
[11] |
W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory, 2 (2002), 304–314. https://doi.org/10.1006/jnth.2001.2715 doi: 10.1006/jnth.2001.2715
![]() |
[12] |
W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
![]() |
[13] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation modp, Math. Rep., 20 (2018), 73–80. |
[14] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |
[15] |
W. P. Zhang, Y. Y. Meng, On the fourth power mean of one special two-term exponential sums, AIMS Math., 4 (2023), 8650–8660. https://doi.org/10.3934/math.2023434 doi: 10.3934/math.2023434
![]() |
[16] |
W. P. Zhang, Y. Y. Meng, On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p, AIMS Math., 7 (2021), 6961–6974. https://doi.org/10.3934/math.2021408 doi: 10.3934/math.2021408
![]() |