In this paper, we studied the influence of centralizers on the structure of groups, and demonstrated that Janko simple groups can be uniquely determined by two crucial quantitative properties: its even-order components of the group and the set $ \pi_{p_m}(G) $. Here, $ G $ represents a finite group, $ \pi(G) $ is the set of prime factors of the order of $ G $, $ p_m $ is the largest element in $ \pi(G) $, and $ \pi_{p_m}(G) = \{|C_G(x)| \large| \; x\in G $ and $ |x| = p_m \}$ denotes the set of orders of centralizers of $ p_m $-order elements in $ G $.
Citation: Zhangjia Han, Jiang Hu, Dongyang He. A new characterization of Janko simple groups[J]. AIMS Mathematics, 2024, 9(4): 9587-9596. doi: 10.3934/math.2024468
In this paper, we studied the influence of centralizers on the structure of groups, and demonstrated that Janko simple groups can be uniquely determined by two crucial quantitative properties: its even-order components of the group and the set $ \pi_{p_m}(G) $. Here, $ G $ represents a finite group, $ \pi(G) $ is the set of prime factors of the order of $ G $, $ p_m $ is the largest element in $ \pi(G) $, and $ \pi_{p_m}(G) = \{|C_G(x)| \large| \; x\in G $ and $ |x| = p_m \}$ denotes the set of orders of centralizers of $ p_m $-order elements in $ G $.
[1] | Y. Shang, A note on the commutativity of prime near-rings, Algebra Colloq., 22 (2015), 361–366. http://dx.doi.org/10.1142/S1005386715000310 doi: 10.1142/S1005386715000310 |
[2] | M. Sharma, R. Nath, Y. Shang, On $g$-noncommuting graph of a finite group relative to its subgroups, Mathematics, 9 (2021), 3147. http://dx.doi.org/10.3390/math9233147 doi: 10.3390/math9233147 |
[3] | J. Williams, Prime graph components of finite simple groups, J. Algebra, 69 (1981), 487–513. http://dx.doi.org/10.1016/0021-8693(81)90218-0 doi: 10.1016/0021-8693(81)90218-0 |
[4] | G. Chen, A new characterization of sporadic simple groups, Algebra Colloq., 3 (1996), 49–58. |
[5] | A. Iranmanesh, S. Alavi, A characterization of simple groups $PSL(5, q)$, Bull. Aust. Math. Soc., 65 (2002), 211–222. http://dx.doi.org/10.1017/S0004972700020256 doi: 10.1017/S0004972700020256 |
[6] | A. Iranmanesh, S. Alavi, B. Khosravi, A characterization of $PSL(3, q)$, where $q$ is an odd prime power, J. Pure Appl. Algebra, 170 (2002), 243–254. http://dx.doi.org/10.1016/S0022-4049(01)00113-X doi: 10.1016/S0022-4049(01)00113-X |
[7] | A. Iranmanesh, S. Alavi, B. Khosravi, A characterization of $PSL(3, q)$ for $q = 2^n$, Acta Math. Sinica, 18 (2002), 463–472. http://dx.doi.org/10.1007/s101140200164 doi: 10.1007/s101140200164 |
[8] | A. Khosravi, B. Khosravi, A new characterization of $PSL(p, q)$, Commun. Algebra, 32 (2004), 2325–2339. http://dx.doi.org/10.1081/AGB-120037223 doi: 10.1081/AGB-120037223 |
[9] | A. Khosravi, B. Khosravi, Characterizability of $PSU(p+1, q)$ by its order component(s), Rocky Mt. J. Math., 36 (2006), 1555–1575. |
[10] | G. Chen, A new characterization of Suzuki-Ree group, Sci. China Ser. A-Math., 40 (1997), 807–812. http://dx.doi.org/10.1007/BF02878919 doi: 10.1007/BF02878919 |
[11] | G. Chen, A new characterization of $PSL_2(q)$, SEA Bull. Math., 22 (1998), 257–263. |
[12] | G. Chen, Characterization of $^3D_4(q)$, SEA Bull. Math., 25 (2001), 389–401. http://dx.doi.org/10.1007/s10012-001-0389-2 doi: 10.1007/s10012-001-0389-2 |
[13] | H. Shi, Z. Han, G. Chen, $D_p(3)(p\geq 5)$ can be characterized by its order components, Colloq. Math., 126 (2012), 257–268. http://dx.doi.org/10.4064/cm126-2-8 doi: 10.4064/cm126-2-8 |
[14] | Q. Jiang, C. Shao, Characterization of some $L_2(q)$ by the largest element orders, Math. Rep., 17 (2015), 353–358. |
[15] | Z. Wang, H. Lv, Y. Yan, G. Chen, A new characterization of sporadic groups, arXiv: 2009.07490. |
[16] | G. Chen, The structure of Frobenius group and 2-Frobenius group (Chinese), Journal of Southwest China Normal University (Natural Science Edition), 20 (1995), 485–487. |
[17] | D. Groenstein, Finite simple groups: an introduction to their classification, New York: Springer, 1982. http://dx.doi.org/10.1007/978-1-4684-8497-7 |
[18] | M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 10 (1968), 383–388. |