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1. Introduction

The groups mentioned in this paper are all finite groups.
It is well known that the order of a finite group and the orders of its elements are closely related to

the structure of the group, as demonstrated by Thompson’s famous odd-order theorem. On the other
hand, since the completion of the classification of finite simple groups in the 1980s, it has been an
important research topic to characterize finite simple groups in terms of their quantity relationships as
finite groups, such as using the order of groups and the set of orders of group elements, proposed by
Professor W. J. Shi, or the use of order components, proposed by Professor G. Y. Chen, and many other
achievements in this area.

In mathematics, a graph is an abstract structure composed of nodes (vertices) and edges. The
study of algebraic structures through various graphs defined on algebraic systems has always been an
interesting research topic. For example, the prime graph G(N) of a near-ring N is used to investigate
the commutativity of prime near-rings (see [1]), while g-noncommuting graph are employed to explore
the relationship between finite groups and their subgroups (see [2]). In this article, we will apply the
concept of prime graphs of groups G.
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Let G be a finite group. K. W. Gruenberg and O. Kegel defined the prime graph Γ(G) of a finite
group G as follows: the vertex set of G is the set of all prime factors of |G|, and two vertices p and
q are adjacent if and only if G contains an element of order pq (see [3]). The number of connected
components in the prime graph of G is denoted by t(G), and the set of connected components in the
prime graph of G is denoted by T (G) = {πi(G)|i = 1, 2, . . . , t(G)}. When G is an even-order group, it
is stipulated that 2 ∈ π1(G). If π1, π2, . . . , πt(G) are all the connected components of G’s prime graph,
then |G| = m1m2 · · ·mt(G), where the prime factor set of mi is πi for i = 1, 2, . . . , t(G). The numbers
m1,m2, . . . ,mt(G) are called the order components of G, and OC(G) = {m1,m2, . . . ,mt(G)} is the set
of order components of G (see [4]). For convenience, we denote the even-order component of G as
m1(G). Professor Guiyun Chen gave the order components of all simple groups whose prime graph is
disconnected (see [4] Tables 1–4).

For example, the set of prime factors of the alternating groups A13 and A14 are both {2, 3, 5, 7, 11, 13}.
Therefore, their vertex sets are {2, 3, 5, 7, 11, 13}. The set of connected components of A13 is
T (G)={π1, π2, π3}, where π1 = {2, 3, 5, 7}, π2 = 11, and π3 = 13. The order components of A13 are
m1 = 29 · 35 · 52 · 7, m2 = 11, and m3 = 13. The set of connected components of A14 is T (G)={π1, π2},
where π1 = {2, 3, 5, 7, 11}, π2 = 13. The order components of A14 are m1 = 210 ·35 ·52 ·72 ·11, m2 = 13.
Their prime graphs are respectively shown in Figure 1.

3

2

7

5

11

13

3

2

7

5

11

13

Figure 1. The prime graphs of the alternating groups A13 and A14.

Using the concept of order components, Professor G. Y. Chen and other group theorists such as
Professor H. G. Shi have studied the following problem:

Let G be a finite group and S be a non-abelian simple group. If OC(G) = OC(S ), are G and S
isomorphic?

Many group theorists have conducted in-depth studies on this problem, and some of their
achievements can be found in [4–15]. From these results, it can be seen that the order components
are effective quantitative properties for characterizing simple groups.

In 1962, Professor R. Brauer proposed using centralizers of involutions as labels for finite simple
groups at the World Mathematical Congress in Amsterdam. Later, group theorists found that it is
sometimes necessary to examine centralizers of elements of odd order in the study of finite simple
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groups. From this, the properties of centralizers of elements have a significant impact on finite simple
groups.

In recent years, important topics in group representation theory such as the McKay conjecture and
the Alperin conjecture have been reduced to the cases of simple groups and quasi-simple groups.
It is urgent to understand and identify more properties of simple groups. This paper provides a new
approach to facilitate better identification of properties of simple groups for group theorists. Compared
to known methods, the even-order components and the order of centralizers of the highest-order
element in a simple group have the advantages of simplicity, convenience, and wide applicability.
In the following, we combine the concepts of order components and centralizers, which has a
profound impact on the structure of simple groups, and utilize the quantitative properties of even-order
components and centralizers of certain odd-order elements to characterize the Janko simple group.

Main Theorem. Let G be a finite group, and M be one of the Janko simple groups, namely, J1, J2, J3,
or J4. Then, G is isomorphic to M if and only if:

(1) m1(G) = m1(M);
(2) πpm(G) = πpm(M).

Here, the Janko simple groups are four sporadic simple groups discovered by Janko, and they are
probably now best constructed by matrix groups over finite fields.

2. Preliminaries

In this paper, we adopt the following conventions: π(G) denotes the set of prime factors of the order
of G, pm stands for the largest element of π(G), and πpm(G) represents the set of orders of centralizers
of pm-order elements in G. The symbol |π(G)| refers to the number of prime factors of the order of G.
Aut(G) denotes the automorphism group of G and Out(G) refers to the outer automorphism group of
G. Let |G| = pαm, where (p,m)=1. Then, a p-subgroup of G which has order pα is called a Sylow
p-subgroup of G. For pi ∈ π(G), S pi denotes a Sylow pi-subgroup of G.

If G is a finite group with a subgroup H such that H ∩ Hx for all x in G \ H, then G is called a
Frobenius group. Let N = G \ ∪x∈G(H \ 1)x. Then, G = HN, and H ∩ N = 1. H is called a Frobenius
complememt and N the Frobenius kernel. A group G is called a 2-Frobenius group if G has a normal
series 1 E H E K E G such that K is a Frobenius group with Frobenius kernel H and G/H is also a
Frobenius group with kernel K/H (see [16]). A group G with a solvable series is called a solvable
group, where a solvable series is a normal series in which all factor groups are abelian. It is worth
mentioning that, in 1963, Professor J. G. Thompson and Professor W. Feit proved the solvability of
odd-order groups, from which it can be seen that all simple groups are even-order groups.

All other symbols not explicitly defined are standard and can be found in [17].
The following theorem provides a characterization of the structure of finite groups when t(G) ≥ 2.

Lemma 2.1. [3, Corollary] Let G be a finite group with disconnecting prime graph. Then, the structure
of G is as follows:

(1) G is a Frobenius group or a 2-Frobenius group;
(2) G has a normal series 1 E H E K E G, where H is a nilpotent π1(G)-group, G/K is a soluble

π1(G)-group, K/H is a non-abelian simple group, and |G/K| divides |Out(K/H)|.
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The following two lemmas respectively provide characterizations of the structure of even-order
Frobenius groups and even-order 2-Frobenius groups.

Lemma 2.2. [16, Theorem 1] Let G be an even-order Frobenius group with Frobenius kernel H and
Frobenius complement K. Then, t(G) = 2 and T (G) = {π(H), π(K)}. Moreover, the structure of G is
one of the following:

1) If 2 ∈ π(H), then the Sylow subgroups of K are cyclic;
2) If 2 ∈ π(K), then H is an abelian group. When K is soluble, the odd-order Sylow subgroups of K

are cyclic and the Sylow 2-subgroup is either a cyclic group or a generalized quaternion group. When
K is insoluble, there exists K0 ≤ K such that |K : K0| ≤ 2 and K0 ' Z × S L(2, 5), where (|Z|, 30) = 1
and the Sylow subgroups of Z are cyclic.

Lemma 2.3. [16, Theorem 2] Let G be an even-order 2-Frobenius group. Then, t(G) = 2 and G has
a normal series 1 E H E K E G such that π(K/H) = π2(G), π(H) ∪ π(G/K) = π1(G), |G/K| divides
|Aut(K/H)|, and both |G/K| and |K/H| are cyclic groups. In particular, |G/K| ≤ |K/H| and G is soluble.

Lemma 2.1 is an important work by J. S. Williams in 1981, which reveals the structure of groups
with disconnected prime graphs. The first category consists of Frobenius groups or 2-Frobenius groups,
while the second category corresponds to the condition given by Case 2. Lemmas 2.2 and 2.3 are works
by G. Y. Chen in 1996, which provide a specific classification for the aforementioned first category.
In this paper, we can conveniently apply them to determine whether a group is a Frobenius group or
a 2-Frobenius group. These lemmas have been widely applied in related research areas, and readers
can refer to the original literature for more information.

3. Proof of Main Theorem

Recall that a simple group which has order paqbrc is a simple K3-group, and it is known that all
simple K3-groups are A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), and U4(2) (see [18]). In the following,
we will use those symbols frequently.

Given a subgroup K of a group G, it is obvious that m1(K) divides m1(G). In the following proof,
we will frequently use this result without further explanation.

Main Theorem. Let G be a finite group and M be one of the Janko simple groups, namely, J1, J2, J3,
or J4. Then, G is isomorphic to M if and only if:

(1) m1(G) = m1(M);
(2) πpm(G) = πpm(M).

Proof. The necessity of the theorem is evident, so we only need to prove its sufficiency. We will
consider four different cases to establish our conclusion.

Case 1. M � J1(23 · 3 · 5 · 7 · 11 · 19).
In this case, m1(G) = m1(M) = 23 · 3 · 5, and πpm(M) = {19}. Since m1(G) = m1(M) = 23 · 3 · 5, we

have t(G) ≥ 2, which implies that G has the following structure according to Lemma 2.1:
1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series 1EHEKEG, with H being a nilpotent π1(G)-group, G/K being a solvable

π1(G)-group, and K/H being a nonabelian simple group.
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However, G cannot be a Frobenius group. Otherwise, G = HK, where H is the Frobenius kernel
and K is the Frobenius complement, and T (G) = {π(H), π(K)}.

1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we have H = S 2 × S 3 × S 5,
where S i E G and S i ∈ S yli(G) for i = 2, 3, 5. Therefore, |K|||Aut(S 2)|. However, since 19||K| and
|Aut(S 2)||(23 − 1)(23 − 2)(23 − 4), we have a contradiction.

2) If 2 ∈ π(K), then by the given condition, the Sylow 19-subgroup S 19 of G is normal in G and has
order 19. If we let the Sylow 5-subgroup of G act on S 19, we obtain an element of order 95 in G, which
contradicts πpm(M) = {19}. Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, we have t(G) = 2 and G has a normal series 1 E H E
K E G such that π(K/H) = π2(G) and π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 23 · 3 · 5,
we have 19 ∈ π2(G), which means K contains an element of order 19. If we let the 19-order element
in K act on the Sylow 2-subgroup of H or the Sylow 3-subgroup of H, we will obtain a contradiction.
Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series 1 E H E K EG
such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent group, G/K is a solvable π1(G)-group, and K/H is
a nonabelian simple group with |G/K|||Out(K/H)|. Since m1(G) = m1(M) = 23 · 3 · 5, it follows that
t(G) ≥ 2, which implies that π(H) ∪ π(G/K) ⊆ {2, 3, 5}. Additionally, 19 ∈ π(K/H). If H is nontrivial,
let us assume H = S 2 × S 3 × S 5, where S i ∈ S yli(H) for i = 2, 3, 5. Since H is a nilpotent group, we
have S i E K for i = 2, 3, 5. By letting the 19-order element of K act on S i, we obtain πmp(M) , {11},
which leads to a contradiction. Therefore, we conclude that H = 1.

In this way, G has a normal nonabelian simple subgroup K, such that π(G/K) ⊆ π1(G) = {2, 3, 5}
and 19 ∈ π(K). If |π(K)| = 3, then K is a simple K3-group. According to [18], no prime factor 19
appears in the order of any simple K3-group. Therefore, we conclude that |π(K)| , 3. If |π(K)| ≥ 4,
then since m1(G) = m1(M) = 23 · 3 · 5 and πpm(M) = {19}, it follows that t(K) ≥ 2. By examining
Tables 2–4 of [4] and utilizing the condition πpm(M) = {19}, we can determine that K can only be one
of the following groups: L2(19), L3(7), U3(8), J1, J3, or HN.

If K � L2(19), then |K| = 22 · 32 · 5 · 19. However, since m1(G) = 23 · 3 · 5, m1(K) = 22 · 5,
we have 6||G/K|||Out(L2(19)| = 2, which leads to a contradiction. Therefore, K is not isomorphic to
L2(19).

If K � L3(7), then |K| = 25 · 32 · 73 · 19. However, in this case, m1(K) = 25 · 32 · 73, which is clearly
contradictory to m1(G) = 23 · 3 · 5. Therefore, K is not isomorphic to L3(7). Similarly, K is also not
isomorphic to U3(8), J3, or HN.

Therefore, we have K � J1, which implies that 1 E J1 EG. In this case, it is clear that CG(J1) = 1
and Out(J1) = 1. Consequently, we conclude that G � J1.

Case 2. M � J2(27 · 33 · 52 · 7).
In this case, we have m1(G) = m1(M) = 27 ·33 ·52 and πpm(M) = {7}. Since m1(G)= m1(M)=27 ·33 ·52,

we have t(G) ≥ 2. Therefore, according to Lemma 2.1, the structure of G is as follows:
1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series 1EHEKEG, with H being a nilpotent π1(G)-group, G/K being a solvable

π1(G)-group, and K/H being a nonabelian simple group.
However, G cannot be a Frobenius group. Otherwise, G = HK, where H is the Frobenius kernel

and K is the Frobenius complement. In this case, T (G) = {π(H), π(K)}.
1) If 2 ∈ π(H), then π(H) = π1(G). Since H is nilpotent, we have H = S 2 × S 3 × S 5, where
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S i E G and S i ∈ S yli(G) for i = 2, 3, 5. This implies that |K|||Aut(S 5)|. However, since 7||K| and
|Aut(S 5)||(52 − 1)(52 − 5), we have a contradiction.

2) If 2 ∈ π(K), then the Sylow 7-subgroup S 7 of G is normal in G with order 7. By acting the
Sylow 5-subgroup of G on S 7, we obtain elements of order 35 in G, which contradicts πpm(M)={7}.
Hence, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, t(G) = 2 and G has a normal series 1 E H E K E G
such that π(K/H) = π2(G) and π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 27 · 33 · 52, we
have 7 ∈ π2(G), implying that K contains elements of order 7. By acting the 7-order elements of K on
either the Sylow 2-subgroup or the Sylow 3-subgroup of H, we obtain a contradiction. Therefore, G is
not a 2-Frobenius group.

Therefore, the structure of G is as in Lemma 2.1(2), that is, G has a normal series 1 E H E K E G
such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent group, G/K is a solvable π1(G)-group, K/H is a
non-abelian simple group, and |G/K| divides |Out(K/H)|. Since m1(G) = m1(M) = 27 · 33 · 52, we have
t(G) ≥ 2, implying that π(H) ∪ π(G/K) ⊆ {2, 3, 5} and 7 ∈ π(K/H). Since K/H is a nonabelian simple
group, we have that 4 divides |K/H|. Therefore, the largest possible order of the Sylow 2-subgroup of
H is 25. If H is non-trivial, without loss of generality, assume H = S 2 × S 3 × S 5, where S i ∈ S yli(H)
for i = 2, 3, 5. Since H is nilpotent, we have S i E K for i = 2, 3, 5. By acting the 7-order elements of K
on S i, we obtain πpm(M) , {7}, which is a contradiction. Hence, we have H = 1.

Now, G have a normal non-abelian simple subgroup K such that π(G/K) ⊆ π1(G) = {2, 3, 5} and 7 ∈
π(K). If |π(K)| = 3, then K is a simple K3-group. According to [18], K can only be one of the following
groups: L2(7), L2(8), or U3(3).

If |π(K)| ≥ 4, then due to m1(G) = m1(M) = 27 · 33 · 52 and πpm(M) = {7}, we have t(K) ≥ 2. By
examining Tables 2–4 in [4] and using the condition πpm(M) = {7}, it can be deduced that K can only
be one of the following groups: A7, A8,A9,L3(4), J2, U3(5), S 6(2), O+

8 (2), or U4(3).
If K � L2(7), then |K| = 22 · 3 · 7. Since m1(G) = 27 · 33 · 52 and m1(K) = 22 · 3, we

have 25·3||G/K|||Out(L2(7))| = 2, which is a contradiction. Therefore, K is not isomorphic to L2(7).
Similarly, K is not isomorphic to L2(8) or U3(3).

If K � A7, then |K| = 23 · 32 · 5 · 7. Since m1(G) = 27 · 33 · 52 and m1(K) = 23 · 32, we
have 24·3||G/K|||Out(A7)| = 2, which is a contradiction. Therefore, K is not isomorphic to A7.
Similarly, K is not isomorphic to A8, A9, L3(4), or U3(5).

If K � S 6(2), then |K| = 29 · 34 · 5 · 7. However, in this case, m1(K) = 29 · 34 · 5, which contradicts
m1(G) = 27 · 33 · 52. Therefore, K is not isomorphic to S 6(2). Similarly, K is not isomorphic to O+

8 (2)
or U4(3).

Therefore, we have K � J2, which implies 1E J2EG. It is evident that CG(J2) = 1 and |Out(J2)| = 2.
Hence, we have G � J2 or G � Aut(J2). If G � Aut(J2), then it is clear that m1(G) > m1(J2) = m1(M),
which contradicts our assumption. Hence, G � J2.

Case 3. M � J3(27 · 35 · 5 · 17 · 19).
In this case, m1(G) = m1(M) = 27 · 35 · 5 and πpm(M) = {19}. Since m1(G) = m1(M) = 27 · 35 · 5, it

follows that t(G) ≥ 2. According to Lemma 2.1, the structure of G is as follows:
1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series 1EHEKEG, with H being a nilpotent π1(G)-group, G/K being a solvable

π1(G)-group, and K/H being a nonabelian simple group.
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However, G cannot be a Frobenius group. Otherwise, G = HK, where H is the Frobenius kernel
and K is the Frobenius complement, and T (G) = {π(H), π(K)}.

1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we have H = S 2 × S 3 × S 5,
where S i E G and S i ∈ S yli(G) for i = 2, 3, 5. Therefore, |K|||Aut(S 5)|. However, since 19||K| and
|Aut(S 5)||5 − 1 = 4, we have a contradiction.

2) If 2 ∈ π(K), then, by the given condition, the Sylow 19-subgroup S 19 of G is normal in G and
has order 19. If we let the Sylow 5-subgroup of G act on S 19, we obtain an element of order 95 in G,
which contradicts πpm(M) = {19}. Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, t(G) = 2 and G has a normal series 1 E H E K E G
such that π(K/H) = π2(G) and π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 27 · 35 · 5, we
have 19 ∈ π2(G), which means K contains an element of order 19. If we let the 19-order element in
K act on the Sylow 2-subgroup of H or the Sylow 3-subgroup of H, we will obtain a contradiction.
Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series 1 E H E K EG
such that π(H) ∪ π(G/K) ⊆ π1(G), H is a nilpotent group, G/K is a solvable π1(G)-group, and K/H is
a nonabelian simple group. Since m1(G) = m1(M) = 27 · 35 · 5, we have t(G) ≥ 2, which implies that
π(H) ∪ π(G/K) ⊆ {2, 3, 5} and 19 ∈ π(K/H). Similar to Case 1, we can prove that H = 1, and thus G
has a normal nonabelian simple subgroup K such that π(G/K) ⊆ π1(G) = {2, 3, 5}, and 19 ∈ π(K). If
|π(K)| = 3, then K is a simple K3-group. According to [18], the orders of all simple K3-groups do not
contain the prime factor 19, which leads to a contradiction. Therefore, |π(K)| ≥ 4. If |π(K)| ≥ 4, then
t(K) ≥ 2 since m1(G) = m1(M) = 23 · 3 · 5 and πpm(M) = {19}. By examining Tables 2–4 in [4] and
using the condition πpm(M) = {19}, we can conclude that K can only be one of the following groups:
L2(19), L3(7), U3(8), J1, J3, or HN.

If K � L2(19), then |K| = 22 · 32 · 5 · 19. Since m1(G) = 27 · 35 · 5 and m1(K) = 22 · 5, we
have 25·33||G/K|||Out(L2(19)| = 2, which leads to a contradiction. Therefore, K is not isomorphic to
L2(19). Similarly, K is not isomorphic to J1.

If K � L3(7), then |K| = 25 · 32 · 73 · 19. However, in this case m1(K) = 25 · 32 · 73, which contradicts
m1(G) = 27 · 35 · 5. Therefore, K is not isomorphic to L3(7). Similarly, K is not isomorphic to U3(8)
and HN.

Thus, we have K � J3, which implies 1 E J3 E G. In this case, it is clear that CG(J3) = 1 and
|Out(J3)| = 2. Therefore, we either have G � J3 or G � Aut(J3). If G � Aut(J3), then we evidently
have that m1(G) > m1(J3) = m1(M), which contradicts our assumption. Hence, G � J3.

Case 4. M � J4(221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43).
In this case, we have m1(G) = m1(M) = 221 · 33 · 5 · 7 · 113 and πpm(M) = {43}. Since m1(G) =

m1(M) = 221 · 33 · 5 · 7 · 113, we have that t(G) ≥ 2 according to Lemma 2.1. Thus, the structure of G
is as follows:

1) G is a Frobenius group or a 2-Frobenius group;
2) G has a normal series 1EHEKEG, with H being a nilpotent π1(G)-group, G/K being a solvable

π1(G)-group, and K/H being a nonabelian simple group.
However, G cannot be a Frobenius group. Otherwise, G = HK, where H is the Frobenius kernel

and K is the Frobenius complement, and T (G) = {π(H), π(K)}.
1) If 2 ∈ π(H), then π(H) = π1(G). Since H is a nilpotent group, we have H = S 2×S 3×S 5×S 7×S 11,

where S i EG and S i ∈ S yli(G) for i = 2, 3, 5, 7, 11. Therefore, |K|||Aut(S 5)|. However, since 43||K| and
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|Aut(S 5)||5 − 1 = 4, we have a contradiction.
2) If 2 ∈ π(K), then, by the given condition, the Sylow 43-subgroup S 43 of G is normal in G and

has order 43. If we let the Sylow 5-subgroup of G act on S 43, we obtain an element of order 215 in G,
which contradicts πpm(M) = {43}. Therefore, G is not a Frobenius group.

G is also not a 2-Frobenius group. Otherwise, t(G) = 2 and G has a normal series 1 E H E K E G
such that π(K/H) = π2(G) and π(H) ∪ π(G/K) = π1(G). Since m1(G) = m1(M) = 221 · 33 · 5 · 7 · 113,
we have 43 ∈ π2(G), which means K contains an element of order 43. If we let the 43-order element
in K act on the Sylow 2-subgroup of H or the Sylow 3-subgroup of H, we will obtain a contradiction.
Therefore, G is not a 2-Frobenius group.

According to Lemma 2.1(2), the structure of G is as follows: G has a normal series 1EHEKEG such
that π(H)∪π(G/K) ⊆ π1(G), where H is a nilpotent group, G/K is a solvable π1(G)-group, and K/H is
a nonabelian simple group. Since m1(G) = m1(M) = 221 · 33 · 5 · 7 · 113, we have t(G) ≥ 2. Therefore,
π(H) ∪ π(G/K) ⊆ {2, 3, 5, 7, 11} and 43 ∈ π(K/H). Similar to Case 1, we can prove that H = 1,
implying that G has a normal nonabelian simple subgroup K with π(G/K) ⊆ π1(G) = {2, 3, 5, 7, 11}
and 43 ∈ π(K). If |π(K)| = 3, then K is a simple K3-group. According to [18], the order of all simple
K3-groups does not contain the prime factor 43. Hence, |π(K)| ≥ 4. If |π(K)| ≥ 4, then considering that
m1(G) = m1(M) = 221 ·33 ·5 ·7 ·113 and πpm(M) = {43}, we have t(K) ≥ 2. By examining Tables 2 and 4
in [4] and using the condition πpm(M) = {43}, we conclude that K can only be one of the following
groups: L2(43), U3(7), or J4.

If K � L2(43), then |K| = 22 · 3 · 7 · 11 · 43. Since m1(G) = 221 · 33 · 5 · 113 and m1(K) = 22 · 11,
we have 219||G/K|||Out(L2(43)| = 2, which leads to a contradiction. Therefore, K is not isomorphic to
L2(43). Similarly, K is not isomorphic to U3(7).

Hence, we have K � J4, and we have 1 E J4 E G. It is evident that CG(J4) = 1 and Out(J4) = 1.
Thus, we conclude that G � J4. �

4. Conclusions

From the above proof, we can see that the even-order components and the order of centralizers are
effective in characterizing Janko finite simple groups, and they have a profound impact on the structure
of finite groups. However, due to limitations in length and time, this paper has not verified whether this
method is equally effective for more simple groups. Currently, this series of work is progressing in an
orderly manner. However, due to the variety of simple groups, it is necessary to obtain more effective
results to prove the following conjecture:

Conjecture. Let G be a finite group, and M a simple group. Then, G is isomorphic to M if and only if:
(1) m1(G) = m1(M);
(2) πpm(G) = πpm(M).

Note. In the proof of this conjecture, readers may focus primarily on proving that πpm(G) is a prime
number, or deducing from πpm(G) that the group has a corresponding isolated point.
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