Research article

On the fourth power mean of one special two-term exponential sums

  • Received: 17 August 2022 Revised: 14 January 2023 Accepted: 28 January 2023 Published: 06 February 2023
  • MSC : 11L03, 11L05

  • The main purpose of this paper is using the elementary methods and the number of the solutions of some congruence equations to study the calculating problem of the fourth power mean of one special two-term exponential sums, and give an exact calculating formula for it.

    Citation: Wenpeng Zhang, Yuanyuan Meng. On the fourth power mean of one special two-term exponential sums[J]. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434

    Related Papers:

  • The main purpose of this paper is using the elementary methods and the number of the solutions of some congruence equations to study the calculating problem of the fourth power mean of one special two-term exponential sums, and give an exact calculating formula for it.



    加载中


    [1] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [2] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [3] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. (Engl. Ser.), 38 (2022), 510–518. http://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [4] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [5] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
    [6] T. T. Wang, W. P. Zhang, On the fourth and sixth power mean of mixed exponential sums, Sci. Sin. Math., 41 (2011), 265–270. https://doi.org/10.1360/012010-753 doi: 10.1360/012010-753
    [7] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer, 1976.
    [8] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer, 1982.
    [9] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 73–80.
    [10] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–129.
    [11] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [12] L. Chen, On the classical Gauss sums and their properties, Symmetry, 10 (2018), 625. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625
    [13] W. P. Zhang, X. D. Yuan, On the classical Gauss sums and their some new identities, AIMS Mathematics, 7 (2022), 5860–5870. https://doi.org/10.3934/math.2022325 doi: 10.3934/math.2022325
    [14] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204
    [15] A. Weil, Basic Number Theory, Heidelberg: Springer Berlin, 1995.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1216) PDF downloads(69) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog