Research article Special Issues

Dual Brunn-Minkowski inequality for $ C $-star bodies

  • Received: 18 January 2024 Revised: 05 February 2024 Accepted: 18 February 2024 Published: 23 February 2024
  • MSC : 52A30, 52A39, 52A40

  • In this paper, we introduced the concept of $ C $-star bodies in a fixed pointed closed convex cone $ C $ and studied the dual mixed volume for $ C $-star bodies. For $ C $-star bodies, we established the corresponding dual Brunn-Minkowski inequality, dual Minkowski inequality, and dual Aleksandrov-Fenchel inequality. Moveover, we found that the dual Brunn-Minkowski inequality for $ C $-star bodies can strengthen the Brunn-Minkowski inequality for $ C $-coconvex sets.

    Citation: Xudong Wang, Tingting Xiang. Dual Brunn-Minkowski inequality for $ C $-star bodies[J]. AIMS Mathematics, 2024, 9(4): 7834-7847. doi: 10.3934/math.2024381

    Related Papers:

  • In this paper, we introduced the concept of $ C $-star bodies in a fixed pointed closed convex cone $ C $ and studied the dual mixed volume for $ C $-star bodies. For $ C $-star bodies, we established the corresponding dual Brunn-Minkowski inequality, dual Minkowski inequality, and dual Aleksandrov-Fenchel inequality. Moveover, we found that the dual Brunn-Minkowski inequality for $ C $-star bodies can strengthen the Brunn-Minkowski inequality for $ C $-coconvex sets.



    加载中


    [1] S. Artstein-Avidan, S. Sadovsky, K. Wyczesany, A zoo of dualities, J. Geom. Anal., 33 (2023). https://doi.org/10.1007/s12220-023-01302-0
    [2] H. Federer, Geometric Measure Theory, Berlin: Springer Press, 1969. http://dx.doi.org/10.1007/978-3-642-62010-2
    [3] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342 (1994), 435–445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7 doi: 10.1090/S0002-9947-1994-1201126-7
    [4] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math., 140 (1994), 435–447. https://doi.org/10.2307/2118606 doi: 10.2307/2118606
    [5] R. J. Gardner, S. Vassallo, Stability of inequality in the dual Brunn-Minkowski theory, J. Math. Anal. Appl., 231 (1999), 568–587. http://dx.doi.org/10.1006/jmaa.1998.6254 doi: 10.1006/jmaa.1998.6254
    [6] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405. http://dx.doi.org/10.1090/S0273-0979-02-00941-2 doi: 10.1090/S0273-0979-02-00941-2
    [7] R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math., 149 (1999), 691–703. https://doi.org/10.2307/120978 doi: 10.2307/120978
    [8] Y. Huang, E. Lutwak, D. Yang, G. Y. Zhang, Geomtric measures in the dual Brunn-Minkowski theory and their assciated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6
    [9] A. Khovanskiĭ, V. Timorin, On the theory of coconvex bodies, Discrete Comput. Geom., 52 (2014), 806–823. http://dx.doi.org/10.1007/s00454-014-9637-y doi: 10.1007/s00454-014-9637-y
    [10] E. Lutwak, Dual mixed volumes, Pac. J. Math., 58 (1975), 531–538. http://dx.doi.org/10.2140/pjm.1975.58.531
    [11] E. Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl., 119 (1979), 139–148. http://dx.doi.org/10.1007/BF02413172 doi: 10.1007/BF02413172
    [12] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232–261. http://dx.doi.org/10.1016/0001-8708(88)90077-1 doi: 10.1016/0001-8708(88)90077-1
    [13] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–391. http://dx.doi.org/10.1112/plms/s3-60.2.365 doi: 10.1112/plms/s3-60.2.365
    [14] E. Lutwak, Chapter 1.5-selected affine isoperimetric inequalities, Handbook convex geo., 1993,153–176. http://dx.doi.org/10.1016/B978-0-444-89596-7.50010-9
    [15] E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed Volumes and the Minkowski Problem, J. Differ. Geom., 38 (1993), 131–150. http://dx.doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097
    [16] E. Lutwak, The Brunn-Minkowski-Firey Theory II: Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. http://dx.doi.org/10.1006/aima.1996.0022 doi: 10.1006/aima.1996.0022
    [17] G. S. Leng, The Brunn-Minkowski inequality for volume differrences, Adv. in Appl. Math., 32 (2004), 615–624. https://doi.org/10.1016/S0196-8858(03)00095-2 doi: 10.1016/S0196-8858(03)00095-2
    [18] L. Losonczi, Z. Páles, Inequalities for indefinite forms, J. Math. Anal. Appl., 205 (1997), 148–156. http://dx.doi.org/10.1006/jmaa.1996.5188 doi: 10.1006/jmaa.1996.5188
    [19] Q. R. Li, W. M. Sheng, X. J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893–923. https://doi.org/10.4171/JEMS/936 doi: 10.4171/JEMS/936
    [20] E. Lutwak, D. Yang, G. Y. Zhang, $L_{p}$ dual curvature measures, Adv. Math., 329 (2018), 85–132. https://doi.org/10.1016/j.aim.2018.02.011 doi: 10.1016/j.aim.2018.02.011
    [21] N. Li, D. P. Ye, B. C. Zhu, The dual Minkowski problem for unbounded closed convex sets, Math. Ann., 388 (2024), 2001–2039. https://doi.org/10.1007/s00208-023-02570-5 doi: 10.1007/s00208-023-02570-5
    [22] E. Milman, L. Rotem, Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math., 262 (2014), 867–908. http://dx.doi.org/10.1016/j.aim.2014.05.023. doi: 10.1016/j.aim.2014.05.023
    [23] A. Rashkovskii, Copolar convexity, Ann. Pol. Math., 120 (2017), 83–95. http://dx.doi.org/10.4064/ap170217-4-9
    [24] R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2 Eds., Combridge: Cambridge Univ. Press, 2014.
    [25] R. Schneider, A Brunn-Minkowski theory for coconvex sets of finite volume, Adv. Math., 332 (2018), 199–234. http://dx.doi.org/10.1016/j.aim.2018.05.018 doi: 10.1016/j.aim.2018.05.018
    [26] R. Schneider, Minkowski type theorems for convex sets in cones, Acta Math. Hung., 164 (2021), 282–295. http://dx.doi.org/10.1007/s10474-020-01119-1 doi: 10.1007/s10474-020-01119-1
    [27] R. Schneider, Pseudo-cones, Adv. Appl. Math., 155 (2024). http://dx.doi.org/10.1016/j.aam.2023.102657
    [28] R. Schneider, A weighted Minkowski theorem for pseudo-cones, arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2310.19562
    [29] Y. Xu, J. Li, G. S. Leng, Dualities and endomorphisms of pseudo-cones, Adv. Appl. Math., 142 (2023), 102434. https://doi.org/10.1016/j.aam.2022.102434 doi: 10.1016/j.aam.2022.102434
    [30] J. Yang, D. P. Ye, B. C. Zhu, On the $L_p$ Brunn-Minkowski theory and the $L_p$ Minkowski problem for $C$-coconvex sets, Int. Math. Res. Not., 2023 (2023), 6252–6290. https://doi.org/10.1093/imrn/rnab360 doi: 10.1093/imrn/rnab360
    [31] G. Y. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc., 345 (1994), 777–801. https://doi.org/10.1090/S0002-9947-1994-1254193-9 doi: 10.1090/S0002-9947-1994-1254193-9
    [32] G. Y. Zhang, Intersection bodies and the Busemann-Petty inequalities in $\mathbb{R}^4$, Ann of Math., 140 (1994), 331–346. https://doi.org/10.2307/2118603 doi: 10.2307/2118603
    [33] G. Y. Zhang, A positive solution to the Busemann-Petty problem in $\mathbb{R}^4$, Ann. of Math., 149 (1999), 535–543. https://doi.org/10.2307/120974 doi: 10.2307/120974
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1049) PDF downloads(84) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog