Citation: Abdelkader Laiadi, Abdelkrim Merzougui. Free surface flows over a successive obstacles with surface tension and gravity effects[J]. AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316
[1] | M. B. Abd-el-Malek, S. N. Hanna and M. T. Kamel, Approximate solution of gravity flow from a uniform channel over triangular bottom for large Froude number, Appl. Math. Model., 15 (1991), 25-32. doi: 10.1016/0307-904X(91)90077-3 |
[2] | G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967. |
[3] | S. R. Belward, Fully non-linear flow over successive obstacles: Hydraulic fall and supercritical flows, J. Austral. Math. Soc. Ser. B, 40 (1999), 447-458. doi: 10.1017/S0334270000010535 |
[4] | S. R. Belward and L. K. Forbes, Fully non-linear two-layer flow over arbitrary topography, J. Eng. Math., 27 (1993), 419-432. doi: 10.1007/BF00128764 |
[5] | B. J. Binder, Steady two-dimensional free surface flow past disturbances in an open channel: Solutions of the Korteweg-De Vries equation and analysis of the weakly nonlinear phase space, Fluids, 4 (2019), 24. Available from: https://www.mdpi.com/2311-5521/4/1/24. |
[6] | B. J. Binder, M. G. Blyth and S. W. Mccue, Free-surface flow past arbitrary topography and an inverse approach for wave free solutions, IMA J. Appl. Math., 78 (2013), 685-696. doi: 10.1093/imamat/hxt015 |
[7] | B. J. Binder, F. Dias and J. M. Vanden-Broeck, Influence of rapid changes in a channel bottom on free surface flows, IMA J. Appl. Math., 73 (2008), 254-273. |
[8] | B. J. Binder, F. Dias and J. M. Vanden-Broeck, Steady free surface flow past an uneven channel bottom, Theor. Comput. Fluid Dyn., 20 (2006), 125-144. doi: 10.1007/s00162-006-0017-y |
[9] | B. J. Binder, J. M. Vanden-Broeck and F. Dias, Forced solitary waves and fronts past submerged obstacles, Chaos, 15 (2005), 037106. |
[10] | F. Dias and J. M. Vanden-Broeck, Generalised critical free surface flows, J. Eng. Math., 42 (2002), 291-301. doi: 10.1023/A:1016111415763 |
[11] | F. Dias and J. M. Vanden-Broeck, Open channel flows with submerged obstructions, J. Fluid. Mech., 206 (1989), 155-170. doi: 10.1017/S0022112089002260 |
[12] | L. K. Forbes, Free-surface flow over a semicircular obstruction, including the influence of gravity and surface tension, J. Fluid. Mech., 127 (1983), 283-297. doi: 10.1017/S0022112083002724 |
[13] | L. K. Forbes and L. W. Schwartz, Free-surface flow over a semicircular obstruction, J. Fluid. Mech., 114 (1982), 299-314. doi: 10.1017/S0022112082000160 |
[14] | S. Grandison and J. M. Vanden-Broeck, Truncation approximations for gravity-capillary free surface flows, J. Eng. Math., 54 (2006), 89-97. doi: 10.1007/s10665-005-7719-9 |
[15] | P. Guayjarernpanishk and J. Asavanant, Free-surface flows over an obstacle: Problem revisited, In: Bock H., Hoang X., Rannacher R., Schlöder J. Editors, Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg, (2012), 139-151. |
[16] | S. N. Hanna, Influence of surface tension on free surface flow over a polygonal and curved obstruction, J. Comput. Appl. Math., 51 (1994), 357-374. doi: 10.1016/0377-0427(92)00111-L |
[17] | R. J. Holmes and G. C. Hoking, A note on waveless subcritical flow past symmetric bottom topography, Euro. J. Appl. Math., 28 (2016), 562-575. |
[18] | R. J. Holmes, G. C. Hoking, L. K. Forbes, et al. Waveless subcritical flow past symmetric bottom topography, Euro. J. Appl. Math., 24 (2013), 213-230. doi: 10.1017/S0956792512000381 |
[19] | A. C. King and M. I. G. Bloor, Free-surface flow of a stream obstructed by an arbitrary bed topography, Q. J. Mech. Appl. Math., 43 (1990), 87-106. doi: 10.1093/qjmam/43.1.87 |
[20] | C. Lustri, S. W. Mccue and B. J. Binder, Free surface flow past topography: A beyond-all-orders approach, Euro. J. Appl. Math., 23 (2012), 441-467. doi: 10.1017/S0956792512000022 |
[21] | A. Merzougui and A. Laiadi, Free surface flow over a triangular depression, TWMS J. App. Eng. Math., 4 (2014), 67-73. |
[22] | R. Pethiyagoda, T. J. Moroney and S. W. Mccue, Efficient computation of two-dimensional steady free surface flows, Int. J. Numer. Meth. Fluids, (2017), 1-20. |
[23] | L. J. Pratt, On non-linear flow with multiple obstructions, J. Atmos. Sci., 41 (1984), 1214-1225. doi: 10.1175/1520-0469(1984)041<1214:ONFWMO>2.0.CO;2 |
[24] | J. M. Vanden-Broeck, Gravity-Capillary Free Surface Flows, New York: Cambridge University Press, 2010. |