Research article Special Issues

Rigidity results for closed vacuum static spaces

  • Received: 14 August 2023 Revised: 09 October 2023 Accepted: 15 October 2023 Published: 23 October 2023
  • MSC : 53C21, 53C25

  • In this paper we studied rigidity results for closed vacuum static spaces. By using the maximum principle, we achieved rigidity theorems under some pointwise inequalities and showed that the squared norm of the Ricci curvature tensor was discrete.

    Citation: Guangyue Huang, Botao Wang. Rigidity results for closed vacuum static spaces[J]. AIMS Mathematics, 2023, 8(12): 28728-28737. doi: 10.3934/math.20231470

    Related Papers:

  • In this paper we studied rigidity results for closed vacuum static spaces. By using the maximum principle, we achieved rigidity theorems under some pointwise inequalities and showed that the squared norm of the Ricci curvature tensor was discrete.



    加载中


    [1] L. Ambrozio, On static three-manifolds with positive scalar curvature, J. Differential Geom., 107 (2017), 1–45. https://doi.org/10.4310/jdg/1505268028 doi: 10.4310/jdg/1505268028
    [2] J. P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math., 30 (1975), 1–41.
    [3] H. D. Cao, Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc., 364 (2012), 2377–2391.
    [4] H. D. Cao, Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J., 162 (2013), 1149–1169. https://doi.org/10.1215/00127094-2147649 doi: 10.1215/00127094-2147649
    [5] G. Catino, On conformally flat manifolds with constant positive scalar curvature, Proc. Amer. Math. Soc., 144 (2016), 2627–2634.
    [6] Q. M. Cheng, G. X. Wei, 3-dimensional complete vacuum static spaces, preprint paper, 2023. https://doi.org/10.48550/arXiv.2307.05989
    [7] D. M. DeTurck, H. Goldschmidt, Regularity theorems in Riemannian geometry. Ⅱ. Harmonic curvature and the Weyl tensor, Forum Math., 1 (1989), 377–394. https://doi.org/10.1515/form.1989.1.377 doi: 10.1515/form.1989.1.377
    [8] A. Fischer, J. Marsden, Deformations of the scalar curvature, Duke Math. J., 42 (1975), 519–547. https://doi.org/10.1215/S0012-7094-75-04249-0 doi: 10.1215/S0012-7094-75-04249-0
    [9] H. P. Fu, J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47 (2018), 581–605.
    [10] S. Hawkins, G. Eiiis, The Large Scale Structure of Space-Time, Cambridge: Cambridge University Press, 1975.
    [11] G. Y. Huang, Y. Wei, The classification of $(m, \rho)$-quasi-Einstein manifolds, Ann. Global Anal. Geom., 44 (2013), 269–282. https://doi.org/10.1007/s10455-013-9366-0 doi: 10.1007/s10455-013-9366-0
    [12] G. Y. Huang, B. Q. Ma, Riemannian manifolds with harmonic curvature, Colloq. Math., 145 (2016), 251–257. https://doi.org/10.4064/cm6826-4-2016 doi: 10.4064/cm6826-4-2016
    [13] G. Y. Huang, Integral pinched gradient shrinking $\rho$-Einstein solitons, J. Math. Anal. Appl., 451 (2017), 1045–1055. https://doi.org/10.1016/j.jmaa.2017.02.051 doi: 10.1016/j.jmaa.2017.02.051
    [14] G. Y. Huang, Rigidity of Riemannian manifolds with positive scalar curvature, Ann. Global Anal. Geom., 54 (2018), 257–272. https://doi.org/10.1007/s10455-018-9600-x doi: 10.1007/s10455-018-9600-x
    [15] G. Y. Huang, F. Q. Zeng, The classification of static spaces and related problems, Colloq. Math., 151 (2018), 189–202. http://dx.doi.org/10.4064/cm7035-2-2017 doi: 10.4064/cm7035-2-2017
    [16] G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom., 21 (1985), 47–62.
    [17] S. Hwang, G. Yun, Vacuum static spaces with vanishing of complete divergence of Weyl tensor, J. Geom. Anal., 31 (2021), 3060–3084. https://doi.org/10.1007/s12220-020-00384-4 doi: 10.1007/s12220-020-00384-4
    [18] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japanm, 34 (1982), 665–675. https://doi.org/10.2969/jmsj/03440665 doi: 10.2969/jmsj/03440665
    [19] J. Kim, J. Shin, Four-dimensional static and related critical spaces with harmonic curvature, Pacific J. Math., 295 (2018), 429–462. https://doi.org/10.2140/pjm.2018.295.429 doi: 10.2140/pjm.2018.295.429
    [20] J. Lafontaine, On the geometry of a generalization of Obata's differential equation, J. Math. Pures Appl., 62 (1983), 63–72.
    [21] B. Q. Ma, G. Y. Huang, Rigidity of complete noncompact Riemannian manifolds with harmonic curvature, J. Geom. Phys., 124 (2018), 233–240. https://doi.org/10.1016/j.geomphys.2017.11.004 doi: 10.1016/j.geomphys.2017.11.004
    [22] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math., 96 (1974), 207–213. https://doi.org/10.2307/2373587 doi: 10.2307/2373587
    [23] J. Qing, W. Yuan, A note on static spaces and related problems, J. Geom. Phys., 74 (2013), 18–27. https://doi.org/10.1016/j.geomphys.2013.07.003 doi: 10.1016/j.geomphys.2013.07.003
    [24] J. Qing, W. Yuan, On scalar curvature rigidity of vacuum static spaces, Math. Ann., 365 (2016), 1257–1277. https://doi.org/10.1007/s00208-015-1302-0 doi: 10.1007/s00208-015-1302-0
    [25] J. Ye, Closed vacuum static spaces with zero radial Weyl curvature, J. Geom. Anal., 33 (2023), 64. https://doi.org/10.1007/s12220-022-01119-3 doi: 10.1007/s12220-022-01119-3
    [26] G. Yun, S. Hwang, Rigidity of generalized Bach-flat vacuum static spaces, J. Geom. Phys., 121 (2017), 195–205. https://doi.org/10.1016/j.geomphys.2017.07.016 doi: 10.1016/j.geomphys.2017.07.016
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(926) PDF downloads(55) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog