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1. Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold with the metric g and the dimension n ≥ 3.
If there exists a non-constant smooth function f such that

fi j = f
(
Ri j −

1
n − 1

Rgi j

)
, (1.1)

then (Mn, g, f ) is called a vacuum static space (for more backgrounds, see [8, 10, 19, 23]). Here fi j,
Ri j and R denote components of the Hessian of f , the Ricci curvature tensor and the scalar curvature,
respectively. In [8], Fischer-Marsden proposed the following conjecture: The standard spheres are
the only n-dimensional compact vacuum static spaces. In [18], Kobayashi gave a classification for
n-dimensional complete vacuum static spaces that are locally conformally flat. On the other hand, he
and Lafontaine [20] also provided some counterexamples for the above conjecture.

In fact, according to the second Bianchi identity, any vacuum static space has constant scalar
curvature. Moreover, Bourguignon [2] and Fischer-Marsden [8] have proved that the set f −1(0) has
the measure zero and the set f −1(0) is a totally geodesic regular hypersurface.

Let R̊i j = Ri j −
R
n gi j be the trace-free Ricci curvature, then (1.1) can be written as

fi j = f R̊i j −
R

n(n − 1)
f gi j, (1.2)
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which gives

∆ f = −
R

n − 1
f .

It is well known that the Weyl curvature tensor W and the Riemannian curvature tensor is related by

Ri jkl = Wi jkl +
1

n − 2
(Rikg jl − Rilg jk + R jlgik − R jkgil) −

R
(n − 1)(n − 2)

(gikg jl − gilg jk).

In this paper, we consider rigidity results for closed vacuum static spaces. By using the maximum
principle, some rigidity theorems are obtained under some pointwise inequalities and show that the
squared norm of the Ricci curvature tensor is discrete.

Theorem 1.1. Let (Mn, g, f ) be a closed vacuum static space with the positive scalar curvature and
flWli jk = 0 (that is, zero radial Weyl curvature), where n ≥ 4. If

(n − 1)(n − 2)
2

|W |2 + n(n − 1)|R̊i j|
2 ≤ R2, (1.3)

then it must be of Einstein as long as there exists a point such that the inequality in (1.3) is strict.

Next, by substituting (1.3) with a stronger condition, we can obtain the following characterizations:

Theorem 1.2. Let (Mn, g, f ) be a closed vacuum static space with the positive scalar curvature and
flWli jk = 0 (that is, zero radial Weyl curvature), where n ≥ 4. If√

(n − 1)(n − 2)
2

|W | +
√

n(n − 1)|R̊i j| ≤ R, (1.4)

then it must be of Einstein or a Riemannian product S1 × Sn−1. In particular, it must be of Einstein as
long as there exists a point such that the inequality in (1.4) is strict.

When W = 0, the formula (2.1) shows that the Einstein metric with the positive scalar curvature
must be of positive constant sectional curvature. Hence, Theorem 1.2 gives the following:

Corollary 1.3. Let (Mn, g, f ) be a closed vacuum static space with the positive scalar curvature and
W = 0. If

|R̊i j| ≤
R

√
n(n − 1)

, (1.5)

then it must be of either Sn with positive constant sectional curvature or a Riemannian product S1×Sn−1.

In particular, when n = 3, we have W = 0 automatically and Corollary 1.3 yields the following
result (which has been proved by Ambrozio in [1, Theorem A]) immediately:

Corollary 1.4. Let (M3, g, f ) be a closed vacuum static space with the positive scalar curvature. If

|R̊i j| ≤
1
√

6
R, (1.6)

then it must be of either S3 with positive constant sectional curvature or a Riemannian product S1×S2.

AIMS Mathematics Volume 8, Issue 12, 28728–28737.



28730

Remark 1.1. It is easy to see that the condition (1.4) is stronger than (1.3). On the other hand, one
can check that when Mn = S1 × Sn−1, we have |R̊i j| =

R
√

n(n−1)
, and when Mn = Sn, we have |R̊i j| = 0.

Hence, for closed vacuum static spaces with W = 0, Corollary 1.3 gives the following pinching results:
If 0 ≤ |R̊i j| ≤

R
√

n(n−1)
, then |R̊i j| = 0 or |R̊i j| =

R
√

n(n−1)
. That is, the value of |R̊i j| is discrete.

Remark 1.2. Recently, by a generalized maximum principle, Cheng and Wei [6] considered the
classifications for three-dimensional complete vacuum static spaces with constant squared norm of
Ricci curvature tensor. For the classifications for closed cases, see [17, 24–26] and the references
therein.

2. Some necessary lemmas

It is well known that the Weyl curvature tensor and the Cotton tensor are defined respectively as
follows:

Ri jkl = Wi jkl +
1

n − 2
(Rikg jl − Rilg jk + R jlgik − R jkgil)

−
R

(n − 1)(n − 2)
(gikg jl − gilg jk)

= Wi jkl +
1

n − 2
(R̊ikg jl − R̊ilg jk + R̊ jlgik − R̊ jkgil)

+
R

n(n − 1)
(gikg jl − gilg jk) (2.1)

and

Ci jk = R̊i j,k − R̊ik, j +
n − 2

2n(n − 1)
(R,kgi j − R, jgki). (2.2)

From (2.2), it is easy to see that Ci jk is skew-symmetric with respect to the last two indices; that is,
Ci jk = −Cik j and is trace-free in any two indices:

Ciik = 0 = Ci ji. (2.3)

In addition,

Ci jk +C jki +Cki j = 0, (2.4)

and in using the Ricci identity, one has

Cilk,l = Ckli,l, Ci jl,l = C jil,l, Cli j,l = 0. (2.5)

Associated to (1.1), there is a (0.3)-tensor Ti jk, which can be written as

Ti jk =
n − 1
n − 2

(R̊ik f j − R̊i j fk) +
1

n − 2
(gikR̊ jl − gi jR̊kl) fl. (2.6)

A direct calculation enables us to observe that T satisfies the following properties:

Ti jk = −Tik j, Tiik = 0 = Ti ji,
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Ti jk + T jki + Tki j = 0.

Moreover, the tensor Ci jk is related to T by (see [3, 4, 11, 15, 25]):

fCi jk = Ti jk + flWli jk. (2.7)

Lemma 2.1. Let (Mn, g, f ) be a vacuum static space with f satisfying (1.2). We have

∆ fi j = 2 f R̊mkWmi jk +
2n

n − 2
f R̊imR̊m j +

R2

n(n − 1)2 f gi j

−
2

n − 2
f |R̊kl|

2gi j +
1

n − 1
R f R̊i j + fmC jmi + fmR̊mi, j (2.8)

and

f∆R̊i j = 2 f R̊mkWmi jk +
2n

n − 2
f R̊imR̊m j −

2
n − 2

f |R̊kl|
2gi j

+ fm(C jmi +Cim j) +
2R

n − 1
f R̊i j − fkR̊i j,k. (2.9)

Proof. By the Ricci identity, we have

fi j,kl = fik, jl + ( fmRmi jk),l
= fik, jl + fmlRmi jk + fmRmi jk,l

= fik,l j + fmkRmi jl + fimRmk jl + fmlRmi jk + fmRmi jk,l

= fkl,i j + ( fmRmkil), j + fmkRmi jl

+ fimRmk jl + fmlRmi jk + fmRmi jk,l

= fkl,i j + fm jRmkil + fmkRmi jl + fimRmk jl

+ fmlRmi jk + fmRmi jk,l + fmRmkil, j,

which gives

∆ fi j = fi j,kk = (∆ f ),i j + fm jRmi + 2 fmkRmi jk + fimRm j + fmRmi jk,k + fmRmi, j. (2.10)

Since the scalar curvature R is constant, then

(∆ f ),i j = −
1

n − 1
R f
[
R̊i j −

R
n(n − 1)

gi j

]
,

fm jRmi =
[
f R̊m j −

R
n(n − 1)

f gm j

](
R̊mi +

R
n

gmi

)
= f R̊imR̊m j +

n − 2
n(n − 1)

R f R̊i j −
R2

n2(n − 1)
f gi j,

which is equivalent to

fm jR̊mi = f R̊imR̊m j −
R

n(n − 1)
f R̊i j,
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fmkRmi jk = fmk

[
Wmi jk +

1
n − 2

(R̊m jgik − R̊mkgi j + R̊ikgm j − R̊i jgmk)

+
R

n(n − 1)
(gm jgik − gmkgi j)

]
= f R̊mkWmi jk +

1
n − 2

[
fikR̊k j + f jkR̊ki − fmkR̊mkgi j

−(∆ f )R̊i j

]
+

R
n(n − 1)

[ fi j − (∆ f )gi j]

= f R̊mkWmi jk +
1

n − 2

[
2 f R̊imR̊m j −

2R
n(n − 1)

f R̊i j

− f |R̊kl|
2gi j +

R
n − 1

f R̊i j

]
+

R
n(n − 1)

[
f R̊i j +

R
n

f gi j

]
.

In particular, by virtue of the second Bianchi identity, we have

R jkim,m = Ri j,k − Rik, j = Ci jk,

where, in the last equality, we used the formula (2.2) since the scalar curvature R is constant. Thus, we
obtain

∆ fi j = −
1

n − 1
R
[
f R̊i j −

R
n(n − 1)

f gi j

]
+ 2 f R̊imR̊m j

+
2(n − 2)
n(n − 1)

R f R̊i j −
2R2

n2(n − 1)
f gi j + 2 f R̊mkWmi jk

+
2

n − 2

[
2 f R̊imR̊m j −

2
n(n − 1)

R f R̊i j − f |R̊kl|
2gi j +

R
n − 1

f R̊i j

]
+

2R
n(n − 1)

[
f R̊i j +

R
n

f gi j

]
+ fmC jmi + fmR̊mi, j

=2 f R̊mkWmi jk +
2n

n − 2
f R̊imR̊m j +

R2

n(n − 1)2 f gi j −
2

n − 2
f |R̊kl|

2gi j

+
1

n − 1
R f R̊i j + fmC jmi + fmR̊mi, j, (2.11)

and the formula (2.8) is achieved.
From (1.2), we have

f R̊i j,k = fi j,k − fkR̊i j +
R

n(n − 1)
fkgi j, (2.12)

flR̊i j,k + f R̊i j,kl = fi j,kl − fklR̊i j − fkR̊i j,l +
R

n(n − 1)
fklgi j. (2.13)

Therefore,

f∆R̊i j = f R̊i j,kk = ∆ fi j − (∆ f )R̊i j − 2 fkR̊i j,k +
R

n(n − 1)
(∆ f )gi j

=2 f R̊mkWmi jk +
2n

n − 2
f R̊imR̊m j −

2
n − 2

f |R̊kl|
2gi j

+ fm(C jmi +Cim j) +
2R

n − 1
f R̊i j − fkR̊i j,k. (2.14)

The proof of Lemma 2.1 is completed. □
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Lemma 2.2. Let (Mn, g, f ) be a vacuum static space with f satisfying (1.2). If flWli jk = 0 (that is, zero
radial Weyl curvature), then

1
2

f∆|R̊i j|
2 +

1
2
∇ f∇|R̊i j|

2 = f R̊2
i j,k + 2 f Wmi jkR̊i jR̊mk +

2n
n − 2

f R̊imR̊m jR̊ ji

+
n − 2
n − 1

f |Ci jk|
2 +

2R
n − 1

f |R̊i j|
2. (2.15)

Proof. Using (2.9), we have

1
2

f∆|R̊i j|
2 +

1
2
∇ f∇|R̊i j|

2 = f R̊2
i j,k + f R̊i j∆R̊i j + fkR̊i jR̊i j,k

= f R̊2
i j,k + 2 f Wmi jkR̊i jR̊mk +

2n
n − 2

f R̊imR̊m jR̊i j

+(C jmi +Cim j)R̊i j fm +
2R

n − 1
f |R̊i j|

2

= f R̊2
i j,k + 2 f Wmi jkR̊i jR̊mk +

2n
n − 2

f R̊imR̊m jR̊ ji

−2Ci jkR̊i j fk +
2R

n − 1
f |R̊i j|

2. (2.16)

Since flWli jk = 0, then (2.7) gives
fCi jk = Ti jk

and

fCi jkR̊i j fk =Ti jkR̊i j fk

=
[n − 1
n − 2

(R̊ik f j − R̊i j fk) +
1

n − 2
(gikR̊ jl − gi jR̊kl) fl

]
R̊i j fk

=
n

n − 2
R̊kiR̊k j fi f j −

n − 1
n − 2

|R̊i j|
2|∇ f |2. (2.17)

On the other hand,

f 2|Ci jk|
2 =|Ti jk|

2

=
∣∣∣∣n − 1
n − 2

(R̊ik f j − R̊i j fk) +
1

n − 2
(gikR̊ jl − gi jR̊kl) fl

∣∣∣∣2
= −

2n(n − 1)
(n − 2)2 R̊kiR̊k j fi f j +

2(n − 1)2

(n − 2)2 |R̊i j|
2|∇ f |2. (2.18)

Combining (2.17) and (2.18), we achieve

−2(n − 1)Ci jkR̊i j fk = (n − 2) f |Ci jk|
2.

Thus, (2.16) becomes

1
2

f∆|R̊i j|
2 +

1
2
∇ f∇|R̊i j|

2 = f R̊2
i j,k + 2 f Wmi jkR̊i jR̊mk +

2n
n − 2

f R̊imR̊m jR̊ ji

+
n − 2
n − 1

f |Ci jk|
2 +

2R
n − 1

f |R̊i j|
2, (2.19)

and the formula (2.15) is attained. □
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We also need the following lemma (see [9, 13, 14, 21]):

Lemma 2.3. For any ρ ∈ R, the following estimate holds:

∣∣∣∣ −Wi jklR̊ jlR̊ik +
ρ

n − 2
R̊i jR̊ jkR̊ki

∣∣∣∣ ≤
√

n − 2
2(n − 1)

(
|W |2 +

2ρ2

n(n − 2)
|R̊i j|

2
) 1

2
|R̊i j|

2. (2.20)

3. Proof of results

3.1. Proof of Theorem 1.1

Multiplying both sides of (2.15) with f , we have

1
2

f 2∆|R̊i j|
2 +

1
2

f∇ f∇|R̊i j|
2 = f 2R̊2

i j,k + 2 f 2Wmi jkR̊i jR̊mk +
2n

n − 2
f 2R̊imR̊m jR̊ ji

+
n − 2
n − 1

f 2|Ci jk|
2 +

2R
n − 1

f 2|R̊i j|
2. (3.1)

Since the manifold is closed, then (3.1) together with (2.20) yields

1
2

f 2∆|R̊i j|
2 +

1
2

f∇ f∇|R̊i j|
2 ≥ f 2

(
R̊2

i j,k +
n − 2
n − 1

|Ci jk|
2
)

+ 2 f 2
[ R
n − 1

−

√
n − 2

2(n − 1)

(
|W |2 +

2n
n − 2

|R̊i j|
2
) 1

2
]
|R̊i j|

2. (3.2)

Therefore, under the assumption (1.3), it follows from (3.2) that

1
2

f 2∆|R̊i j|
2 +

1
2

f∇ f∇|R̊i j|
2 ≥ f 2

(
R̊2

i j,k +
n − 2
n − 1

|Ci jk|
2
)

+2 f 2
[ R
n − 1

−

√
n − 2

2(n − 1)

(
|W |2 +

2n
n − 2

|R̊i j|
2
) 1

2
]
|R̊i j|

2

≥0, (3.3)

which shows that |R̊i j|
2 is subharmonic on Mn. Using the maximum principle, we obtain that |R̊i j| is

constant and R̊i j,k = 0. In this case, (3.3) becomes

[ R
n − 1

−

√
n − 2

2(n − 1)

(
|W |2 +

2n
n − 2

|R̊i j|
2
) 1

2
]
|R̊i j|

2 = 0. (3.4)

If there exists a point x0 such that (1.3) is strict, then from (3.4) we have |R̊i j|(x0) = 0, which with
|R̊i j| constant shows that R̊i j ≡ 0. That is, the metric is Einstein and the proof of Theorem 1.1 is
completed.
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3.2. Proof of Theorem 1.2

We recall the following inequality, which was first proved by Huisken (cf. [16, Lemma 3.4]):

|Wik jlR̊i jR̊kl| ≤

√
n − 2

2(n − 1)
|W ||R̊i j|

2 (3.5)

and
|R̊i jR̊ jkR̊ki| ≤

n − 2
√

n(n − 1)
|R̊i j|

3, (3.6)

with the equality in (3.6) at some point p ∈ M if, and only if, R̊i j can be diagonalized at p and the
eigenvalue multiplicity of R̊i j is at least n − 1 [12, 22]. Thus, from (2.15), we obtain

1
2

f 2∆|R̊i j|
2 +

1
2

f∇ f∇|R̊i j|
2 ≥ f 2

(
R̊2

i j,k +
n − 2
n − 1

|Ci jk|
2 −

√
2(n − 2)

n − 1
|W ||R̊i j|

2

−2
√

n
n − 1

|R̊i j|
3 +

2R
n − 1

|R̊i j|
2
)

= f 2
(
R̊2

i j,k +
n − 2
n − 1

|Ci jk|
2
)
+ 2 f 2

( R
n − 1

−

√
n − 2

2(n − 1)
|W | −

√
n

n − 1
|R̊i j|
)
|R̊i j|

2.

Similarly, under the assumption (1.4), we obtain
1
2

f 2∆|R̊i j|
2 +

1
2

f∇ f∇|R̊i j|
2 ≥ f 2

(
R̊2

i j,k +
n − 2
n − 1

|Ci jk|
2
)
+ 2 f 2

( R
n − 1

−

√
n − 2

2(n − 1)
|W | −

√
n

n − 1
|R̊i j|
)
|R̊i j|

2

≥0, (3.7)

which shows that |R̊i j|
2 is subharmonic on Mn. Using the maximum principle again, we obtain that |R̊i j|

is constant and R̊i j,k = 0. In this case, (3.7) becomes( R
n − 1

−

√
n − 2

2(n − 1)
|W | −

√
n

n − 1
|R̊i j|
)
|R̊i j|

2 = 0 (3.8)

and the equalities in (3.5) and (3.6) occur.
In particular, writing R̊i j = agi j + bviv j at p with some scalars a, b and a vector v, we see that the

left hand side of (3.5) is zero [12] at every point p. As (3.5) is an equality and, according to [7], g is
real-analytic, the metric g must be conformally flat or Einstein.

If there exists a point x0 such that (1.4) is strict, then from (3.8) we have |R̊i j|(x0) = 0. Which with
|R̊i j| constant shows that R̊i j ≡ 0 and the metric is Einstein. Otherwise, we have that the equality in (1.4)
occurs and √

(n − 1)(n − 2)
2

|W | +
√

n(n − 1)|R̊i j| = R. (3.9)

In this case, we have W = 0 and (3.9) becomes |R̊i j| =
R

√
n(n−1)

, and then Mn = S1 × Sn−1 [5].
Therefore, we complete the proof of Theorem 1.2.
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4. Conclusions

The aim of this paper is to study rigidity results for closed vacuum static spaces. The main tool is
to apply the maximum principle to the function |R̊i j|

2 since the manifolds are closed. More precisely,
we obtain rigidity theorems by establishing some pointwise inequalities and applying the maximum
principle, which further proves that the squared norm of the Ricci curvature tensor is discrete.
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