Processing math: 85%
Research article

Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus

  • Received: 20 November 2023 Revised: 18 January 2024 Accepted: 22 January 2024 Published: 29 January 2024
  • MSC : 05A30, 26A51, 26D10, 26D15

  • The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval [b0,b1], we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at b0[b0,b1]. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point b1, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.

    Citation: Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad. Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus[J]. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268

    Related Papers:

    [1] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
    [2] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [3] Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
    [4] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [5] Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On $\mathscr{M}$-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157
    [6] Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for $ s $-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771
    [7] Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625
    [8] Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
    [9] Deniz Uçar . Inequalities for different type of functions via Caputo fractional derivative. AIMS Mathematics, 2022, 7(7): 12815-12826. doi: 10.3934/math.2022709
    [10] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
  • The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval [b0,b1], we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at b0[b0,b1]. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point b1, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.



    Calculus is a major field of mathematics which mainly deals with the study of functions and their continuous changes. In the 17th century, Isaac Newton and Gottfried Wilhelm Leibniz contributed to its modern development. After the 17th century, Euler (1707–1783) was the first person who gave the idea of quantum calculus (a calculus which the concept of a limit excludes) which builds a connection between mathematics and physics. In the early 20th century, F. H. Jackson and others further advanced quantum calculus. Time-scale calculus has a subbranch called quantum calculus, which deals with the study of difference equations and solves many problems in dynamical systems. Quantum calculus can be further divided into two types: q-calculus/q-deformed calculus and h-calculus. Moreover, we can say that the derivative and integration of classical calculus can be generalized in q-calculus, and when q1, we recapture the classical results. The q-parameter was first introduced in Newton's infinite series by the eminent mathematician Euler (1707–1783), who also developed q-calculus. To define the q-integral and q-derivative of continuous functions on the interval (0,), popularly known as calculus without limits, Jackson [1] extended Euler's idea in 1910. The ideas of q-fractional integral inequalities and q-Riemann-Liouville fractional integral inequalities were investigated by Al-Salam [2] in 1966. The main and fundamental principles of q-calculus were summarized by Kac and Cheung in their book [3]; see also [4,5,6]. Later, Tariboon and Ntouyas, in particular, presented the q-integral and q-derivative of continuous functions on finite intervals in [7]. Moreover, in recent years, some authors have studied the existence theory for q-boundary value problems [8,9,10].

    In the following, we summarize definitions and a basic introduction to the q-calculus. In this paper, let q be a constant with 0<q<1, and [b0,b1]R with b0<b1. The quantum analog of any number n can be given as

    [n]q=1qn1q=1+q++qn1,nN.

    Definition 1.1. [7] The q-derivative on [b0,b1] for a continuous function f:[b0,b1] is defined by

    b0Dqf(x)={f(x)f(qx+(1q)b0)(1q)(xb0),ifxb0;limxb0b0Dqf(x),ifx=b0. (1.1)

    A function f is stated to be b0q-differentiable if b0Dqf(x) exists.

    Putting b0=0 in Definition 1.1, then (1.1) takes the form

    Dqf(x)=f(x)f(qx)(1q)(x).

    It is a derivation operator provided by Jackson. For more information, see [1].

    Definition 1.2. [7] Let f:[b0,b1] be a continuous function. Then, a b0q-integral on [b0,b1] can be defined as

    xb0f(t)b0dqt=(1q)(xb0)n=0qnf(qnx+(1qn)b0) (1.2)

    for x[b0,b1]. A function f is called b0q-integrable if xb0f(t)dqt exists for all x[b0,b1].

    Substituting b0=0 into Definition 1.2, (1.2) can then be given as

    x0f(t)dqt=(1q)xn=0qnf(qnx). (1.3)

    This is a q-integral provided by Jackson. For more information, see [1]. Moreover, Jackson [1] introduced the q-Jackson integral on the interval [b0,b1] as

    b1b0f(t)dqt=b10f(t)dqtb00f(t)dqt.

    Using the above fundamentals of quantum theory, Tariboon and Ntouyas presented numerous well-known inequalities, namely Hermite-Hadamard, trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, and Grüss-Cebyvsev for q-calculus in [11]. However, Alp et al. in 2018 introduced the first corrected version of the q-Hermite-Hadamard inequality in [12] by considering support lines and the geometrical concept of convex functions as follows:

    Theorem 1.3. Let f:[b0,b1] be a convex function on [b0,b1]. Then, we have

    f(qb0+b11+q)1b1b0b1b0f(t)b0dqtqf(b0)+f(b1)1+q

    where q(0,1).

    Another useful approach was introduced by Bermudo et al. in 2020 in the context of quantum calculus in [13]. They not only provided new definitions of the quantum derivative and quantum integrals, but also employed these notions to obtain a new interpretation of the Hermite-Hadamard inequality.

    Definition 1.4. [13] If f:[b0,b1] is an arbitrary function, then an b1q-definite integral on [b0,b1] is given by

    b1b0f(t)b1dqt=n=0(1q)(b1b0)qnf(qnb0+(1qn)b1)=(b1b0)10f(tb0+(1t)b1)dqt. (1.4)

    Definition 1.5. [13] If f:[b0,b1] is an arbitrary function, then b1q-derivative of f at t[b0,b1] is defined by

    b1Dqf(t)=f(qt+(1q)b1)f(t)(1q)(b1t), tb1.

    Theorem 1.6. [13] Let f:[b0,b1] be a convex function on [b0,b1]. Then, we have the following new variant of the q-Hermite-Hadamard inequalities

    f(b0+qb11+q)1b1b0b1b0f(t)b1dqtf(b0)+qf(b1)1+q (1.5)

    where q(0,1).

    There is a large amount of literature is presented regarding the development of useful inequalities in quantum calculus. Noor et al. established some inequalities of trapezoid type for b0q-integrals in [14]. On the other hand, Budak et al. presented several midpoint and trapezoid type inequalities for b1q-integrals in [15,16]. Some Simpson and Newton type quantum inequalities can be seen in [17,18,19,20]; for the coordinate case, see [21,22]. Many mathematicians have conducted research in the fascinating area of quantum calculus. Interested readers can check [23,24,25,26].

    In this paper, we will derive Hermite-Hadamard inequalities in the symmetrical quantum sense. The idea of symmetric quantum calculus was first introduced by Da Cruz et al. [27]. The q-symmetric calculus plays an important role in quantum mechanics. It has a key role in the development of basic hypergeometric functions, the generalized linear Schr¨odinger equation, and quantum dynamical equation, in quantum mechanics[28]. We can write q-differentials and h-differentials in the symmetrical sense, which are mentioned in [3], for q1, h0,

    ˜dqf(x)=f(qx)f(q1x),xb0.
    ˜dhg(x)=g(x+h)g(xh),xb0.

    Definition 1.7. [29] Let f:[b0,b1] be a continuous function. Then, the ˜q-derivative or b0q-symmetric derivative at x[b0,b1] is formulated as

    b0˜Dqf(x)=˜dqf(x)˜dqx=f(qx+(1q)b0)f(q1x+(1q1)b0)(qq1)(xb0),xb0

    which implies that

    ˜Dqf(x)=˜dqf(x)˜dqx=f(qx)f(q1x)(qq1)x,x0.

    Definition 1.8. [29] Let f:[b0,b1] be a continuous function. Then, the b0˜q-definite integral on [b0,b1] is given as

    xb0f(t) b0˜dqt=(q1q)(xb0)n=0q2n+1f(q2n+1x+(1q2n+1)b0).

    Here, x[b0,b1], or

    xb0f(t) b0˜dqt=(1q2)(xb0)n=0q2nf(q2n+1x+(1q2n+1)b0). (1.6)

    If we take f(t)=1, then (1.6) becomes

    xb0f(t) b0˜dqt=xb0.

    If we take b0=0 in (1.6), then

    x0f(t)0˜dqt=x0f(t)˜dqt

    or

    x0f(t)0˜dqt=x0f(t)˜dqt=(1q2)xn=0q2nf(q2n+1x)

    and is simply called ˜q-integral.

    If u(b0,x), then the b0˜q-definite integral on [u,x] can be written as

    xuf(t) b0˜dqt=xb0f(t) b0˜dqtub0f(t) b0˜dqt.

    Motivated by the idea of Bermudo et al. in [13], one can define the b1˜q-definite integral at b1[b0,b1] as follows:

    Definition 1.9. Let f:[b0,b1] be a continuous function. Then, the b1˜q-definite integral on [b0,b1] is given as

    xb0f(t) b1˜dqt=(q1q)(xb0)n=0q2n+1f(q2n+1b0+(1q2n+1)x)

    for each x[b0,b1], or

    xb0f(t) b1˜dqt=(1q2)(xb0)n=0q2nf(q2n+1b0+(1q2n+1)x). (1.7)

    Remark 1.10. It is pertinent to mention here that the monotonicity property

    f(t)g(t)b1b0f(t)dqtb1b0g(t)dqt

    is not always true in quantum calculus for all t[b0,b1]. In [30], one can find a counter-example in the context of Hahn calculus so that, if fg on an interval [b0,b1], we have

    b1b0f(t)d(q,ω)t>b1b0g(t)d(q,ω)t.

    Some recent investigations in this direction were pursued by Cardoso et al. in [31], where the authors give other generalizations of the Hahn difference operator by using β-integrals. Therefore, in order to avoid this ambiguity in this paper, in all our theorems, we will consider the monotonicity property for all functions in the context of symmetric q-calculus, i.e., if f(t)g(t), then

    b1b0f(t)˜dqtb1b0g(t)˜dqt

    for all t[b0,b1].

    In this section, we introduce the Hermite-Hadamard inequality in symmetric q-calculus at b0[b0,b1], which is a different variant. Note that, in all theorems of this section, the monotonicity property, given in Remark 1.10, is satisfied for the function f:[b0,b1].

    Theorem 2.1. If f:[b0,b1] is a convex differentiable function on (b0,b1), then

    f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx(1q+q2)f(b0)+qf(b1)1+q2 (2.1)

    holds for 0<q<1.

    Proof. Since the line of support of the given function at the point (1q+q2)b0+qb11+q2(b0,b1) can be written as

    T(x)=f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)(x(1q+q2)b0+qb11+q2).

    Due to convexity of f on [b0,b1],

    T(x)=f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)(x(1q+q2)b0+qb11+q2)f(x)

    for all x[b0,b1].

    Taking the b0˜q-Integral on [b0,b1], we write

    b1b0T(x) b0˜dqx=b1b0[f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)(x(1q+q2)b0+qb11+q2)] b0˜dqx=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)×(b1b0x b0˜dqx(b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)×((1q2)(b1b0)n=0q2n((1q2n+1)b0+q2n+1b1)(b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)×((1q2)(b1b0)[(11q2q1q4)b0+q1q4b1](b1b0)(1q+q2)b0+qb11+q2)
    =(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)×((1q2)(b1b0)[b01q2qb0(1q2)(1+q2)+qb1(1q2)(1+q2)](b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)×((b1b0)[(1q1+q2)b0+q1+q2b1](b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)((b1b0)((1q+q2)b01+q2+qb11+q2)(b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)+f((1q+q2)b0+qb11+q2)((b1b0)(1q+q2)b0+qb11+q2(b1b0)(1q+q2)b0+qb11+q2)=(b1b0)f((1q+q2)b0+qb11+q2)b1b0f(x)b0˜dqx.

    Hence,

    f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx. (2.2)

    Moreover, the secant line with end points (b0,f(b0)) and (b1,f(b1)) can also be written in terms of the function S(x)=f(b0)+f(b1)f(b0)b1b0(xb0). Using the convexity of f on [b0,b1],

    f(x)S(x)=f(b0)+f(b1)f(b0)b1b0(xb0)

    holds for all x [b0,b1].

    Taking the b0˜q-Integral on [b0,b1], we can write

    b1b0S(x) b0˜dqx=b1b0(f(b0)+f(b1)f(b0)b1b0(xb0))b0˜dqx=(b1b0)f(b0)+f(b1)f(b0)b1b0b1b0(xb0) b0˜dqx=(b1b0)f(b0)+f(b1)f(b0)b1b0(b1b0x b0˜dqxb0(b1b0))=(b1b0)f(b0)+f(b1)f(b0)b1b0((1q2)(b1b0)n=0q2n((1q2n+1)b0+q2n+1b1)b0(b1b0))=(b1b0)f(b0)+f(b1)f(b0)b1b0((1q2)(b1b0)[(11q2q1q4)b0+q1q4b1]b0(b1b0))=(b1b0)f(b0)+f(b1)f(b0)b1b0×((1q2)(b1b0)[(11q2q(1q2)(1+q2))b0+q(1q2)(1+q2)b1]b0(b1b0))=(b1b0)f(b0)+f(b1)f(b0)b1b0×((b1b0)[(1q1+q2)b0+q1+q2b1]b0(b1b0))=(b1b0)f(b0)+(f(b1)f(b0))((1q1+q2)b0+qb11+q2b0)=(b1b0)f(b0)+(f(b1)f(b0))((1q+q2)b0+qb11+q2b0)=(b1b0)f(b0)+(f(b1)f(b0))(qb1qb01+q2)=(b1b0)f(b0)+(f(b1)f(b0))(q(b1b0)1+q2)=(b1b0)f(b0)+(b1b0)qf(b1)qf(b0)1+q2=(b1b0)(f(b0)+qf(b1)qf(b0)1+q2)=(b1b0)(f(b0)+q2f(b0)+qf(b1)qf(b0)1+q2)=(b1b0)(1q+q2)f(b0)+qf(b1)1+q2b1b0f(x) b0˜dqx. (2.3)

    A combination of (2.2) and (2.3) gives (2.1).

    Remark 2.2. If q1 in Theorem 2.1, then it becomes the classical Hermite-Hadamard inequality, i.e.,

    f(b0+b12)1b1b0b1b0f(x) dxf(b0)+f(b1)2 (2.4)

    which was first introduced in [32].

    Now we choose the point qb0+(1q+q2)b11+q2 instead of (1q+q2)b0+qb11+q2, and we will get a different inequality which will be proved in the next theorem.

    Theorem 2.3. For a convex differentiable function f:[b0,b1] on (b0,b1),

    f(qb0+(1q+q2)b11+q2)(1q)2(b1b0)1+q2f(qb0+(1q+q2)b11+q2)1b1b0b1b0f(x) b0˜dqx(1q+q2)f(b0)+qf(b1)1+q2 (2.5)

    holds for all x[b0,b1].

    Proof. Since the line of support of the given function at the point qb0+(1q+q2)b11+q2(b0,b1) can be written as t1(x)=f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)(xqb0+(1q+q2)b11+q2), due to the convexity of f on [b0,b1], we have

    t1(x)=f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)(xqb0+(1q+q2)b11+q2)f(x)

    for all x[b0,b1].

    Taking the b0˜q-Integral from b0 to b1, we get

    b1b0t1(x) b0˜dqx=b1b0[f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)(xqb0+(1q+q2)b11+q2)]b0˜dqx=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)(b1b0x b0˜dqx(b1b0)qb0+(1q+q2)b11+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((1q2)(b1b0)n=0q2n((1q2n+1)b0+q2n+1b1)(b1b0)qb0+(1q+q2)b11+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)((1q2)×(b1b0)[(11q2q1q4)b0+q1q4b1](b1b0)qb0+(1q+q2)b11+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(1q1+q2)b0+q1+q2b1](b1b0)qb0+(1q+q2)b11+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(1q+q2)b01+q2+qb11+q2](b1b0)qb0+(1q+q2)b11+q2)
    =(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(1q+q2)b0+qb11+q2](b1b0)qb0+(1q+q2)b11+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(1q+q2)b0+qb11+q2qb0+(1q+q2)b11+q2])=(b1b0)f(qb0+(1q+q2)b1+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[b0qb0+q2b0+qb1b1+qb1q2b1qb01+q2])=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(b1b0)+2q(b1b0)q2(b1b0)1+q2])=(b1b0)f(qb0+(1q+q2)b11+q2)+f(qb0+(1q+q2)b11+q2)×((b1b0)[(b1b0)(12q+q2)1+q2])=(b1b0)f(qb0+(1q+q2)b11+q2)f(qb0+(1q+q2)b11+q2)((b1b0)2(1q)21+q2)=(b1b0)f(qb0+(1q+q2)b11+q2)(1q)2(b1b0)21+q2f(qb0+(1q+q2)b11+q2)b1b0f(x) b0˜dqx. (2.6)

    Combining (2.6) and (2.3), we get (2.5), and hence the theorem is proved.

    Moreover, if we choose the midpoint of the interval [b0,b1] instead of qb0+(1q+q2)b11+q2, then we obtain another inequality which will be described in the next theorem.

    Theorem 2.4. For a convex differentiable function f:[b0,b1] on (b0,b1),

    f(b0+b12)(1q)2(b1b0)2(1+q2)f(b0+b12)1b1b0b1b0f(x) b0˜dqx(1q+q2)f(b0)+qf(b1)1+q2 (2.7)

    holds for 0<q<1.

    Proof. Since the line of support of the given function at the point b0+b12(b0,b1) can be written as t2(x)=f(b0+b12)+f(b0+b02)(xb0+b12), due to the convexity of f on [b0,b1],

    t2(x)=f(b0+b12)+f(b0+b12)(xb0+b12)f(x)

    holds for all x[b0,b1].

    Taking b0˜q-Integral from b0 to b1, we get

    b1b0t2(x)b0˜dqx=b1b0[f(b0+b12)+f(b0+b12)(xb0+b12)]b0˜dqx=(b1b0)f(b0+b12)+f(b0+b12)(b1b0x b0˜dqx(b1b0)b0+b12)=(b1b0)f(b0+b12)+f(b0+b12)×((1q2)(b1b0)n=0q2n((1q2n+1)b0+q2n+1b1)(b1b0)b0+b12)=(b1b0)f(b0+b12)+f(b0+b12)×((1q2)(b1b0)[(11q2q1q4)b0+q1q4b1](b1b0)b0+b12)=(b1b0)f(b0+b12)+f(b0+b12)((b1b0)[(1q1+q2)b0+qb11+q2](b1b0)b0+b12)=(b1b0)f(b0+b12)+f(b0+b12)×((b1b0)qb1+(1q+q2)b01+q2(b1b0)b0+b12)=(b1b0)f(b0+b12)+(b1b0)f(b0+b12)(qb1+b0qb0+q2b01+q2b0+b12)=(b1b0)f(b0+b12)(b1b0)2f(b0+b12)(1+q22q2(1+q2))=(b1b0)f(b0+b12)(1q)2(b1b0)22(1+q2)f(b0+b12)b1b0f(x) b0˜dqx. (2.8)

    Now, combining (2.3) and (2.8), we get (2.7).

    We can also generalize the following results.

    Theorem 2.5. For any convex differentiable function f:[b0,b1] on (b0,b1),

    max{I1,I2,I3}1b1b0b1b0f(x) b0˜dqx(1q+q2)f(b0)+qf(b1)1+q2 (2.9)

    holds for 0<q<1, where

    I1=f((1q+q2)b0+qb11+q2),I2=f(qb0+(1q+q2)b11+q2)(1q)2(b1b0)1+q2f(qb0+(1q+q2)b11+q2),I3=f(b0+b12)(1q)2(b1b0)2(1+q2)f(b0+b12).

    Proof. A combination of (2.1), (2.5), and (2.7) gives (2.9). Thus, the proof is complete.

    Using the same methodology and (1.7), we can derive the Hermite-Hadamard inequality and its types at the point b1 of the interval [b0,b1]. These results are in the following theorems.

    Theorem 2.6. For any convex differentiable function f:[b0,b1] on (b0,b1),

    f(qb0+(1q+q2)b11+q2)1b1b0b1b0f(x)b1˜dqxqf(b0)+(1q+q2)f(b1)1+q2. (2.10)

    Proof. We can prove it in the same way as in Theorem 2.1.

    Remark 2.7. If q1 in Theorem 2.6, we will get the classical Hermite-Hadamard inequality (2.4) again.

    Corollary 2.8. If we add (2.1) and (2.10), then the following inequalities can be obtained:

    f((1q+q2)b0+qb11+q2)+f(qb0+(1q+q2)b11+q2)1b1b0{b1b0f(x) b0˜dqx+b1b0f(x) b1˜dqx}f(b0)+f(b1)

    and

    f(b0+b12)12(b1b0){b1b0f(x) b0˜dqx+b1b0f(x) b1˜dqx}f(b0)+f(b1)2.

    Theorem 2.9. Let f:[b0,b1] be a function which is convex and differentiable on (b0,b1). Then,

    f((1q+q2)b0+qb11+q2)+(1q)2(b1b0)1+q2f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b1˜dqxqf(b0)+(1q+q2)f(b1)1+q (2.11)

    holds.

    Proof. The proof is similar to that of Theorem 2.3.

    Theorem 2.10. Let f:[b0,b1] be a function which is convex and differentiable on (b0,b1). Then,

    f(b0+b12)+(1q)2(b1b0)2(1+q2)f(b0+b12)1b1b0b1b0f(x) b1˜dqxqf(b0)+(1q+q2)f(b1)1+q2. (2.12)

    Proof. The proof is similar to that of Theorem 2.4.

    Theorem 2.11. Let f:[b0,b1] be a function which is convex and differentiable on (b0,b1). Then,

    max{J1,J2,J3}1b1b0b1b0f(x) b1˜dqxqf(b0)+(1q+q2)f(b1)1+q2 (2.13)

    holds for 0<q<1, where

    J1=f(qb0+(1q+q2)b11+q2),J2=f((1q+q2)b0+qb11+q2)+(1q)2(b1b0)1+q2f((1q+q2)b0+qb11+q2),J3=f(b0+b12)+(1q)2(b1b0)2(1+q2)f(b0+b12).

    Proof. A combination of (2.10), (2.11), and (2.12) gives (2.13).

    Now, we will investigate a function which does not hold for the Hermite-Hadamard inequality in q-calculus. See Example 5 in [12].

    Example 2.12. Let f(x)=1x, set [b0,b1]=[0,1], and for the value of q choose from (0, 1) in Theorem 2.1. Then, we have

    f((1q+q2)(0)+q(1)1+q2)11010f(x)0˜dqx(1q+q2)f(0)+qf(1)1+q2f(q1+q2)10f(x)0˜dqx(1q+q2)(1)+q(0)1+q21q1+q2(1q2)n=0q2nf(q2n+1)1q+q21+q21+q2q1+q2(1q2)n=0q2n(1q2n+1)1q+q21+q21+q2q1+q2(1q2)n=0(q2nq4n+1)1q+q21+q21+q2q1+q2(1q2)(11q2q1q4)1q+q21+q21+q2q1+q21q1+q21q+q21+q21q+q21+q21q+q21+q21q+q21+q2.

    Remark 2.13. In Example 2.12, we can see that q-symmetric analogues of the Hermite-Hadamard inequality becomes equality for f(x)=1x given as in Example 5 of [12].

    Example 2.14. Now, we choose f(x)=x2 and [b0,b1]=[0,1], and we then get the following inequalities:

    Case 1: We fix b0=0,b1=1, and the value of q is chosen from (0, 1) in Theorem 2.1. Then, the inequalities become:

    f((1q+q2)(0)+q(1)1+q2)11010f(x)0˜dqx(1q+q2)f(0)+qf(1)1+q2f(0+q1+q2)10f(x)0˜dqx(1q+q2)(0)+q(1)1+q2(q1+q2)210f(x)0˜dqx0+q1+q2q2(1+q2)2(1q2)n=0q2nf(q2n+1)q1+q2q2(1+q2)2(1q2)n=0q2nq4n+2q1+q2q2(1+q2)2(1q2)n=0q6n+2q1+q2q2(1+q2)2q21+q2+q4q1+q2. (2.14)

    Case 2: If we fix q=12 and assume that b0 varies from 2 to 2.1 and b1 varies from 3 to 5 in Theorem 2.1, then the inequalities become

    f((34)b0+(12)b154)1b1b0b1b0f(x) b0˜dqx34f(b0)+12f(b1)54,f(3b0+2b15)1b1b0b1b0f(x)b0˜dqx3f(b0)+2f(b1)5,(3b0+2b15)21b1b0b0b0f(x)b0˜dqx3b02+2b125. (2.15)

    Since

    b1b0f(x)b0˜dqx=(1q2)(b1b0)n=0q2nf(q2n+1b1+(1q2n+1)b0)=(1q2)(b1b0)n=0q2n(q2n+1b1+(1q2n+1)b0)2=(1q2)(b1b0)n=0q2n(q4n+2b12+b02+q4n+2b02+2b0b1q2n+12b02q2n+12b0b1q4n+2)=(1q2)(b1b0)n=0(q6n+2b12+b02q2n+q6n+2b02+2b0b1q4n+12b02q4n+12b0b1q6n+2)=(1q2)(b1b0)[(b12+b022b0b1)q2n=0q6n+(2b0b12b02)qn=0q4n+b02n=0q2n]=(1q2)(b1b0)[(b12+b022b0b1)q21q6+(2b0b12b02)q1q4+b021q2]=(b1b0)[(b12+b022b0b1)q21+q2+q4+(2b0b12b02)q1+q2+b02]=(b1b0)[41b02+20b12+44b0b1105],

    inequality (2.15) becomes

    (3b0+2b1)2541b02+20b12+44b0b1213b02+2b12. (2.16)

    Graphical representations of (2.14) and (2.16) are given in Figures 1 and 2.

    Figure 1.  Case 1: 2D graph.
    Figure 2.  Case 2: 3D graph.

    In this section, we will construct a lemma and, with the help of this lemma, we will prove the midpoint type inequalities for the convex function in symmetric q-calculus at b0. Also, note that in all theorems of this section, the monotonicity property, given in Remark 1.10, is satisfied for the function f:[b0,b1].

    Lemma 3.1. For any convex b0q-symmetric differentiable function f:[b0,b1] on (b0,b1), if its first b0q-symmetric derivative is continuous and integrable on [b0,b1], then

    f((1q+q2)b0+qb11+q2)1(b1b0)b1b0f(x)b0˜dqx=q2(b1b0)[11+q20t b0˜Dqf(qtb1+(1qt)b0)0˜dqt+111+q2(t1q2) b0˜Dqf(qtb1+(1qt)b0)0˜dqt] (3.1)

    holds for q (0, 1).

    Proof. Using the definition of the ˜q-derivative, we have

    b0˜Dqf(qtb1+(1qt)b0)=f(q1(qtb1+(1qt)b0)+(1q1)b0)f(q(qtb1+(1qt)b0)+(1q)b0)(q1q)(qtb1+(1qt)b0b0)=f(tb1+(1t)b0)f(q2tb1+(1q2t)b0)(1q2)(b1b0)t.

    From the right-hand side of (3.1), we get

    q2(b1b0)[11+q20t b0˜Dqf(qtb1+(1qt)b0)0˜dqt+111+q2t b0˜Dqf(qtb1+(1qt)b0)0˜dqt1q2111+q2b0˜Dqf(qtb1+(1qt)b0)0˜dqt]=q2(b1b0)[11+q20t b0˜Dqf(qtb1+(1qt)b0)0˜dqt+111+q2t b0˜Dqf(qtb1+(1qt)b0)0˜dqt1q2111+q2b0˜Dqf(qtb1+(1qt)b0)0˜dqt1q211+q20b0˜Dqf(qtb1+(1qt)b0)0˜dqt+1q211+q20b0˜Dqf(qtb1+(1qt)b0)0˜dqt]=q2(b1b0)[10t b0˜Dqf(qtb1+(1qt)b0)0˜dqt1q210b0˜Dqf(qtb1+(1qt)b0)0˜dqt+1q211+q20b0˜Dqf(qtb1+(1qt)b0)0˜dqt]=q2(b1b0)[10tf(tb1+(1t)b0)f(q2tb1+(1q2t)b0)(1q2)(b1b0)t 0˜dqt1q210f(tb1+(1t)b0)f(q2tb1+(1q2t)b0)(1q2)(b1b0)t 0˜dqt+1q211+q20f(tb1+(1t)b0)f(q2tb1+(1q2t)b0)(1q2)(b1b0)t 0˜dqt]
    =q2(b1b0)[1(1q2)(b1b0){10f(tb1+(1t)b0) 0˜dqt10f(q2tb1+(1q2t)b0) 0˜dqt}1q2(1q2)(b1b0){10f(tb1+(1t)b0)t 0˜dqt10f(q2tb1+(1q2t)b0)t 0˜dqt}+1q2(1q2)(b1b0){11+q20f(tb1+(1t)b0)t 0˜dqt11+q20f(q2tb1+(1q2t)b0)t 0˜dqt}]=[q2(1q2){10f(tb1+(1t)b0) 0˜dqt10f(q2tb1+(1q2t)b0) 0˜dqt}1(1q2){10f(tb1+(1t)b0)t 0˜dqt10f(q2tb1+(1q2t)b0)t 0˜dqt}+1(1q2){11+q20f(tb1+(1t)b0)t 0˜dqt11+q20f(q2tb1+(1q2t)b0)t 0˜dqt}]
    =q2(1q2){(1q2)n=0q2nf(q2n+1b1+(1q2n+1)b0)(1q2)n=0q2nf(q2n+3b1+(1q2n+3)b0)}1(1q2){(1q2)n=0f(q2n+1b1+(1q2n+1)b0)(1q2)n=0f(q2n+3b1+(1q2n+3)b0)}+1(1q2){(1q2)n=0f(q2n+1b11+q2+(1q2n+11+q2)b0)(1q2)n=0f(q2n+3b11+q2+(1q2n+31+q2)b0)}=q2{n=0q2nf(q2n+1b1+(1q2n+1)b0)n=0q2nf(q2n+3b1+(1q2n+3)b0)}{n=0f(q2n+1b1+(1q2n+1)b0)n=0f(q2n+3b1+(1q2n+3)b0)}+{n=0f(q2n+1b11+q2+(1q2n+11+q2)b0)n=0f(q2n+3b11+q2+(1q2n+31+q2)b0)}=q2{n=0q2nf(q2n+1b1+(1q2n+1)b0)1q2n=0q2n+2f(q2n+2+1b1+(1q2n+2+1)b0)}{f(qb1+(1q)b0)f(b0)}+{f(qb11+q2+(1q1+q2)b0)f(b0)}=q2{n=0q2nf(q2n+1b1+(1q2n+1)b0)1q2m=1q2mf(q2m+1b1+(1q2m+1)b0)}f(qb1+(1q)b0)+f(b0)+f((1q+q2)b0+qb11+q2)f(b0)=q2{n=0q2nf(q2n+1b1+(1q2n+1)b0)+1q2f(qb1+(1q)b0)1q2n=0q2nf(q2n+1b1+(1q2n+1)b0)}f(qb1+(1q)b0)+f((1q+q2)b0+qb11+q2)=q2{(1q21)n=0q2nf(q2n+1b1+(1q2n+1)b0)+1q2f(qb1+(1q)b0)}f(qb1+(1q)b0)+f((1q+q2)b0+qb11+q2)=(1q2)n=0q2nf(q2n+1b1+(1q2n+1)b0)+f(qb1+(1q)b0)f(qb1+(1q)b0)+f((1q+q2)b0+qb11+q2)=f((1q+q2)b0+qb11+q2)1b1b0b0b0f(x) b0˜dqx

    which completes the proof.

    Remark 3.2. If q approaches 1 in Lemma 3.1, it will reduce to Lemma 11 in [12], and Lemma 3.1 will help us to prove the midpoint type inequality in symmetric q-calculus.

    Theorem 3.3. For any b0q-symmetric differentiable function f:[b0,b1] on (b0,b1), if its first b0q-symmetric derivative is continuous and integrable on [b0,b1] and if |b0˜Dqf| is convex on [b0,b1], then the q-symmetric midpoint type inequality holds:

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)[|b0˜Dqf(b1)|P1(q)(1+q2)3(1+q2+q4)+|b0˜Dqf(b0)|P2(q)q2(1+q2)3(1+q2+q4)]

    where

    P1(q)=2q2+q3+3q43q5+3q63q7+q8q9,P2(q)=q2+q3+q42q5+q6+q8.

    Proof. Taking the modulus in Lemma 3.1, we have

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)×[11+q20t|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt+111+q2(1q2t)|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt]q2(b1b0)[11+q20t{qt|b0˜Dqf(b1)|+(1qt)|b0˜Dqf(b0)|} 0˜dqt+111+q2(1q2t){qt|b0˜Dqf(b1)|+(1qt)|b0˜Dqf(b0)|} 0˜dqt]q2(b1b0)[|b0˜Dqf(b1)|11+q20qt2 0˜dqt+|b0˜Dqf(b0)|11+q20t(1qt) 0˜dqt+|b0˜Dqf(b1)|111+q2(1q2t)qt 0˜dqt+|b0˜Dqf(b0)|111+q2(1q2t)(1qt) 0˜dqt]q2(b1b0)[|b0˜Dqf(b1)|{11+q20qt2 0˜dqt+111+q2(1q2t)qt 0˜dqt}+|b0˜Dqf(b0)|{11+q20t(1qt) 0˜dqt+111+q2(1q2t)(1qt) 0˜dqt}], (3.2)
    11+q20qt2 0˜dqt=q(1q2)11+q2n=0q2n(q2n+11+q2)2=q3(1q2)1(1+q2)3n=0q6n11+q20qt2 0˜dqt=q3(1+q2)3(1+q2+q4), (3.3)
    11+q20t(1qt) 0˜dqt=11+q20t 0˜dqt11+q20qt2 0˜dqt11+q20t(1qt) 0˜dqt=(1q2)11+q2n=0q2nq2n+11+q2q3(1+q2)3(1+q2+q4)11+q20t(1qt) 0˜dqt=(1q2)q(1+q2)2n=0q4nq3(1+q2)3(1+q2+q4)11+q20t(1qt) 0˜dqt=q(1+q2)3q3(1+q2)3(1+q2+q4)11+q20t(1qt) 0˜dqt=q+q5(1+q2)3(1+q2+q4), (3.4)
    111+q2(1q2t)qt 0˜dqt=10(1q2t)qt 0˜dqt11+q20(1q2t)qt 0˜dqt111+q2(1q2t)qt 0˜dqt=1q10t 0˜dqtt10qt2 0˜dqt1q11+q20t 0˜dqt+11+q20qt2 0˜dqt111+q2(1q2t)qt 0˜dqt=1q(1q2)n=0q2nq2n+1q(1q2)n=0q2n(q2n+1)21(1+q2)3×q3(1+q2)3(1+q2+q4)111+q2(1q2t)qt 0˜dqt=(1q2)n=0q4nq3(1q2)n=0q6n1(1+q2)3+q3(1+q2)3(1+q2+q4)111+q2(1q2t)qt 0˜dqt=2q2+3q43q5+3q63q7+q8q9(1+q2)3(1+qq2+q4), (3.5)
    111+q2(1q2t)(1qt) 0˜dqt=10(1q2t)(1qt) 0˜dqt11+q20(1q2t)(1qt) 0˜dqt=1q2101 0˜dqt1q10t 0˜dqt10t 0˜dqt+10qt2 0˜dqt1q211+q201 0˜dqt+1q11+q20t 0˜dqt+11+q20t 0˜dqt11+q20qt2 0˜dqt=1q21q2qn=0q2nq2n+1(1q2)n=0q2nq2n+1+q31+q2+q41q2(1+q2)+1(1+q2)3+q(1+q2)3q3(1+q2)3(1+q2+q4)=q2+q42q5+q6q2(1+q2)3(1+q2+q4). (3.6)

    Adding (3.3), (3.4), (3.5), and (3.6) and then putting in (3.2), we get the required result.

    Remark 3.4. If q approaches 1 in Theorem 3.3, it will become Corollary 14 in [12].

    Theorem 3.5. For any b0q-symmetric differentiable function f:[b0,b1] on (b0,b1), if its first b0q-symmetric derivative is continuous and integrable on [b0,b1] and if |b0˜Dqf| is convex on [b0,b1], then the q-symmetric midpoint type inequality holds:

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)(1+q2)33r[M1(q)(|b0˜Dqf(b1)|r Q1(q)+|b0˜Dqf(b0)|r Q2(q))1r+M2(q)(|b0˜Dqf(b1)|r Q3(q)+|b0˜Dqf(b0)|r Q4(q))1r]

    where

    Q1(q)=11+q20qt2 0˜dqt=q3(1+q2)3(1+q2+q4),Q2(q)=11+q20t(1qt) 0˜dqt=q+q5(1+q2)3(1+q2+q4),Q3(q)=111+q2(1q2t)qt 0˜dqt=2q2+3q43q5+3q63q7+q8q9(1+q2)3(1+q2+q4),Q4(q)=111+q2(1q2t)(1qt)0˜dqt=q2+q42q5+q6q2(1+q2)3(1+q2+q4),M1(q)=q11r

    and

    M2(q)=(1+qq2+2q3q4+q6)11rq11r.

    Proof. We have

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)[11+q20t|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt+111+q2(1q2t)|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt]q2(b1b0)[(11+q20t 0˜dqt)11r(11+q20t|b0˜Dqf(qtb1+(1qt)b0)|r 0˜dqt)1r+(111+q2(1q2t) 0˜dqt)11r(111+q2(1q2t)|b0˜Dqf(qtb1+(1qt)b0)|r 0˜dqt)1r]q2(b1b0)[q11r(1+q2)33r(11+q20t{qt|b0˜Dqf(b1)|r+(1qt)|b0˜Dqf(b0)|r} 0˜dqt)1r
    +(1+qq2+2q3q4+q6)11rq11r(1+q2)33r+(111+q2(1q2t){qt|b0˜Dqf(b1)|r+(1qt)|b0˜Dqf(b0)|r} 0˜dqt)1r]q2(b1b0)(1+q2)33r[q11r(11+q20t{qt|b0˜Dqf(b1)|r+(1qt)|b0˜Dqf(b0)|r} 0˜dqt)1r+(1+qq2+2q3q4+q6)11rq11r(111+q2(1q2t){qt|b0˜Dqf(b1)|r+(1qt)|b0˜Dqf(b0)|r} 0˜dqt)1r]q2(b1b0)(1+q2)33r[M1(q)(|b0˜Dqf(b1)|r11+q20qt2 0˜dqt+|b0˜Dqf(b0)|r11+q20t(1qt) 0˜dqt)1r+M2(q)(|b0˜Dqf(b1)|r111+q2(1q2t)qt 0˜dqt+|b0˜Dqf(b0)|r111+q2(1q2t)(1qt) 0˜dqt)1r].

    Using (3.3)–(3.6) from Theorem 3.3, we get required result.

    Remark 3.6. If q approaches 1 in Theorem 3.5, it will become Corollary 17 in [12].

    Theorem 3.7. For any b0q-symmetric differentiable function f:[b0,b1] on (b0,b1), if its first b0q-symmetric derivative is continuous and integrable on [b0,b1] and if |b0˜Dqf| is convex on [b0,b1], then the q-symmetric midpoint type inequality holds:

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)[(1q(1+q2)s+11q21q2s+2)1s(|b0˜Dqf(b1)|r U1(q)+|b0˜Dqf(b0)|r U2(q))1r+(111+q2(1q2t)s 0˜dqt)1s(|b0˜Dqf(b1)|r U3(q)+|b0˜Dqf(b0)|r U4(q))1r]

    where

    U1(q)=11+q20qt 0˜dqt=q2(1+q2)3,U2(q)=11+q20(1qt) 0˜dqt=1+q2+q4(1+q2)3,U3(q)=111+q2qt 0˜dqt=2q4+q6(1+q2)3,U4(q)=111+q2(1qt) 0˜dqt=q2(1+q2)3,(s1+r1=1).

    Proof. We have

    |f((1q+q2)b0+qb11+q2)1b1b0b1b0f(x) b0˜dqx|q2(b1b0)[11+q20t|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt+111+q2(1q2t)|b0˜Dqf(qtb1+(1qt)b0)| 0˜dqt]q2(b1b0)[(11+q20ts 0˜dqt)1s(11+q20|b0˜Dqf(qtb1+(1qt)b0)|r 0˜dqt)1r+(111+q2(1q2t)s 0˜dqt)1s(111+q2|b0˜Dqf(qtb1+(1qt)b0)|r 0˜dqt)1r]q2(b1b0)[(11+q20ts 0˜dqt)1s(11+q20{qt|b0˜Dqf(b1)|r+(1qt)|b0˜Dqf(b0)|r} 0˜dqt)1r
    \begin{align} &\,\,\,\,\,\,+\left.\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)^{\mathrm{s}} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{s}}} \left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1} \left\lbrace \mathrm{q}\mathrm{t}\left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}}) \right|^{\mathrm{r}}+(1-\mathrm{q}\mathrm{t})\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}} \ \right\rbrace _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right]\\ &\leqslant \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left[\left(\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}^\mathrm{s} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{s}}} \left( \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}} \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}} \mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} +\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{r}}} \right.\\&\,\,\,\,\,\,+\left.\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)^{\mathrm{s}} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{s}}} \left(\left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}}) \right|^{\mathrm{r}} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1} \mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}+\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right]\\ &\leqslant \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left[\left(\dfrac{1}{\mathrm{q}(1+\mathrm{q}^2)^{\mathrm{s}+1}}\dfrac{1-\mathrm{q}^2}{1-\mathrm{q}^{2\mathrm{s}+2}}\right)^{\frac{1}{\mathrm{s}}} \left( \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}} \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}} \mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} +\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\right. \right.\\&\,\,\,\,\,\,\left.\left.\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{r}}} +\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)^{\mathrm{s}} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{s}}} \left(\left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}}) \right|^{\mathrm{r}} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1} \mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right.\right.\\&\,\,\,\,\,\,+\left.\left.\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right]. \end{align} (3.7)

    Using \tilde{\mathrm{q}} -integration, we may write

    \begin{equation} \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{\mathrm{q}(1-\mathrm{q}^2)}{1+\mathrm{q}^2}\sum\limits_{n = 0}^{\infty}\mathrm{q}^{2n}\dfrac{\mathrm{q}^{2n}}{1+\mathrm{q}^2} = \dfrac{\mathrm{q}^{2}}{(1+\mathrm{q}^{2})^{3}} = \mathfrak{U}_{1}(\mathrm{q}), \end{equation} (3.8)
    \begin{equation} \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{1}{1+\mathrm{q}^2}-\dfrac{\mathrm{q}^2}{(1+\mathrm{q}^2)^3} = \dfrac{1+\mathrm{q}^{2}+\mathrm{q}^{4}}{(1+\mathrm{q}^{2})^{3}} = \mathfrak{U}_{2}(\mathrm{q}), \end{equation} (3.9)
    \begin{align} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}& = \int_{0}^{1}\mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}-\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \mathrm{q}(1-\mathrm{q}^2)\sum\limits_{n = 0}^{\infty}\mathrm{q}^{2n}\mathrm{q}^{2n+1}-\dfrac{\mathrm{q}^2}{(1+\mathrm{q}^2)^{3}}\\ & = \dfrac{2\mathrm{q}^{4}+\mathrm{q}^{6}}{(1+\mathrm{q}^2)^{3}} = \mathfrak{U}_{3}(\mathrm{q}) \end{align} (3.10)

    and

    \begin{equation} \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \int_{0}^{1}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}-\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{\mathrm{q}^{2}}{(1+\mathrm{q}^{2})^{3}} = \mathfrak{U}_{4}(\mathrm{q}). \end{equation} (3.11)

    Putting (3.8)–(3.11) into (3.7), we get the desired results.

    Remark 3.8. If \mathrm{q} approaches 1 in Theorem 3.7, we will get Corollary 19 in [12].

    Theorem 3.9. For any {}_\mathrm{b_{0}}\mathrm{q} -symmetric differentiable function \mathfrak{f}:[\mathrm{b_{0}}, \mathrm{b_{1}}] \rightarrow \Re on (\mathrm{b_{0}}, \mathrm{b_{1}}) , if its first {}_\mathrm{b_{0}}\mathrm{q} -symmetric derivative is continuous and integrable on [\mathrm{b_{0}}, \mathrm{b_{1}}] and if |{}_\mathrm{b_{0}}\tilde{D}_{\mathrm{q}}\mathfrak{f}| is convex on [\mathrm{b_{0}}, \mathrm{b_{1}}] , then the \mathrm{q} -symmetric midpoint type inequality holds:

    \begin{align*} &\left| \mathfrak{f}\left(\dfrac{(1-\mathrm{q}+\mathrm{q}^{2})\mathrm{b_{0}}+\mathrm{q}\mathrm{b_{1}}}{1+\mathrm{q}^{2}}\right)-\mathrm{\dfrac{1}{\mathrm{b_{1}}-\mathrm{b_{0}}} \int_{\mathrm{b_{0}}}^{\mathrm{b_{1}}} \mathfrak{f}(\mathrm{x}) \ _{\mathrm{b_{0}}} \tilde{d}_{\mathrm{q}} \mathrm{x}}\right|\notag\\ &\leqslant \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left( \dfrac{1}{1+\mathrm{q}^2}\right)^{\frac{3}{\mathrm{s}}} \left[\mathfrak{V}_{1}(\mathrm{q})\left( |{}_\mathrm{b_{0}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})|^{\mathrm{r}} \ \mathfrak{Q}_{1}(\mathrm{q})+|{}_\mathrm{b_{0}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})|^{\mathrm{r}} \ \mathfrak{Q}_{2}(\mathrm{q})\right)^{\frac{1}{\mathrm{r}}}\right. \notag\\&\,\,\,\,\,\,+\left.\mathfrak{V}_{2}(\mathrm{q})\left( |{}_\mathrm{b_{0}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})|^{\mathrm{r}} \ \mathfrak{Q}_{3}(\mathrm{q})+|{}_\mathrm{b_{0}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})|^{\mathrm{r}} \ \mathfrak{Q}_{4}(\mathrm{q})\right)^{\frac{1}{\mathrm{r}}} \right] \end{align*}

    where

    \begin{align*} &\mathfrak{Q}_{1}(\mathrm{q}) = \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{q}\mathrm{t}^{2} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{\mathrm{q}^{3}}{(1+\mathrm{q}^{2})^{3}(1+\mathrm{q}^{2}+\mathrm{q}^{4})},\\ &\mathfrak{Q}_{2}(\mathrm{q}) = \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{\mathrm{q}+\mathrm{q}^{5}}{(1+\mathrm{q}^{2})^{3}(1+\mathrm{q}^{2}+\mathrm{q}^{4})}, \\ &\mathfrak{Q}_{3}(\mathrm{q}) = \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)\mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{2\mathrm{q}^{2}+3\mathrm{q}^{4}-3\mathrm{q}^{5}+3\mathrm{q}^{6}-3\mathrm{q}^{7} +\mathrm{q}^8-\mathrm{q}^9}{(1+\mathrm{q}^2)^{3}(1+\mathrm{q}^2+\mathrm{q}^4)}, \\ &\mathfrak{Q}_{4}(\mathrm{q}) = \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} = \dfrac{\mathrm{q}^{2}+\mathrm{q}^{4}-2\mathrm{q}^{5} +\mathrm{q}^{6}}{\mathrm{q}^{2}(1+\mathrm{q}^{2})^{3}(1+\mathrm{q}^{2}+\mathrm{q}^{4})}, \\ &\mathfrak{V}_{1}(\mathrm{q}) = \mathrm{q}^{\frac{1}{\mathrm{s}}} \end{align*}

    and

    \begin{align*} \mathfrak{V}_{2}(\mathrm{q}) = (1+2\mathrm{q}^{2}-2\mathrm{q}^{3}+\mathrm{q}^{4}-\mathrm{q}^{5})^{\frac{1}{\mathrm{s}}}, \quad (\mathrm{s}^{-1}+\mathrm{r}^{-1} = 1). \end{align*}

    Proof. Using Lemma 3.1, estimate

    \begin{align*} &\left| \mathfrak{f}\left(\dfrac{(1-\mathrm{q}+\mathrm{q}^{2})\mathrm{b_{0}}+\mathrm{q}\mathrm{b_{1}}}{1+\mathrm{q}^{2}}\right)-\dfrac{1}{\mathrm{b_{1}}-\mathrm{b_{0}}} \int_{\mathrm{b_{0}}}^{\mathrm{b_{1}}} \mathfrak{f}(\mathrm{x}) \ _{\mathrm{b_{0}}} \tilde{d}_{\mathrm{q}} \mathrm{x}\right| \leqslant \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\\ &\times\left[\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}})\right| \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} +\int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right) \left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}}) \right| \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right]\\ \leqslant& \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left[\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}^{\frac{1}{\mathrm{s}}}\mathrm{t}^{\frac{1}{\mathrm{r}}}\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}})\right| \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right.\\&+\left.\int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)^{\frac{1}{\mathrm{s}}}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}}) \right| \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right]\\ \leqslant& \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left[\left( \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{s}}} \left( \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}})\right|^{\mathrm{r}} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right.\\&+\left.\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-t \right)\ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right) ^{\frac{1}{\mathrm{s}}}\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right) \left|_{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{q}\mathrm{t}\mathrm{b_{1}}+(1-\mathrm{q}\mathrm{t})\mathrm{b_{0}}) \right|^{\mathrm{r}} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right] \end{align*}
    \begin{align*} \leqslant& \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left[\dfrac{\mathrm{q}^{\frac{1}{\mathrm{s}}}}{(1+\mathrm{q}^2)^{\frac{3}{\mathrm{s}}}}\left( \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}t\left\lbrace \mathrm{q}\mathrm{t} \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}+(1-\mathrm{q}\mathrm{t})\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\right\rbrace \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right.\\&+\left.\dfrac{(1+2\mathrm{q}^{2}-2\mathrm{q}^{3}+\mathrm{q}^{4}-\mathrm{q}^{5})^{\frac{1}{\mathrm{s}}}}{(1+\mathrm{q}^2)^{\frac{3}{\mathrm{s}}}}\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)\left\lbrace \mathrm{q}\mathrm{t} \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}+(1-\mathrm{q}\mathrm{t})\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\right\rbrace \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right]\\ \leqslant& \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left( \dfrac{1}{1+\mathrm{q}^{2}}\right)^{\frac{3}{\mathrm{s}}} \left[\mathrm{q}^{\frac{1}{\mathrm{s}}}\left( \int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}t\left\lbrace \mathrm{q}\mathrm{t} \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}+(1-\mathrm{q}\mathrm{t})\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\right\rbrace \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right.\\&+\left.(1+2\mathrm{q}^{2}-2\mathrm{q}^{3}+\mathrm{q}^{4}-\mathrm{q}^{5})^{\frac{1}{\mathrm{s}}}\left( \int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)\left\lbrace \mathrm{q}\mathrm{t} \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}+(1-\mathrm{q}\mathrm{t})\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\right\rbrace \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} \right)^{\frac{1}{\mathrm{r}}} \right]\\ \leqslant& \mathrm{q}^{2}(\mathrm{b_{1}}-\mathrm{b_{0}})\left( \dfrac{1}{1+\mathrm{q}^{2}}\right)^{\frac{3}{\mathrm{s}}} \left[\mathfrak{V}_{1}(\mathrm{q})\left( \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{q}\mathrm{t}^{2} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}+\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\int_{0}^{\frac{1}{1+\mathrm{q}^{2}}}\mathrm{t}(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right)^{\frac{1}{\mathrm{r}}} \right.\\&+\left.\mathfrak{V}_{2}(\mathrm{q})\left( \left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{1}})\right|^{\mathrm{r}}\int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right) \mathrm{q}\mathrm{t} \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t} +\left| _{\mathrm{b_{0}}}\tilde{D}_{\mathrm{q}}\mathfrak{f}(\mathrm{b_{0}})\right|^{\mathrm{r}}\int_{\frac{1}{1+\mathrm{q}^{2}}}^{1}\left(\dfrac{1}{\mathrm{q}^{2}}-\mathrm{t} \right)(1-\mathrm{q}\mathrm{t}) \ _{0}\tilde{d}_{\mathrm{q}}\mathrm{t}\right) ^{\frac{1}{\mathrm{r}}} \right]. \end{align*}

    Using (3.3)–(3.6) from Theorem 3.3, we get required result.

    Remark 3.10. If \mathrm{q} approaches 1 in Theorem 3.9, then we will get Corollary 22 of [12].

    In this work, we constructed new results of Hermite-Hadamard and midpoint-type inequalities using the basic definition of symmetric quantum calculus. We also analyzed that, when q \to 1 , the newly acquired inequalities transformed into classical Hermite-Hadamard and midpoint-type inequalities. Examples were considered to verify the newly acquired inequalities. These inequalities may be more helpful to obtain new results in symmetric quantum calculus for further publications.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project number (PSAU/2023/01/90102).

    The authors declare no conflicts of interest.



    [1] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [2] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
    [3] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [4] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser Basel, 2012. https://doi.org/10.1007/978-3-0348-0431-8
    [5] T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. https://doi.org/10.2991/jnmp.2003.10.4.5 doi: 10.2991/jnmp.2003.10.4.5
    [6] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9
    [7] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
    [8] N. D. Phuong, F. M. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. https://doi.org/10.1186/s13662-020-03092-z doi: 10.1186/s13662-020-03092-z
    [9] S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469
    [10] S. Etemad, S. Rezapour, M. E. Samei, \alpha-\psi-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results, Adv. Differ. Equ., 2020 (2020), 218. https://doi.org/10.1186/s13662-020-02679-w doi: 10.1186/s13662-020-02679-w
    [11] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
    [12] N. Alp, M. Z. Sarikaya, M. Kunt, I. Iscan, q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
    [13] S. Bermudo, P. Kórus, J. E. N. Valdés, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
    [14] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
    [15] H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones J. Math., 40 (2021), 199–215. https://doi.org/10.22199/issn.0717-6279-2021-01-0013 doi: 10.22199/issn.0717-6279-2021-01-0013
    [16] S. I. Butt, M. Umar, H. Budak, New study on the quantum midpoint-type inequalities for twice q-differentiable functions via the Jensen-Mercer inequality, Symmetry, 15 (2023), 1038. https://doi.org/10.3390/sym15051038 doi: 10.3390/sym15051038
    [17] H. Budak, S. Erden, M. A. Ali, Simpson's and Newton's type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44 (2020), 378–390. https://doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742
    [18] W. Luangboon, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Simpson- and Newton-type inequalities for convex functions via (p, q)-calculus, Mathematics, 9 (2021), 1338. https://doi.org/10.3390/math9121338 doi: 10.3390/math9121338
    [19] S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14 (2022), 1935. https://doi.org/10.3390/sym14091935 doi: 10.3390/sym14091935
    [20] S. I. Butt, Q. U. Ain, H. Budak, New quantum variants of Simpson-Newton type inequalities via (\alpha, m)-convexity, Korean J. Math., 31 (2023), 161–180. https://doi.org/10.11568/kjm.2023.31.2.161 doi: 10.11568/kjm.2023.31.2.161
    [21] M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ. Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001
    [22] S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized-convex functions with applications, J. Funct. Spaces, 2021 (2021), 6631474. https://doi.org/10.1155/2021/6631474 doi: 10.1155/2021/6631474
    [23] M. J. Vivas-Cortez, A. Kashuri, R. Liko, J. E. Hernández, Quantum trapezium-type inequalities using generalized \phi-convex functions, Axioms, 9 (2020), 12. https://doi.org/10.3390/axioms9010012 doi: 10.3390/axioms9010012
    [24] M. A. Khan, N. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
    [25] S. Asawasamrit, C. Sudprasert, S. K. Ntouyas, J. Tariboon, Some results on quantum Hahn integral inequalities, J. Inequal. Appl., 2019 (2019), 154. https://doi.org/10.1186/s13660-019-2101-z doi: 10.1186/s13660-019-2101-z
    [26] S. Chasreechai, M. A. Ali, M. A. Ashraf, T. Sitthiwirattham, S. Etemad, M. De la Sen, et al., On new estimates of q-Hermite-Hadamard inequalities with applications in quantum calculus, Axioms, 12 (2023), 49. https://doi.org/10.3390/axioms12010049 doi: 10.3390/axioms12010049
    [27] A. M. C. B. da Cruz, N. Martins, The q-symmetric variational calculus, Comput. Math. Appl., 64 (2012), 2241–2250. https://doi.org/10.1016/j.camwa.2012.01.076 doi: 10.1016/j.camwa.2012.01.076
    [28] A. Lavagno, G. Gervino, Quantum mechanics in q-deformed calculus, J. Phys.: Conf. Ser., 174 (2009), 012071. https://doi.org/10.1088/1742-6596/174/1/012071 doi: 10.1088/1742-6596/174/1/012071
    [29] A. Nosheen, S. Ijaz, K. A. Khan, K. M. Awan, M. A. Albahar, M. Thanoon, Some q-symmetric integral inequalities involving s-convex functions, Symmetry, 15 (2023), 1169. https://doi.org/10.3390/sym15061169 doi: 10.3390/sym15061169
    [30] M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133–153. https://doi.org/10.1007/s10957-012-9987-7 doi: 10.1007/s10957-012-9987-7
    [31] J. L. Cardoso, E. M. Shehata, Hermite-Hadamard inequalities for quantum integrals: A unified approach, Appl. Math. Comput., 463 (2024), 128345. https://doi.org/10.1016/j.amc.2023.128345 doi: 10.1016/j.amc.2023.128345
    [32] J. Hadamard, \acute{E}tude sur les propri\acute{e}t\acute{e}s des fonctions enti\grave{e}res et en particulier d'une fonction consid\acute{e}r\acute{e}e par Riemann, J. Math. Pures Appl., 58 (1893), 171–216.
  • This article has been cited by:

    1. Saad Ihsan Butt, Muhammad Nasim Aftab, Youngsoo Seol, Symmetric Quantum Inequalities on Finite Rectangular Plane, 2024, 12, 2227-7390, 1517, 10.3390/math12101517
    2. Ammara Nosheen, Sana Ijaz, Khuram Ali Khan, Khalid Mahmood Awan, Hüseyin Budak, Quantum symmetric integral inequalities for convex functions, 2024, 47, 0170-4214, 14878, 10.1002/mma.10310
    3. Asawathep Cuntavepanit, Sotiris K. Ntouyas, Jessada Tariboon, Right Quantum Calculus on Finite Intervals with Respect to Another Function and Quantum Hermite–Hadamard Inequalities, 2024, 13, 2075-1680, 466, 10.3390/axioms13070466
    4. Saad Ihsan Butt, Muhammad Nasim Aftab, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin, Novel notions of symmetric Hahn calculus and related inequalities, 2024, 2024, 1029-242X, 10.1186/s13660-024-03228-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1240) PDF downloads(90) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog