Citation: Kaile Chen, Yunyun Liang, Nengqiu Zhang. Correction: Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force[J]. AIMS Mathematics, 2024, 9(3): 5480-5481. doi: 10.3934/math.2024265
[1] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
[2] | Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321 |
[3] | Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373 |
[4] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[5] | Jianxia He, Ming Li . Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375 |
[6] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[7] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
[8] | Linlin Tan, Meiying Cui, Bianru Cheng . An approach to the global well-posedness of a coupled 3-dimensional Navier-Stokes-Darcy model with Beavers-Joseph-Saffman-Jones interface boundary condition. AIMS Mathematics, 2024, 9(3): 6993-7016. doi: 10.3934/math.2024341 |
[9] | Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403 |
[10] | Peng Lv . Structured backward errors analysis for generalized saddle point problems arising from the incompressible Navier-Stokes equations. AIMS Mathematics, 2023, 8(12): 30501-30510. doi: 10.3934/math.20231558 |
Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force
by Kaile Chen, Yunyun Liang and Nengqiu Zhang. AIMS Mathematics, 2023, 8(11): 27712–27724. DOI: 10.3934/math.20231418
The author would like to make the following correction to the published paper [1]. The change is as follows:
Deleting Yunyun Liang's affliation 2, and only retain the affliation 1:
From
Kaile Chen1, Yunyun Liang1,2,* and Nengqiu Zhang3
1 School of information and mathematics, Yangtze University, Jingzhou 434023, China
2 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
3 School of Science, East China University of Science and Technology, Shanghai 200237, China
To
Kaile Chen1, Yunyun Liang1,* and Nengqiu Zhang2
1 School of information and mathematics, Yangtze University, Jingzhou 434023, China
2 School of Science, East China University of Science and Technology, Shanghai 200237, China
The change has no material impact on the conclusion of this article. The original manuscript will be updated[1]. We apologize for any inconvenience caused to our readers by this change.
The authors declare no conflict of interest.
[1] |
K. Chen, Y. Liang, N. Zhang, Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force, AIMS Mathematics, 8 (2023), 27712–27724. http://dx.doi.org/10.3934/math.20231418 doi: 10.3934/math.20231418
![]() |