The initial value problem in Cauchy-type under the $ (k, \psi) $-Caputo proportional fractional operators was our focus in this paper. An extended Gronwall inequality and its properties were analyzed. The existence and uniqueness results were proven utilizing the fixed point theory of Banach's and Leray-Schauder's types. The qualitative analysis included results for Ulam-Mittag-Leffler stability, which was also investigated. Using a decomposition principle, a novel numerical technique was presented for the $ (k, \psi) $-Caputo proportional fractional derivative operator. Finally, theoretical results were supported with numerical examples to demonstrate their practical application, especially to blood alcohol level problems.
Citation: Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan. Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model[J]. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
The initial value problem in Cauchy-type under the $ (k, \psi) $-Caputo proportional fractional operators was our focus in this paper. An extended Gronwall inequality and its properties were analyzed. The existence and uniqueness results were proven utilizing the fixed point theory of Banach's and Leray-Schauder's types. The qualitative analysis included results for Ulam-Mittag-Leffler stability, which was also investigated. Using a decomposition principle, a novel numerical technique was presented for the $ (k, \psi) $-Caputo proportional fractional derivative operator. Finally, theoretical results were supported with numerical examples to demonstrate their practical application, especially to blood alcohol level problems.
[1] | I. Podlubny, Fractional Differential Equations Mathematics in Science and Engineering, Academic Press, San Diego, C.A., (1999). |
[2] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000). |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional differential Equations, North-Holland Math. Stud., Elsevier Science B.V., Amsterdam, (2006). |
[4] | K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science, Business Media: Berlin/Heidelberg, Germany, (2010). https://doi.org/10.1007/978-3-642-14574-2 |
[5] | B. Ahmad, S. K. Ntouyas, Nonlocal Nonlinear Fractional-Order Boundary Value Problems, World Scientific, Singapore, (2021). |
[6] | Vanterler da C. Sousa, E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Common. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[7] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |
[8] | J. Alzabut, T. Abdeljawad, J. F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |
[9] | W. Sudsutad, C. Thaiprayoon, B. Khaminsou, J. Kongson, J. Alzabut, A Gronwall inequality and its applications to the Cauchy-type problem under $\psi$-Hilfer proportional fractional operators, J. Inequal. Appl., 2023 (2023), 20. https://doi.org/10.1186/s13660-023-02929-x doi: 10.1186/s13660-023-02929-x |
[10] | J. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x |
[11] | I. Ahmed, P. Kumam, J. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w |
[12] | J. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014 |
[13] | I. Mallah, I. Ahmad, A. Akgul, F. Jarad, S. Alha, On $\psi$-Hilfer generalized proportional fractional operators, AIMS Math., 7 (2021), 82–103. https://doi.org/10.3934/math.2022005 doi: 10.3934/math.2022005 |
[14] | A. Aphithana, W. Sudsutad, J. Kongson, C. Thaiprayoon, Measure of non-compactness for nonlocal boundary value problems via $(k, \psi)$-Riemann-Liouville derivative on unbounded domain. AIMS Math., 8 (2023), 20018–20047. https://doi.org/10.3934/math.20231020 doi: 10.3934/math.20231020 |
[15] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, AIMS Math., 7 (2012), 89–94. |
[16] | G. A. Dorrego, An alternative definition for the $k$-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481–491. https://doi.org/10.12988/ams.2015.411893 doi: 10.12988/ams.2015.411893 |
[17] | Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, Appl. Math. Sci., 6 (2015), 64946–64953. |
[18] | K. D. Kucche, A. D. Mail, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. |
[19] | T. A. Aljaaidi, D. B. Pachpatte, M. S. Abdo, T. Botmart, H. Ahmad, M. A. Almalahi, et al., $(k, \psi)$-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, Fractal Fract., 5 (2021), 172. https://doi.org/10.3390/fractalfract5040172 doi: 10.3390/fractalfract5040172 |
[20] | D. Boucenna, D. Baleanu, A. B. Makhlouf, A. M. Nagy, Analysis and numerical solution of the generalized proportional fractional Cauchy problem, Appl. Numer. Math., 167 (2021), 173–186. https://doi.org/10.1016/j.apnum.2021.04.015 doi: 10.1016/j.apnum.2021.04.015 |
[21] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional Differential Equations with Dependence on the Caputo-Katugampola Derivative, J. Comput. Nonlinear Dyn., 11 (2016). https://doi.org/10.1115/1.4034432 doi: 10.1115/1.4034432 |
[22] | T. M. Atanacković, B. Stankovic, On a Numerical Scheme for Solving Differential Equations of Fractional Order, Mech. Res. Commun., 35 (2008), 429–443. https://doi.org/10.1016/j.mechrescom.2008.05.003 doi: 10.1016/j.mechrescom.2008.05.003 |
[23] | S. Pooseh, R. Almeida, D. F. M. Torres, Numerical approximations of fractional derivatives with applications, Asian J. Control, 15 (2013), 698–712. https://doi.org/10.1002/asjc.617 doi: 10.1002/asjc.617 |
[24] | S. Pooseh, R. Almeida, D. F. M. Torres, Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative, Numer. Funct. Anal. Optim., 33 (2012), 301–319. https://doi.org/10.1002/asjc.617 doi: 10.1002/asjc.617 |
[25] | W. Sudsutad, J. Kongson, C. Thaiprayoon, On generalized $(k, \psi)$-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, Bound. Value Probl., 2024 (2024), 83. https://doi.org/10.1186/s13661-024-01891-x doi: 10.1186/s13661-024-01891-x |
[26] | S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. https://doi.org/10.1063/1.5082907 doi: 10.1063/1.5082907 |
[27] | F. Norouzi, G. M. N'Guérékata, A study of $\psi$-Hilfer fractional differential system with application in financial crisis, Chaos, Soliton. Fract., 6 (2021), 100056. https://doi.org/10.1016/j.csfx.2021.100056 doi: 10.1016/j.csfx.2021.100056 |
[28] | M. Awadalla, Y. Y. Y. Noupoue, K. A. Asbeh, N. Ghiloufi, Modeling Drug Concentration Level in Blood Using Fractional Differential Equation Based on Psi-Caputo Derivative, J. Math., 2022 (2022), 9006361. https://doi.org/10.1155/2022/9006361 doi: 10.1155/2022/9006361 |
[29] | O. K. Wanassi, D. F. M. Torres, Modeling blood alcohol concentration using fractional differential equations based on the $\psi$-Caputo derivative, Math. Meth. Appl. Sci., 47 (2024), 7793–7803. https://doi.org/10.1002/mma.10002 doi: 10.1002/mma.10002 |
[30] | M. Aydin, N. I. Mahmudov, The sequential conformable Langevin-Type differential equations and their applications to the RLC electric circuit problems, J. Appl. Math., 2024 (2024), 3680383. https://doi.org/10.1155/2024/3680383 doi: 10.1155/2024/3680383 |
[31] | M. A. Zaitri, H. Zitane, D. F. M. Torres, Pharmacokinetic/Pharmacodynamic anesthesia model incorporating psi-Caputo fractional derivatives, Comput. Biol. Med., 167 (2023), 107679. https://doi.org/10.1016/j.compbiomed.2023.107679 doi: 10.1016/j.compbiomed.2023.107679 |
[32] | R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Hilfer–Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014), 576–589. https://doi.org/10.1016/j.amc.2014.05.129 doi: 10.1016/j.amc.2014.05.129 |
[33] | M. Samraiz, Z. Perveen, G. Rahman, K. S. Nisar, D. Kumar, On the $(k, s)$-Hilfer-Prabhakar Fractional Derivative With Applications to Mathematical Physics, Front. Phys., 8 (2020), 309. https://doi.org/10.3389/fphy.2020.00309 doi: 10.3389/fphy.2020.00309 |
[34] | N. Hatime, S. Melliani, A. El Mfadel, M. H. Elomari, Numerical Analysis of Generalized Fractional Form of Newton's Cooling Law Under a Variable Environment Temperature, Int. J. Appl. Comput. Math., 10 (2024), 61. https://doi.org/10.1007/s40819-024-01705-9 doi: 10.1007/s40819-024-01705-9 |
[35] | M. Awadalla, Y. Y. Y. Noupoue, K. A. Asbeh, $\psi$-Caputo Logistic Population Growth Model, J. Math., 2021 (2021), Article ID 8634280. https://doi.org/10.1155/2021/8634280 doi: 10.1155/2021/8634280 |
[36] | B. Mohammadaliee, V. Room, M. E. Samei, SEIARS model for analyzing COVID-19 pandemic process via $\psi$-Caputo fractional derivative and numerical simulation, Sci. Rep., 14 (2024), 723. https://doi.org/10.1038/s41598-024-51415-x doi: 10.1038/s41598-024-51415-x |
[37] | S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, (1968). |
[38] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[39] | T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1 |
[40] | N. Eghbali, V. Kalvandi, J. M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math, 14 (2016), 237–246. https://doi.org/10.1515/math-2016-0019 doi: 10.1515/math-2016-0019 |
[41] | K. Deimling, Nonlinear Functional Analysis, Springer, New York, NY, USA (1985). |
[42] | A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA (2005). |
[43] | R. Garrappa, Some Formulas for Sums of Binomial Coefficients and Gamma Functions, Int. Math. Forum, 2 (2007), 725–733. https://doi.org/10.1515/math-2016-0019 doi: 10.1515/math-2016-0019 |
[44] | F. G. Tricomi, A. Erdélyi, The asymptotic expansion of a ratio of Gamma function, Pac. J. Math., 1 (1951), 133–142. https://doi.org/10.2140/pjm.1951.1.133 doi: 10.2140/pjm.1951.1.133 |