Research article

Nearly Menger covering property via bitopological spaces

  • Received: 28 October 2024 Revised: 24 November 2024 Accepted: 27 November 2024 Published: 03 December 2024
  • MSC : 54A10, 54D20, 54E55

  • This paper is a continuation and complement for previous works on selective covering properties. We introduce the novel concept of the nearly Menger property in a bitopological context. We demonstrate its interrelations with existing covering properties and construct certain equivalences between those. We also investigate various properties of nearly Menger bitopological spaces by considering it under subspaces, products, and certain type of mappings.

    Citation: Necati Can Açıkgöz, Ceren Sultan Elmalı. Nearly Menger covering property via bitopological spaces[J]. AIMS Mathematics, 2024, 9(12): 34042-34066. doi: 10.3934/math.20241623

    Related Papers:

  • This paper is a continuation and complement for previous works on selective covering properties. We introduce the novel concept of the nearly Menger property in a bitopological context. We demonstrate its interrelations with existing covering properties and construct certain equivalences between those. We also investigate various properties of nearly Menger bitopological spaces by considering it under subspaces, products, and certain type of mappings.



    加载中


    [1] W. Hurewicz, Über eine verallgemeinerung des Borelschen theorems, Math. Z., 24 (1926), 401–421. https://doi.org/10.1007/BF01216792 doi: 10.1007/BF01216792
    [2] K. Menger, Einige Uberdeckungssätze der Punktmengenlehren, Gedruckt Unterstutzung Jerome Margaret Stonborough, 133 (1924), 421–444.
    [3] M. Scheepers, Combinatorics of open covers Ⅰ: Ramsey theory, Topol. Appl., 69 (1996), 31–62. https://doi.org/10.1016/0166-8641(95)00067-4 doi: 10.1016/0166-8641(95)00067-4
    [4] W. Just, A. W. Miller, M. Scheepers, P. J. Szeptycki, The combinatorics of open covers Ⅱ, Topol. Appl., 73 (1996), 241–266. https://doi.org/10.1016/S0166-8641(96)00075-2 doi: 10.1016/S0166-8641(96)00075-2
    [5] M. Scheepers, Selection principles and covering properties in topology, Note Mat., 22 (2003), 3–41. https://doi.org/10.1285/I15900932V22N2P3 doi: 10.1285/I15900932V22N2P3
    [6] F. Rothberger, Eine verscharfung der eigenschaft $c$, Fund. Math., 30 (1938), 50–55. https://doi.org/10.4064/FM-30-1-50-55 doi: 10.4064/FM-30-1-50-55
    [7] T. Banakh, D. Repovš, Universal nowhere dense and meager sets in Menger manifolds, Topol. Appl., 161 (2014), 127–140. https://doi.org/10.1016/j.topol.2013.09.012 doi: 10.1016/j.topol.2013.09.012
    [8] D. Repovs, L. Zdomskyy, S. Zhang, Countable dense homogeneous filters and the Menger covering property, arXiv, 2014. https://doi.org/10.48550/arXiv.1406.0692
    [9] M. Scheepers, Selection principles and Baire spaces, Mat. Vesn., 61 (2009), 195–202.
    [10] D. Kocev, Almost Menger and related spaces, Mat. Vesn., 61 (2009), 173–180.
    [11] L. D. Kočinac, Star Menger and related spaces Ⅱ, Filomat, 13 (1999), 129–140.
    [12] L. D. Kočinac, Generalized open sets and selection properties, Filomat, 33 (2019), 1485–1493. https://doi.org/10.2298/fil1905485k doi: 10.2298/fil1905485k
    [13] L. D. Kočinac, T. M. Al-Shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput., 25 (2021), 12693–12702. https://doi.org/10.1007/s00500-021-06069-6 doi: 10.1007/s00500-021-06069-6
    [14] T. M. Al-Shami, L. D. Kočinac, Nearly soft Menger spaces, J. Math., 2020 (2020), 3807418. https://doi.org/10.1155/2020/3807418 doi: 10.1155/2020/3807418
    [15] T. M. Al-Shami, L. D. Kočinac, Almost soft Menger and weakly soft Menger spaces, Appl. Comput. Math., 21 (2022), 35–51. https://doi.org/10.30546/1683-6154.21.1.2022.35 doi: 10.30546/1683-6154.21.1.2022.35
    [16] S. Özçağ, A. E. Eysen, Almost Menger property in bitopological spaces, Ukr. Math. J., 68 (2016), 950–958. https://doi.org/10.1007/s11253-016-1268-4 doi: 10.1007/s11253-016-1268-4
    [17] A. E. Eysen, S. Özçağ, Weaker forms of the Menger property in bitopological spaces, Quaest. Math., 41 (2018), 877–888.
    [18] A. E. Eysen, S. Özçağ, Investigations on weak versions of the Alster property in bitopological spaces and selection principles, Filomat, 33 (2019), 4561–4571. https://doi.org/10.2298/fil1914561E doi: 10.2298/fil1914561E
    [19] L. D. Kočinac, S. Özçağ, Versions of separability in bitopological spaces, Topol. Appl., 158 (2011), 1471–1477. https://doi.org/10.1016/j.topol.2011.05.019 doi: 10.1016/j.topol.2011.05.019
    [20] L. D. Kočinac, S. Özçağ, Bitopological spaces and selection principles, Proc. ICTA, 2011,243–255.
    [21] D. Lyakhovets, A. V. Osipov, Selection principles and games in bitopological function spaces, Filomat, 33 (2019), 4535–4540. https://doi.org/10.2298/fil1914535L doi: 10.2298/fil1914535L
    [22] A. V. Osipov, S. Özçağ, Variations of selective separability and tightness in function spaces with set-open topologies, Topol. Appl., 217 (2017), 38–50. https://doi.org/10.1016/j.topol.2016.12.010 doi: 10.1016/j.topol.2016.12.010
    [23] L. D. Kočinac, Variations of classical selection principles: an overview, Quaest. Math., 43 (2020), 1121–1153. https://doi.org/10.2989/16073606.2019.1601646 doi: 10.2989/16073606.2019.1601646
    [24] H. V. Chauhan, B. Singh, On almost Hurewicz property in bitopological spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70 (2021), 74–81. https://doi.org/10.31801/cfsuasmas.710601 doi: 10.31801/cfsuasmas.710601
    [25] N. C. Açıkgöz, C. S. Elmalı, On almost set-Menger spaces in bitopological context, AIMS Math., 7 (2022), 20579–20593. https://doi.org/10.3934/math.20221128 doi: 10.3934/math.20221128
    [26] A. E. Eysen, S. Özçağ, Games relating to weak covering properties in bitopological spaces, Turk. J. Math., 44 (2020) 2297–2305. https://doi.org/10.3906/mat-2004-25 doi: 10.3906/mat-2004-25
    [27] R. Engelking, General topology, Berlin Heldermann, 1989.
    [28] B. P. Dvalishvili, Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Elsevier, 2005. https://doi.org/10.1016/s0304-0208(05)x8090-2
    [29] A. Parvez, M. D. Khan, On nearly Menger and nearly star-Menger spaces, Filomat, 33 (2019), 6219–6227. https://doi.org/10.2298/fil1919219a doi: 10.2298/fil1919219a
    [30] L. A. Steen, J. A. Seebach, Counterexamples in topology, Dover Publication, 1995.
    [31] A. R. Singal, S. P. Arya, On pairwise almost regular spaces, Glasnik Math., 6 (1971), 335–343.
    [32] F. Commaroto, G. Santoro, Some counterexamples and properties on generalizations of Lindelöf spaces, Int. J. Math. Math. Sci., 19 (1996), 737–746. https://doi.org/10.1155/S0161171296001020 doi: 10.1155/S0161171296001020
    [33] M. K. Singal, A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Son. Sci. Bruxelles, 84 (1970), 207–230.
    [34] A. Kilicman, Z. Salleh, On the pairwise weakly Lindelöf bitopological spaces, Bull. Iran. Math. Soc., 39 (2013), 469–486.
    [35] Z. Salleh, A. Kilicman, On pairwise nearly Lindelöf bitopological spaces, Far East J. Math. Sci., 77 (2013), 147–171.
    [36] S. N. Maheshwari, R. Prasad, Semi open sets and semi continuous function in bitopological spaces, Math. Notae, 26 (1977), 29–37.
    [37] F. H. Khedr, A. M. Alshibani, On pairwise supercontinuous mappings in bitopological spaces, Int. J. Math. Math. Sci., 14 (1991), 715–722. https://doi.org/10.1155/S0161171291000960 doi: 10.1155/S0161171291000960
    [38] M. C. Datta, Projective bitopological spaces Ⅱ, J. Aust. Math. Soc., 14 (1972), 119–128. https://doi.org/10.1017/S1446788700009708 doi: 10.1017/S1446788700009708
    [39] A. Lelek, Some cover properties of spaces, Fund. Math., 64 (1969), 209–218. https://doi.org/10.4064/FM-64-2-209-218 doi: 10.4064/FM-64-2-209-218
    [40] G. K. Banerjee, On pairwise almost strongly $\theta$-continuous mappings, Bull. Cal. Math. Soc., 79 (1987), 314–320.
    [41] A. Sabah, M. D. Khan, L. D. Kočinac, Covering properties defined by semi-open sets, J. Nonlinear Sci. Appl., 9 (2016), 4388–4398. https://doi.org/10.22436/jnsa.009.06.79 doi: 10.22436/jnsa.009.06.79
    [42] M. Kule, Ş. Dost, $\beta$-selection properties in ditopological texture spaces, Sigma J. Eng. Nat. Sci., 38 (2020), 1019–1029.
    [43] F. H. Khedr, S. M. Al-Areefi, T. Noiri, Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23 (1992), 625–633.
    [44] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3 (1990), 25–29.
    [45] S. S. Kumar, On decomposition of pairwise continuity, Bull. Cal. Math. Soc., 89 (1997), 441–446.
    [46] G. Thamizharasi, P. Thangavelu, Remarks on closure and interior operators in bitopological spaces, J. Math. Sci. Comput. Appl., 1 (2010), 1–8. https://doi.org/10.5147/jmsca.v1i1.85 doi: 10.5147/jmsca.v1i1.85
    [47] N. C. Açıkgöz, C. S. Elmalı, On the extension of SD sets by using generalized open sets in bitopological spaces, Int. J. Nonlinear Anal. Appl., 14 (2023), 1627–1638. https://doi.org/10.22075/ijnaa.2022.27884.3747 doi: 10.22075/ijnaa.2022.27884.3747
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(269) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog