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1. Introduction

Fractional calculus has been a popular topic among scholars for almost three centuries. It is a
branch of mathematical analysis that deviates from classical calculus and extends the concepts of
derivatives and integrals to fractional-order. Differential equations under fractional-order are known
as fractional differential equations (FDEs), and they are used in various domains of real-world

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241622


34014

phenomena problems. It can be distinguished based on various criteria, such as the linearity of the
equation (linear or nonlinear). Its distinguishing traits, including flexibility, memory, and hereditary
properties, make it a powerful tool for modeling, evaluating, and regulating complex systems in many
disciplines, including applied science and engineering (see the books of Podlubny [1], Hilfer [2],
Kilbas, et al. [3], and Diethelm [4]), and a comprehensive work on boundary value problems with
fractional-order [5].

It is well known that fractional derivative operators (FDOs) are often defined in the sense of
fractional integral operators (FIOs) under the gamma function. In the field of fractional calculus,
various definitions of fractional derivatives have emerged, such as Riemann-Liouville (RL), Caputo,
Hadamard, Erdélyi-Kober, Katugampola, Hilfer, proportional, and so on, and each has different uses.
The RL-FIOs and RL-FDOs concerning a function ψ are studied as in [3]. These were used to
develop the ψ-Hilfer-FDO [6]. One FDO gaining attention is the proportional FDO [7]. This operator
has exponential functions in the kernels, which are more advantageous than other fractional operators.
For work regarding qualitative theory on proportional FDEs, see [8–14] and references cited therein.
In parallel, the k-gamma function defines and develops fractional calculus concepts, especially the
k-RL-FIOs and the k-RL-FDOs [15, 16]. After that, in 2018, the (k, ψ)-RL fractional operators were
proposed by [17]. Later, in 2021, Kucche and Mali proposed FDO under the (k, ψ)-Hilfer type [18],
which attracted many scholars’ curiosity. There are some other intriguing pieces, including those of
Aljaaidi et al. [19], which proved some properties of the (k, ψ)-proportional fractional operator
((k, ψ)-PFO) and presented a new technique to investigate the k-Pólya-Szegö integral inequalities in
2021. In the same year, Boucenna et al. [20] studied the existence and uniqueness of results and a
numerical technique for the Caputo proportional fractional Cauchy-type problem. While a numerical
technique based on the decomposition formula was used to solve the fractional Caputo-Katugampola
derivative operator [21], the analytical solutions of fractional differential equations are difficult and
complex, so numerical techniques are popular for solving these equations [22–24]. Sudsutad et
al. [25] developed the (k, ψ)-Hilfer-PFO, which cooperates the (k, ψ)-proportional fractional derivative
of RL’s and Caputo’s senses ((k, ψ)-RL-PFDO / (k, ψ)-Caputo-PFDO). They constructed the Laplace
transform concerning a function ψ of the proposed operator and applied it to solving the initial value
Cauchy-type problems. In the extension, a Cauchy-type problem for FDEs is commonly defined as an
initial value problem in which the goal is to find a function corresponding to the equation and the
provided beginning conditions. Furthermore, numerous researchers have popularly expressed their
robust findings by using a realistic application of fractional calculus in the context of diverse
operators for various real-world issues such as medicine, engineering, electrical, science, and finance.
For example, in 2019, Qureshi et al. [26] proposed the fractional modeling of the blood ethanal
concentration using three fractional operators such as Caputo, Atangana-Baleanu, and
Caputo-Fabrizio with the real data. In 2021, Norouzi and N’Guérékata [27] studied FDEs in the sense
of ψ-Hilfer-FDO and used the financial crisis as an application. In 2022, Awadalla et al. [28] used a
FDE in the sense of ψ-Caputo-FDO to study the model of drug concentration. In 2024, Wanassi and
Torres [29] utilized the blood alcohol model as an application of the fractional analysis based on the
ψ-Caputo-FDO. We refer the reader for more works in [30–36]. On the other hand, Ulam stability is a
popularly efficient tool for ensuring that the approximate solutions generated by numerical methods
remain close to the exact solutions. Numerous researchers have provided this to analyze the
mathematical stability of solutions in various fields, including fractional calculus and control theory.
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It was initially created by Ulam in 1940 [37]. The following year, Hyer designed the Ulam-Hyers
stability [38]. Presently, stability in the context of the Ulam’s type has developed into various
stabilities, such as Ulam-Hyers-Rassias stability [39] and Ulam-Hyer-Mittag-Leffler (UH-ML)
stability, which are extensions of Ulam stability that incorporates the Mittag-Leffler function [40], and
so on.

Motivated by the works [9, 20, 25], our major goals are to investigate the qualitative results and
numerical approximations for the following Cauchy-type problem under (k, ψ)-Caputo-PFDO

C
a,kD

α,ρ;ψu(τ) = f (τ, u(τ)), 0 < α ≤ 1, 0 < ρ ≤ 1,

u(a) = ua, ua ∈ R, τ ∈ [a, b], 0 ≤ a < b < +∞,
(1.1)

where C
a,kD

α,ρ;ψ is the (k, ψ)-Caputo-PFDO of α and f ∈ C([a, b]×R,R). To the best of our knowledge,
this problem has yet to be considered. Specifically, we provide an extended Gronwall inequality under
the (k, ψ)-PFOs to establish bounds on solutions, which is crucial in stability analysis. We investigate
the existence and uniqueness of results utilizing the standard fixed point theory of Banach’s and Leray-
Schauder’s types. Moreover, various UH–MT stability results are studied utilizing nonlinear functional
analysis techniques. In addition, we develop a novel numerical approach based on a decomposition
formula for solving the Cauchy-type problems. In the end, a blood alcohol level problem is presented
as an application to the proposed system. The following structure governs the remaining sections of
this work: In Sect. 2, we introduce the fundamental principles and some properties of the (k, ψ)-
PFDO and the (k, ψ)-PFIO. The required lemmas utilized throughout this paper are also presented.
In addition, we look at the extended Gronwall inequality under the aforementioned operators. The
qualitative results for a Cauchy-type problem are accomplished in the remaining sections. In Section
3, we investigate the existence of the solution using a fixed point theory of Leray-Schauder’s type,
while the uniqueness of the solution is proved using Banach’s contraction mapping principle. Then, a
variety of UH-ML stability results are established to ensure the results. In Section 4, we demonstrate
the numerical approach based on a decomposition formula for solving the Cauchy-type problems under
the (k, ψ)-Caputo-PFDO. Some illustrative examples, particularly the blood alcohol level problem, are
provided to help the accuracy of the theoretical results found in Section 5. In the final section, we
outline the course of our work.

2. Preliminaries

Suppose that C([a, b],R) is the Banach space of the continuous function u on [a, b] supplemented
with the supremum norm ∥u∥ = supτ∈[a,b] {|u(τ)|}. The space of the n-times absolutely continuous
function u on [a, b] is defined by ACn([a, b],R) = {u : [a, b] → R; u(n−1) ∈ AC([a, b],R)} and
Lp([a, b],R) is the Banach space of all Lebesgue measurable g : [a, b] → R supplemented with
∥g∥Lp < +∞. Assume that ψ : [a, b] → R is a strictly increasing continuous function under ψ′(τ) not
equal zero. For ease of calculation through this work, we provide a notation as follows:

ρ
kΨ

α
k −1
ψ (τ, s) = e

ρ−1
kρ (ψ(τ)−ψ(s)) (ψ(τ) − ψ(s))

α
k −1 . (2.1)

Now, we recall some definitions and lemmas of the (k, ψ)-PFDO and the (k, ψ)-PFIO that will be
applied in this work.
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Definition 2.1. ( [25]). Let α, k ∈ R+, 0 < ρ ≤ 1, and f ∈ L1([a, b],R). Then, the (k, ψ)-RL-PFIO of α
of f is defined by

a,kI
α,ρ;ψ f (τ) =

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s)ds,

where Γk(z) =
∫ ∞

0
sz−1e−

sk
k ds, z ∈ C, Re(z) > 0 and

Γk(z + k) = zΓk(z), Γk(k) = 1, Γk(z) = k
z
k−1Γ

( z
k

)
, Γ(z) = lim

k→1
Γk(z). (2.2)

Definition 2.2. ( [25]). Let α, k ∈ R+, 0 < ρ ≤ 1, f ∈ C([a, b],R), ψ(τ) ∈ Cn([a, b],R) with ψ′(τ) , 0,
and n = 1, 2, . . ., such that n = ⌊α/k⌋ + 1. Then, the (k, ψ)-RL-PFDO for α of f is defined by

RL
a,kD

α,ρ;ψ f (τ) = kD
n,ρ;ψ

(
a,kI

nk−α,ρ;ψ f (τ)
)
=

kD
n,ρ;ψ

ρ
nk−α

k kΓk(nk − α)

∫ τ

a

ρ
kΨ

nk−α
k −1

ψ (τ, s)ψ′(τ) f (s)ds,

where kD
n,ρ;ψ = kD

ρ;ψ
kD

ρ;ψ· · ·kD
ρ;ψ︸                 ︷︷                 ︸

n times

and kD
1,ρ;ψ f (τ) = kD

ρ;ψ f (τ) = (1 − ρ) f (τ) + kρ f ′(τ)
ψ′(τ) .

Definition 2.3. ( [25]). Let α, k ∈ R+, 0 < ρ ≤ 1, f ∈ Cn(J ,R), ψ(τ) ∈ Cn([a, b],R) with ψ′(τ) , 0,
and n ∈ 1, 2, . . ., such that n = ⌊α/k⌋ + 1. Then, the (k, ψ)-Caputo-PFDO for α of f is defined by

C
a,kD

α,ρ;ψ f (τ) = a,kI
nk−α,ρ;ψ

(
kD

n,ρ;ψ f (τ)
)
=

1

ρ
nk−α

k kΓk(nk − α)

∫ τ

a

ρ
kΨ

nk−α
k −1

ψ (τ, s)ψ′(s)
(

kD
n,ρ;ψ f (s)

)
ds.

Next, we give some important properties that are applied in this work.

Lemma 2.4. ( [25]). Let α, δ ∈ R+ ∪ {0}, k, η ∈ R+, 0 < ρ ≤ 1, ω ∈ R, ω/k > −1, and n = ⌊ω/k⌋ + 1.
Then,

(i) a,kI
α,ρ;ψ

[
ρ
kΨ

ω
k −1
ψ (τ, a)

]
=

Γk(ω)

ρ
α
k Γk(ω+α)

ρ
kΨ

ω+α
k −1

ψ (τ, a).

(ii) C
a,kD

α,ρ;ψ
[
ρ
kΨ

ω
k −1
ψ (τ, a)

]
=

ρ
α
k Γk(ω)
Γk(ω−α)

ρ
kΨ

ω−α
k −1

ψ (τ, a). Particularly, for m = 0, 1, . . . , n − 1, we obtain
C
a,kD

α,ρ;ψ
[
ρ
kΨ

m
ψ (τ, a)

]
= 0.

(iii) a,kI
α,ρ;ψ

(
a,kI

δ,ρ;ψ f (τ)
)
= a,kI

δ+α,ρ;ψ f (τ) = a,kI
δ,ρ;ψ

(
a,kI

α,ρ;ψ f (τ)
)
.

(iv) C
a,kD

ω,ρ;ψ
(

a,kI
η,ρ;ψ f (τ)

)
= a,kI

η−ω,ρ;ψ f (τ), where ω ∈ R+, ω < k, and η > nk.

(v) a,kI
α,ρ;ψ

(
C
a,kD

α,ρ;ψ f (τ)
)
= f (τ) −

n∑
i=1

ρ
kΨ

n−i
k −1

ψ (τ,a)

(ρk)n−i(n−i)! kD
n−i,ρ;ψ f (a), α ∈ (n − 1, n].

Now, we prove an extended Gronwall inequality under the (k, ψ)-PFOs, and its properties are
analyzed in the below Theorem.

Theorem 2.5. (An Extended (k, ψ)-Proportional Fractional Gronwall Inequality). Suppose that α > 0,
k > 0, ρ ∈ (0, 1], and ψ ∈ C1([a, b],R) is an increasing function so that ψ′(τ) not equal zero for every
τ ∈ [a, b]. Assume that the following hypotheses hold:

(H1) The two non-negative functions u(τ) and v(τ) are locally integrable on [a, b];
(H2) The function w(τ) is a non-decreasing, non-negative, and continuous function defined on [a, b]

such that w(τ) ≤ w∗ ∈ R.
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If

u(τ) ≤ v(τ) +
Γk(α)

k
w(τ)a,kI

α,ρ;ψu(τ), (2.3)

then, for any τ ∈ [a, b], we obtain

u(τ) ≤ v(τ) +
∫ τ

a

 ∞∑
n=1

[Γk(α)w(τ)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)v(s)

 ds. (2.4)

Proof. First, we define an operator

Au(τ) =
w(τ)
ρ
α
k k2

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)u(s)ds. (2.5)

From (2.5), we have u(τ) ≤ v(τ) +Au(τ). By applying the monotonicity of the operatorA, we obtain
inequalities as follows:

u(τ) ≤ v(τ) +Au(τ) ≤ v(τ) +Av(τ) +A2u(τ) ≤
2∑

i=0

Aiv(τ) +A3u(τ). (2.6)

By applying iterative technique, n = 1, 2, . . ., which yields that u(τ) ≤
∑n−1

i=0 A
iv(τ)+Anu(τ), τ ∈ [a, b],

whereA0v(τ) = v(τ). Next, we claim that

Anu(τ) ≤
∫ τ

a

[Γk(α)w(τ)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)u(s)ds, (2.7)

and Anu(τ) → 0 as n → ∞ for any τ ∈ [a, b]. If n = 1, we get that the inequality (2.7) holds. Next,
assume that the inequality (2.7) is held under n = m, that is

Amu(τ) ≤
∫ τ

a

[Γk(α)w(τ)]m

ρ
mα
k km+1Γk(mα)

ρ
kΨ

mα
k −1
ψ (τ, s)ψ′(s)u(s)ds.

If n = m + 1, using the induction procedure, we have

Am+1u(τ) = A(Amu(τ))

≤ A

(∫ τ

a

[Γk(α)w(τ)]m

ρ
mα
k km+1Γk(mα)

ρ
kΨ

mα
k −1
ψ (τ, s)ψ′(s)u(s)ds

)
≤

w(τ)
ρ
α
k k2

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)

(∫ s

a

[Γk(α)w(s)]m

ρ
mα
k km+1Γk(mα)

ρ
kΨ

mα
k −1
ψ (s, r)ψ′(r)u(r)dr

)
ds.

Since the function w(τ) is a non-decreasing, w(s) ≤ w(τ), for every s ≤ τ and taking z = (ψ(s) −
ψ(r))/(ψ(τ) − ψ(r)), then

Am+1u(τ) ≤
 wm+1(τ) (Γk(α))m

ρ
(m+1)α

k km+3Γk(mα)

 ∫ τ

a

∫ s

a
e
ρ−1
kρ (ψ(τ)−ψ(s))e

ρ−1
kρ (ψ(s)−ψ(r))

× (ψ(τ) − ψ(s))
α
k −1 (ψ(s) − ψ(r))

mα
k −1 ψ′(s)ψ′(r)u(r)drds

=

 wm+1(τ) (Γk(α))m

ρ
(m+1)α

k km+3Γk(mα)

 ∫ τ

a
e
ρ−1
kρ (ψ(τ)−ψ(r))ψ′(r)u(r)
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×

(∫ τ

r
(ψ(τ) − ψ(s))

α
k −1 (ψ(s) − ψ(r))

mα
k −1 ψ′(s)ds

)
dr

=

 wm+1(τ) (Γk(α))m

ρ
(m+1)α

k km+2Γk(mα)

 ∫ τ

a

ρ
kΨ

(m+1)α
k −1

ψ (τ, s)ψ′(r)u(r)
(
1
k

∫ 1

0
(1 − z)

α
k −1z

mα
k −1dz

)
dr

=

 wm+1(τ) (Γk(α))m+1

ρ
(m+1)α

k km+2Γk((m + 1)α)

 ∫ τ

a

ρ
kΨ

(m+1)α
k −1

ψ (τ, s)ψ′(r)u(r)dr.

Since w ∈ C([a, b],R), then there is w∗ ∈ R such that w(τ) ≤ w∗, for all τ ∈ [a, b], one has

Anu(τ) ≤
(
w∗Γk(α)
ρ
α
k k

)n 1
kΓk(nα)

∫ τ

a

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(r)u(r)dr. (2.8)

Since 0 ≤ e
ρ−1
kρ (ψ(τ)−ψ(r))

≤ 1, and u is non-negative and locally integrable on [a, b]. Hence, u is bounded
on [a, b], and there isMu ∈ R such that |u(τ)| ≤ Mu. The inequality (2.8) can be obtained

Anu(τ) ≤
(
w∗Γk(α) (ψ(τ) − ψ(a))

α
k

ρ
α
k k

)n
Mu

nαΓk(nα)
. (2.9)

Applying the Stirling’s formula, that is n! ∼
√

2πn(n/e)n, into (2.9) with (2.2), we obtain that

Anu(τ) ≤ Mu

√
k

2πα

(
θn

n
nα
k +

1
2

)
, θ :=

w∗Γ
(
α
k

)
(ψ(τ) − ψ(a))

α
k

ρ
α
k k2

(
ke
α

) α
k

. (2.10)

where θ, ρ, k, α ∈ R+. This yields that, if n→ ∞, we obtain thatAnu(τ)→ 0. Then,

u(τ) ≤ v(τ) +
∫ τ

a

 ∞∑
n=1

[Γk(α)w(τ)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)v(s)

 ds.

The inequality (2.4) is achieved.

Corollary 2.6. Let α, k ∈ R+, 0 < ρ ≤ 1, and ψ ∈ C1([a, b],R) be an increasing function such that
ψ′(τ) , 0, τ ∈ [a, b]. Let u(τ) and v(τ) be two non-negative locally integrable functions on [a, b], and
w(τ) ≡ M ≥ 0. If

u(τ) ≤ v(τ) +
MΓk(α)

k a,kI
α,ρ;ψu(τ), (2.11)

then,

u(τ) ≤ v(τ) +
∫ τ

a

 ∞∑
n=1

[MΓk(α)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)v(s)

 ds. (2.12)

Corollary 2.7. Assume all conditions in Theorem 2.5 are held, and the function v(τ) is non-decreasing
on τ ∈ [a, b]. Hence, we obtain the following inequality:

u(τ) ≤ v(τ)Ek,α,k

(
(ρ

α
k k)−1Γk(α)w(τ) (ψ(τ) − ψ(s))

α
k
)
, (2.13)

where

Ek,α,β(z) =
∞∑

n=0

zn

Γk(nα + β)
, z ∈ R, α, β ∈ C, Re(α) > 0, k > 0.
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Proof. From the inequality (2.12) with the help of the non-decreasing property of v(τ), that is v(s) ≤
v(τ) for any τ ∈ [a, b], we obtain that

u(τ) ≤ v(τ) +
∫ τ

a

 ∞∑
n=1

[Γk(α)w(τ)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)v(s)

 ds

≤ v(τ)

1 + ∫ τ

a

 ∞∑
n=1

[Γk(α)z(τ)]n

ρ
nα
k kn+1Γk(nα)

ρ
kΨ

nα
k −1
ψ (τ, s)ψ′(s)

 ds

 .
Since 0 ≤ e

ρ−1
kρ (ψ(τ)−ψ(s))

≤ 1, which yields that

u(τ) ≤ v(τ)

1 + ∞∑
n=1

[Γk(α)w(τ)]n

ρ
nα
k kn+1Γk(nα)

∫ τ

a
(ψ(τ) − ψ(s))

nα
k −1 ψ′(s)ds


= v(τ)

1 + ∞∑
n=1

[Γk(α)z(τ)]n

ρ
nα
k knΓk(nα + k)

(ψ(τ) − ψ(a))
nα
k


= v(τ)

∞∑
n=0

[Γk(α)w(τ)]n

ρ
nα
k knΓk(nα + k)

(ψ(τ) − ψ(a))
nα
k .

Applying Definition 2.7, the inequality (2.13) is obtained.

3. Existence and stability results

Here, we analyze the qualitative results for the proposed problem, including existence and
uniqueness results and various results for Ulam’s stability. First, we prove an integral equation is
equivalent to the proposed problem (1.1).

Lemma 3.1. Suppose that f ∈ C([a, b] × R,R), α, ρ ∈ (0, 1] and k ∈ R+. Then, the proposed problem
(1.1) can be stated equivalently as

u(τ) = uae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds. (3.1)

Proof. Let u be a solution to the problem (1.1). Taking the operator a,kI
α,ρ;ψ into the proposed problem

(1.1) and applying (v) in Lemma 2.4, which implies that

u(τ) = u(a)e
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds. (3.2)

By using u(a) = ua into (3.2) and inserting the obtained value into itself, we get the achieved (3.1).
On the other hand, by applying (ii) and (iv) in Lemma 2.4 into (3.1), it follows that

C
a,kD

α,ρ;ψu(τ) = C
a,kD

α,ρ;ψ
[
uae

ρ−1
kρ (ψ(τ)−ψ(a))

]
+ C

a,kD
α,ρ;ψ

(
a,kI

α,ρ;ψ f (τ, u(τ))
)

= ua
C
a,kD

α,ρ;ψ
[
ρ
kΨ

0
ψ(τ, s)

]
+ a,kI

α−α,ρ;ψ f (τ, u(τ))
= f (τ, u(τ)).

The proof is done.
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3.1. Existence and uniqueness results

From Lemma 3.1, we provide the operator Q : C([a, b],R)→ C([a, b],R) by

(Qu)(τ) = uae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds. (3.3)

The first result is based on the Banach’s contraction mapping [41].

Theorem 3.2. Suppose that α, ρ ∈ (0, 1], k ∈ R+, and f ∈ C([a, b] × R,R). Suppose that

(A1) There is a positive real constant L such that

| f (τ, u) − f (τ, v)| ≤ L |u(τ) − v(τ)| , τ ∈ [a, b], u, v ∈ R.

Then, the proposed problem (1.1) has a unique solution on [a, b], provided that

L (ψ(b) − ψ(a))
α
k

ρ
α
k Γk(α + k)

< 1. (3.4)

Proof. Assume that Br1 := {u ∈ C([a, b],R) : ∥u∥ ≤ r1} is a closed bounded and convex subset of
C([a, b],R), where the radius r1 corresponds to the following condition

r1 ≥

(
ua +

F (ψ(b) − ψ(a))
α
k

ρ
α
k Γk(α + k)

) (
1 −
L (ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

)−1

, F = sup
τ∈[a,b]

| f (τ, 0)| < +∞.

We prove that (i) QBr1 is bounded, i.e. QBr1 ⊆ Br1 and (ii) Q is a contraction.
Step (i). We show that QBr1 ⊆ Br1 .
For any u ∈ Br1 with the property of 0 ≤ e

ρ−1
kρ (ψ(τ)−ψ(a))

≤ 1 and the assumption (A1), we have

|(Qu)(τ)| = sup
τ∈J

{
uae

ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds

}
≤ ua +

1
ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s) | f (s, u(s))| ds

≤ ua +
1

ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s)

[
| f (s, u(s)) − f (s, 0)| + | f (s, 0)|

]
ds

≤ ua +
1

ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s)

[
L∥u∥ + F

]
ds

≤ ua +
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

[
Lr1 + F

]
≤ r1.

This implies that QBr1 ⊆ Br1 .
Step (ii). We show that Q is a contraction.
Let u, v ∈ C([a, b],R). Then, for every τ ∈ [a, b], we get

|(Qu)(τ) − (Qv)(τ)| ≤ sup
τ∈J

{
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)[ f (s, u(s)) − f (s, v(s))]ds

}
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≤
1

ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s) | f (s, u(s)) − f (s, v(s))| ds

≤
1

ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s)L |u(s) − v(s)| ds

≤
L ∥u − v∥
ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s)ds

=
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

L∥u − v∥ .

Then, ∥Qu − Qv∥ ≤ (ψ(b)−ψ(a))
α
k

ρ
α
k Γk(α+k)

L∥u − v∥. Since the condition (3.4) holds, which implies that Q has a
contraction property. Hence, by [41], Q has a unique fixed point. Then, there is a unique solution of
the proposed problem (1.1) on [a, b].

Next, the existence result is achieved by utilizing the fixed point theory of Leray-Schauder’s [42].

Theorem 3.3. Suppose that

(A2) There are a continuous non-decreasing function h : [a,∞) → (0,∞) and a function
ϕ ∈ C([a, b],R+) such that the following condition:

| f (τ, u(τ))| ≤ ϕ(τ)h(∥u∥), ∀(τ, u) ∈ [a, b] × R.

(A3) There is a number N ∈ R+ such that the following inequality:

N

(
∥ϕ∥h(N) (ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

+ ua

)−1

> 1.

Then the proposed problem (1.1) has at least one solution on J .

Proof. Assume that Q is given by (3.3). The technique is done in three phases.
Step (i). We show that Q maps bounded sets (balls) into bounded sets in C([a, b],R).
Assume that Br2 = {u ∈ C([a, b],R) : ∥u∥ ≤ r2} is a bounded ball in C([a, b],R) and ∥ϕ∥ =

supτ∈[a,b] |ϕ(τ)|. By applying the fact of 0 ≤ e
ρ−1
kρ (ψ(τ)−ψ(a))

≤ 1 and (A2), for every τ ∈ [a, b], which
yields that

|(Qu)(τ)∥ ≤ uae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) | f (s, u(s))| ds

≤ ua +
1

ρ
α
k kΓk(α)

∫ τ

a
(ψ(τ) − ψ(s))

α
k −1 ψ′(s)ϕ(s)h(∥u∥)ds

≤ ua +
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

∥ϕ∥h(r2) := K .

Step (ii). We show that Q maps bounded sets into equicontinuous sets of C([a, b],R).
Assume that τ1, τ2 ∈ [a, b] with τ1 < τ2, and u ∈ Br2 . Hence

|(Qu)(τ2) − (Qu)(τ1)|
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≤ ua

∣∣∣∣e ρ−1
kρ (ψ(τ2)−ψ(a))

− e
ρ−1
kρ (ψ(τ1)−ψ(a))

∣∣∣∣ + ∣∣∣∣∣∣ 1
ρ
α
k kΓk(α)

∫ τ2

a

ρ
kΨ

α
k −1
ψ (τ2, s)ψ′(s) f (s, u(s))ds

−
1

ρ
α
k kΓk(α)

∫ τ1

a

ρ
kΨ

α
k −1
ψ (τ1, s)ψ′(s) f (s, u(s))ds

∣∣∣∣∣∣
≤ ua

∣∣∣∣e ρ−1
kρ (ψ(τ2)−ψ(a))

− e
ρ−1
kρ (ψ(τ1)−ψ(a))

∣∣∣∣ + 1
ρ
α
k kΓk(α)

∫ τ2

τ1

ρ
kΨ

α
k −1
ψ (τ2, s)ψ′(s) | f (s, u(s))| ds

+
1

ρ
α
k kΓk(α)

∫ τ1

a

∣∣∣∣ρkΨ α
k −1
ψ (τ2, s) − ρ

kΨ
α
k −1
ψ (τ1, s)

∣∣∣∣ψ′(s) | f (s, u(s))| ds

≤ ua

∣∣∣∣e ρ−1
kρ (ψ(τ2)−ψ(a))

− e
ρ−1
kρ (ψ(τ1)−ψ(a))

∣∣∣∣ + ∥ϕ∥h(r2)
ρ
α
k Γk(α + k)

(ψ(τ2) − ψ(τ1))
α
k

+
∥ϕ∥h(r2)

ρ
α
k Γk(α + k)

∣∣∣(ψ(τ2) − ψ(a))
α
k − (ψ(τ2) − ψ(τ1))

α
k − (ψ(τ1) − ψ(a))

α
k
∣∣∣ . (3.5)

Clearly, the right-hand side of (3.5) tends to zero independently of u ∈ Br2 as τ2 → τ1. Then,
by utilizing the Arzelá-Ascoli theorem, we get that Q : C([a, b],R) → C([a, b],R) is completely
continuous.

Step (iii). We show that there exists an open set D ⊆ C([a, b],R) with u , λQ(u), 0 < λ < 1 and
u ∈ ∂D.

Assume that u ∈ C([a, b],R) is the solution of u = λQu, 0 < λ < 1. For any τ ∈ [a, b], we obtain
that

|u(τ)| = |λ(Qu)(τ)| ≤ ua +
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

∥ϕ∥h(∥u∥).

Then

∥u∥ ≤ ua +
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

∥ϕ∥h(∥u∥).

Consequently,

∥u∥
(
∥ϕ∥h(∥u∥) (ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

+ ua

)−1

≤ 1.

In view of (A3), there exists N such that ∥u∥ , N . Let us take D = {u ∈ C([a, b],R) : ∥u∥ < N} and
U = D ∩ Br2 .

Finally, Q : U → C([a, b],R) is continuous and completely continuous. Using the choice of U,
there is no 0 ∈ ∂U so that u = λ(Qu) for some 0 < λ < 1. Hence, by [42], we obtain that Q has a fixed
point u ∈ U, which is a solution of the problem (1.1).

3.2. Ulam-Mittag-Leffler stability results

Next, we establish various of UH–ML stability results for the proposed problem (1.1).

Definition 3.4. The proposed problem (1.1) is called UH-ML stable, if there is a number C f ∈ R
+ so

that for any ϵ > 0 and w ∈ C([a, b],R+) of∣∣∣Ca,kDα,ρ;ψw(τ) − f (τ,w(τ))
∣∣∣ ≤ ϵ, τ ∈ [a, b], (3.6)

there exists u ∈ C([a, b],R+) of the proposed problem (1.1) under the assumption

|w(τ) − u(τ)| ≤ C f ϵEk,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
, κ f ≥ 0, τ ∈ [a, b]. (3.7)
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Definition 3.5. The proposed problem (1.1) is called generalized UH-ML stable, if there is a function
G f ∈ C(R+,R+) via G f (0) = 0, such that for any ϵ > 0 and w ∈ C([a, b],R+) of∣∣∣Ca,kDα,ρ;ψw(τ) − f (τ,w(τ))

∣∣∣ ≤ G f (τ), τ ∈ [a, b], (3.8)

there exists u ∈ C([a, b],R+) of the proposed problem (1.1) under the assumption

|w(τ) − u(τ)| ≤ G f (ϵ)Ek,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
, κ f ≥ 0, τ ∈ [a, b]. (3.9)

Definition 3.6. The proposed problem (1.1) is called Ulam-Hyers-Rassias-Mittag-Leffler (UHR-ML)
stable with respect to another function Φ(τ), if there is a number C fΦ ∈ R

+ so that for any ϵ > 0 and
w ∈ C([a, b],R+) of ∣∣∣Ca,kDα,ρ;ψw(τ) − f (τ,w(τ))

∣∣∣ ≤ ϵΦ(τ), τ ∈ [a, b], (3.10)

there exists u ∈ C([a, b],R+) of the proposed problem (1.1) under the assumption

|w(τ) − u(τ)| ≤ C fΦϵΦ(τ)Ek,α,k

(
κ fΦ (ψ(τ) − ψ(s))

α
k
)
, κ fΦ ≥ 0, τ ∈ [a, b]. (3.11)

Definition 3.7. The proposed problem (1.1) is called generalized UHR-ML stable concerning function
Φ(τ) so that for any ϵ > 0 and w ∈ C([a, b],R+) of∣∣∣Ca,kDα,ρ;ψw(τ) − f (τ,w(τ))

∣∣∣ ≤ Φ(τ), τ ∈ [a, b], (3.12)

there exists u ∈ C([a, b],R+) of the proposed problem (1.1) under the assumption

|w(τ) − u(τ)| ≤ C fΦΦ(τ)Ek,α,k

(
κ fΦ (ψ(τ) − ψ(s))

α
k
)
, κ fΦ ≥ 0, τ ∈ [a.b]. (3.13)

Remark 3.8. Assume that w ∈ C([a, b],R) is the solution of (3.6) if and only if there is uw ∈ C([a, b],R),
which depends on w, so that (i). |uw(τ)| ≤ ϵ, τ ∈ [a, b]; (ii). C

a,kD
α,ρ;ψw(τ) = f (τ,w(τ))+uw(τ), τ ∈ [a, b].

Remark 3.9. Assume that w ∈ C([a, b],R) is the solution of (3.10) if and only if there is
vw ∈ C([a, b],R), that is depends on w, such that (i). |vw(τ)| ≤ ϵΦ(τ), τ ∈ [a, b]; (ii).
C
a,kD

α,ρ;ψz(τ) = f (τ,w(τ)) + vw(τ), τ ∈ [a, b].

Theorem 3.10. Suppose that f ∈ C([a, b] × R,R), (A1), and (3.2) hold. Then, the proposed problem
(1.1) is UH–ML stable and consequently generalized UH-ML stable on [a, b].

Proof. Let ϵ > 0 and w ∈ C([a, b],R) be a solution of (3.6). From (ii) in Remark 3.8, we have
C
a,kD

α,ρ;ψw(τ) = f (τ,w(τ)) + uw(τ), τ ∈ (a, b],

w(a) = wa, wa ∈ R.
(3.14)

Applying Lemma 3.1, the solution of the problem (3.14) is

w(τ) = wae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s,w(s))ds

+
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)uw(s)ds. (3.15)
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Let u ∈ C([a, b],R) be a solution of (1.1). Hence,

u(τ) = uae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds. (3.16)

By applying the property |u − v| ≤ |u| + |v|, τ ∈ J with (3.15)-(3.16), one has

|w(τ) − u(τ)| ≤
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) | f (s,w(s)) − f (s, u(s))| ds

+
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) |uw(s)| ds. (3.17)

By using the property 0 ≤ e
ρ−1
kρ (ψ(τ)−ψ(a))

≤ 1, (H1), and (i) in Remark 3.8, the inequality (3.17) can be
written

|w(τ) − u(τ)| ≤
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

ϵ +
Γk(α)

k

(
kL
Γk(α)

)
a,kI

α,ρ;ψ |w(τ) − u(τ)| . (3.18)

From Theorem 2.5 and Corollary 2.7, which implies that

|w(τ) − u(τ)| ≤
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

ϵEk,α,k

(
Lρ−

α
k (ψ(τ) − ψ(s))

α
k
)
.

By setting a constant C f := (ψ(b)−ψ(a))
α
k

ρ
α
k Γk(α+k)

and κ f := Lρ−
α
k , which yields that

|w(τ) − u(τ)| ≤ C f ϵEk,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
.

Hence, the proposed problem (1.1) is UH–ML stable. In addition, by setting G f (ϵ) = C f ϵ under the
condition G f (0) = 0, then

|w(τ) − u(τ)| ≤ G f (ϵ)Ek,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
.

Therefore, the solution of the proposed problem (1.1) is generalized UH-ML stable.

Now, we give the required assumption that is used in Theorem 3.11.

(P1) Suppose that Φ ∈ C([a, b],R) is a non-decreasing function. There exists χΦ > 0 so that

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)Φ(s)ds ≤ χΦΦ(τ), τ ∈ [a, b].

Theorem 3.11. Suppose that f ∈ C([a, b] × R,R), (A1), and (3.2) hold. Then, the proposed problem
(1.1) is UHR-ML stable and consequently generalized UHR-ML stable on [a, b].

Proof. Let ϵ > 0 and w ∈ C([a, b],R) be the solution of (3.6). From (ii) in Remark 3.9, it follows form
C
a,kD

α,ρ;ψw(τ) = f (τ,w(τ)) + vw(τ), τ ∈ (a, b],

w(a) = wa, wa ∈ R.
(3.19)
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From Lemma 3.1, the solution of the problem (3.19) is defined by

w(τ) = wae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s,w(s))ds

+
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s)vw(s)ds. (3.20)

Let u ∈ C([a, b],R) be the solution of (1.1). It follows that

u(τ) = uae
ρ−1
kρ (ψ(τ)−ψ(a)) +

1
ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) f (s, u(s))ds. (3.21)

By applying the property |u − v| ≤ |u| + |v|, for τ ∈ [a, b] with (3.20)-(3.21), which yields that

|w(τ) − u(τ)| ≤
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) | f (s,w(s)) − f (s, u(s))| ds

+
1

ρ
α
k kΓk(α)

∫ τ

a

ρ
kΨ

α
k −1
ψ (τ, s)ψ′(s) |vw(s)| ds. (3.22)

By using 0 ≤ e
ρ−1
kρ (ψ(τ)−ψ(a))

≤ 1, (A1), (P1), and (i) in Remark 3.9, the inequality (3.22) can be written

|w(τ) − u(τ)| ≤ ϵχΦΦ(τ) +
Γk(α)

k

(
kL
Γk(α)

)
a,kI

α,ρ;ψ |w(τ) − u(τ)| . (3.23)

Applying Theorem 2.5 and Corollary 2.7, which implies that

|w(τ) − u(τ)| ≤ ϵχΦΦ(τ)Ek,α,k

(
Lρ−

α
k (ψ(τ) − ψ(s))

α
k
)
.

By choosing C fΦ := χΦ and κ f := Lρ−
α
k , then

|w(τ) − u(τ)| ≤ C fΦϵΦ(τ)Ek,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
.

Thus, the proposed problem (1.1) is UHR-ML stable. Additionally, by setting ϵ = 1, one has

|w(τ) − u(τ)| ≤ C fΦΦ(τ)Ek,α,k

(
κ f (ψ(τ) − ψ(s))

α
k
)
.

Then, the solution of the proposed problem (1.1) is generalized UHR-ML stable.

4. Numerical approach

Now, we construct an approximation form for the (k, ψ)-PFDO in Caputo’s sense under α ∈ (0, 1]
of a function u(τ). We may generate a sequence of N + 1 equations with N + 1 conditions for a given
(k, ψ) proportional fractional Cauchy-type problem under this tool. A sequence (uN) of solutions to
such systems eventually leads to the solution of the proposed problem.

Theorem 4.1. Assume that N = 1, 2, . . . , and u ∈ AC2([a, b],R). Let

AN =
1

ρ1− αk Γk(2k − α)

N∑
i=0

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) , (4.1)
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BN,i =
Γ
(
i + α

k − 1
)

ρ1− αk (i − 1)!Γk(2k − α)Γ
(
α
k − 1

) , i = 1, 2, . . . ,N, (4.2)

and letVi : [a, b]→ R be a function, which is given by

Vi(τ) =
∫ τ

a
(ψ(s) − ψ(a))i−1ψ′(s)e

1−ρ
kρ ψ(s)

kD
ρ;ψu(s)ds, i = 1, 2, . . . ,N. (4.3)

Hence,

C
a,kD

α,ρ;ψu(τ) ≈ AN(ψ(τ) − ψ(a))1− αk kD
ρ;ψu(τ)

−e
ρ−1
kρ ψ(τ)

N∑
i=1

BN,i(ψ(τ) − ψ(a))1− αk −iVi(τ) + Etr(τ), (4.4)

where kD
ρ;ψu(τ) = (1 − ρ)u(τ) + kρ u′(τ)

ψ′(τ) and lim
N→∞

Etr(τ) = 0, τ ∈ [a, b].

Proof. By using Definition 2.3 and kD
ρ;ψu(τ) = (1 − ρ)u(τ) + kρ u′(τ)

ψ′(τ) , for any α ∈ (0, 1], we have

C
a,kD

α,ρ;ψu(τ)

=
1

kρ1− 1
kΓk(k − α)

∫ τ

a

ρ
kΨ
− αk
ψ (τ, s)ψ′(s)

(
kD

ρ;ψu(s)
)
ds

=
1

kρ1− αk Γk(k − α)

∫ τ

a
(ψ(τ) − ψ(s))−

α
kψ′(s)e

ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

]
ds. (4.5)

Changing new variables

x(s) = e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

]
and y′(s) = (ψ(τ) − ψ(s))−

α
k ψ′(s),

and by helping the integrating by parts technique, the equation (4.5) can be solved as

C
a,kD

α,ρ;ψu(τ)

=

ρ
kΨ

α
k −1
ψ (τ, a)

ρ1− αk Γk(2k − α)

[
(1 − ρ)u(a) + kρ

u′(a)
ψ′(a)

]
+

1
ρ1− αk Γk(2k − α)

∫ τ

a
(ψ(τ) − ψ(s))1− αk

d
ds

(
e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

])
ds. (4.6)

Applying the Newton’s generalized binomial theorem, it follows that

(ψ(τ) − ψ(s))1− αk = (ψ(τ) − ψ(a))1− αk

(
1 −

ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)1− αk

= (ψ(τ) − ψ(a))1− αk

N∑
i=0

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i
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+(ψ(τ) − ψ(a))1− αk

∞∑
i=N+1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i

. (4.7)

Inserting (4.7) into (4.6), we have

C
a,kD

α,ρ;ψu(τ) =
ρ
kΨ

α
k −1
ψ (τ, a)

ρ1− αk Γk(2k − α)

[
(1 − ρ)u(a) + kρ

u′(a)
ψ′(a)

]
+

1
ρ1− αk Γk(2k − α)

∫ τ

a
(ψ(τ) − ψ(a))1− αk

N∑
i=0

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i

×
d
ds

(
e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

])
ds

+
1

ρ1− αk Γk(2k − α)

∫ τ

a
(ψ(τ) − ψ(a))1− αk

∞∑
i=N+1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i

×
d
ds

(
e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

])
ds. (4.8)

where

Etr(τ) =
(ψ(τ) − ψ(a))1− αk

ρ1− αk Γk(2k − α)

∫ τ

a
RN(s)

d
ds

(
e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

])
ds, (4.9)

RN(s) =
∞∑

i=N+1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i

. (4.10)

Then, we have

C
a,kD

α,ρ;ψu(τ) =
(ψ(τ) − ψ(a))1− αk

ρ1− αk Γk(2k − α)

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

]
+

e
ρ−1
kρ ψ(τ)(ψ(τ) − ψ(a))1− αk

ρ1− αk Γk(2k − α)

N∑
i=1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

)
(ψ(τ) − ψ(a))i

×

∫ τ

a
(ψ(s) − ψ(a))i d

ds

(
e

1−ρ
kρ ψ(s)

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

])
ds + Etr(τ).

By using integrating by parts with changing variable x(s) = (ψ(s) − ψ(a))i and y′(s) = d
ds (e

1−ρ
kρ ψ(s)[(1−

ρ)u(s) + kρ u′(s)
ψ′(s) ]), which yields that

C
a,kD

α,ρ;ψu(τ) =
(ψ(τ) − ψ(a))1− αk

ρ1− αk Γk(2k − α)

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

] 1 + N∑
i=1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) 
−

e
ρ−1
kρ ψ(τ)

ρ1− αk Γk(2k − α)

N∑
i=1

Γ
(
i + α

k − 1
)

(ψ(τ) − ψ(a))1− αk −i

(i − 1)!Γ
(
α
k − 1

)
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×

∫ τ

a
(ψ(s) − ψ(a))i−1ψ′(s)e

1−ρ
kρ ψ(s)

[
(1 − ρ)u(s) + kρ

u′(s)
ψ′(s)

]
ds + Etr(τ),

Next, we study the term Etr(τ), which is the error caused by truncation error. Finally, we show that
Etr(τ) → 0 as N → ∞, τ ∈ [a, b], and to prove this, we provide an upper bound for the error. Since
0 ≤ ψ(s)−ψ(a)

ψ(τ)−ψ(a) ≤ 1 for s, τ ∈ J , The equation (4.10) can be computed that

|RN(s)| ≤
∞∑

i=N+1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) (
ψ(s) − ψ(a)
ψ(τ) − ψ(a)

)i

≤

∞∑
i=N+1

Γ
(
i + α

k − 1
)

i!Γ
(
α
k − 1

) ≤ ∞∑
i=N+1

i
α
k −2

Γ
(
α
k − 1

) ≤ ∞∫
N

s
α
k −2

Γ
(
α
k − 1

)ds,

which implies that

|RN(s)| ≤
1

N1− αk
(
1 − α

k

)
Γ
(
α
k − 1

) . (4.11)

Taking M(τ) = max
s∈[a,τ]

∣∣∣∣∣ d
ds

(
e
ρ−1
kρ (ψ(τ)−ψ(s))

[
(1 − ρ)u(s) + kρ u′(s)

ψ′(s)

])∣∣∣∣∣ and (4.11) into (4.9), we obtain the

following upper bound

|Etr(τ)| ≤
M(τ)(ψ(τ) − ψ(a))1− αk (τ − a)

ρ1− αk Γk(2k − α)N1− αk
(
1 − α

k

)
Γ
(
α
k − 1

) . (4.12)

The right-sided of (4.12) tends to zero as N → ∞, τ ∈ [a, b]. The proof is done.

From the property (iv) in Lemma 2.4, the integral equation (3.1) in Lemma 3.1 can be reformed as

u(τ) = uae
ρ−1
kρ (ψ(τ)−ψ(a)) + C

a,kD
k−α,ρ;ψ

(
1
ρk

∫ τ

a
e
ρ−1
kρ (ψ(τ)−ψ(s))ψ′(s) f (s, u(s))ds

)
. (4.13)

By applying Theorem 4.1, the equation (4.13) can be re-written as

u(s) = uae
ρ−1
kρ (ψ(s)−ψ(a)) + A∗N(ψ(s) − ψ(a))

α
k f (s, u(s))

−e
ρ−1
kρ ψ(s)

N∑
i=1

B∗N,i(ψ(s) − ψ(a))
α
k −iV∗i (s) + E∗tr(s), (4.14)

where

A∗N =
1

ρ
α
k Γk(k + α)

N∑
i=0

Γ
(
i − α

k

)
i!Γ

(
−αk

) ,
B∗N,i =

Γ
(
i − α

k

)
ρ
α
k (i − 1)!Γk(k + α)Γ

(
−αk

) , i = 1, 2, . . . ,N,

V∗i (s) =
∫ s

a
(ψ(r) − ψ(a))i−1ψ′(r)e

1−ρ
kρ ψ(r) f (r, u(r))dr,

∣∣∣E∗tr(s)
∣∣∣ ≤ M(s)(s − a)(ψ(s) − ψ(a))

α
k

N
α
k

(
α
k

)
Γ
(
−αk

)
ρ
α
k Γk(k + α)

.
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In order to obtain the formula of an approximated solution, uN(τ), we truncate the formula up to
order N, getting

uN(s) = uae
ρ−1
kρ (ψ(s)−ψ(a)) + A∗N(ψ(s) − ψ(a))

α
k f (s, uN(s))

−e
ρ−1
kρ ψ(s)

N∑
i=1

B∗N,i(ψ(s) − ψ(a))
α
k −iV∗i,N(s), (4.15)

where
V∗i,N(s) =

∫ s

a
(ψ(r) − ψ(a))i−1ψ′(r)e

1−ρ
kρ ψ(r) f (r, uN(r))dr, i = 1, 2, . . . ,N.

Note that uN(a) = u(a).

Theorem 4.2. Assume that f ∈ C([a, b] × R,R) which verifies (A1), and assume that u and uN as in
(4.14) and (4.15), respectively, for N ∈ N. Also, suppose that b ∈ R is a real in the open interval

ψ(a) < ψ(b) < ψ(a) + ρk
(
Γ(αk + 1)
L

) k
α

. (4.16)

Then, uN(τ)→ u(τ) as N → ∞, for all τ ∈ [a, b].

Proof. From the equations (4.14) and (4.15), for any τ ∈ [a, b], we have

|xN(τ) − x(τ)| ≤ |A∗N |(ψ(τ) − ψ(a))
α
k | f (τ, xN(τ)) − f (τ, x(τ))|

+e
ρ−1
kρ ψ(τ)

N∑
i=1

|B∗N,i|(ψ(τ) − ψ(a))
α
k −i|V∗i,N(τ) −V∗i (τ)| + |E∗tr(τ)|. (4.17)

Now, we define δuN := max
τ∈[a,b]

|uN(τ) − u(τ)|. Then, we have

| f (τ, uN(τ)) − f (τ, u(τ))| ≤ L|uN(τ) − u(τ)| ≤ LδuN , (4.18)

|V∗i,N(τ) −V∗i (τ)| ≤
∫ τ

a
(ψ(s) − ψ(a))i−1 ψ′(s)e

1−ρ
kρ ψ(s)
| f (s, uN(s)) − f (s, u(s))|ds

≤ LδuN

∫ τ

a
(ψ(s) − ψ(a))i−1 ψ′(s)e

1−ρ
kρ ψ(s)ds

≤
LδuN

i
(ψ(τ) − ψ(a))i . (4.19)

By using the formula (3) in [43], we have

|A∗N | =
1

ρ
α
k Γk(k + α)

∣∣∣∣∣∣∣∣
N∑

i=0

Γ
(
i − α

k

)
Γ
(
−αk

)
i!

∣∣∣∣∣∣∣∣ = ρ−
α
k Γ(N + 1 − α

k )

Γk(k + α)|Γ
(
−αk

)
|αkΓ(N + 1)

≤
k1− αk Γ(N + 1 − α

k )

αρ
α
k πΓ(N + 1)

, (4.20)

and using (4.19), it follows that

N∑
i=1

|B∗N,i|(ψ(τ) − ψ(a))
α
k −i|V∗i,N(τ) −V∗i (τ)|
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≤
LδxN (ψ(τ) − ψ(a))

α
k

ρ
α
k Γk(k + α)|Γ

(
−αk

)
|

∣∣∣∣∣∣∣∣
N∑

i=1

Γ
(
i − α

k

)
i!

∣∣∣∣∣∣∣∣
≤
LδxN (ψ(τ) − ψ(a))

α
k

ρ
α
k Γk(k + α)|Γ

(
−αk

)
|

(
Γ(N + 1 − α

k )
α
kΓ(N + 1)

+

∣∣∣∣∣Γ (−αk
)∣∣∣∣∣)

≤
LδxN

ρ
α
k

(ψ(τ) − ψ(a))
α
k

k1− αk Γ(N + 1 − α
k )

απΓ(N + 1)
+

k1− αk

αΓ(αk )

 . (4.21)

Substitution (4.18), (4.20), and (4.21) into the inequality (4.17), for any τ ∈ [a, b], one has

|uN(τ) − u(τ)| ≤
LδuN k1− αk

ρ
α
k απ

(ψ(τ) − ψ(a))
α
k
Γ(N + 1 − α

k )
Γ(N + 1)

+ |E∗tr(τ)|

+e
ρ−1
kρ ψ(τ)LδuN

ρ
α
k

(ψ(τ) − ψ(a))
α
k

k1− αk Γ(N + 1 − α
k )

απΓ(N + 1)
+

k1− αk

αΓ(αk )


≤
LδuN k1− αk

ρ
α
k α

(ψ(τ) − ψ(a))
α
k

(
2Γ(N + 1 − α

k )
πΓ(N + 1)

+
1
Γ(αk )

)
+ |E∗tr(τ)|. (4.22)

Applying the maximum into the inequality (4.22) over τ ∈ [a, b], we obtain that

δuN ≤
LδuN k1− αk

ρ
α
k α

(ψ(b) − ψ(a))
α
k

(
2Γ(N + 1 − α

k )
πΓ(N + 1)

+
1
Γ(αk )

)
+ max

τ→[a,b]
|E∗tr(τ)|. (4.23)

Clearly, lim
N→∞
|E∗tr(τ)| = 0. In addition, by applying the Stirling’s formula [44], we have

lim
N→∞

Γ(N + 1 − α
k )

Γ(N + 1)
= 0. (4.24)

Then, taking N → ∞ in (4.23), one has

lim
N→∞

δuN

1 − L(ψ(b) − ψ(a))
α
k

ρ
α
k k

α
k Γ(αk + 1)

 ≤ 0.

By the condition (4.16), we get that δuN → 0 as N → ∞. From (4.23), which implies that

δuN

[
1 −
Lk1− αk

ρ
α
k α

(ψ(b) − ψ(a))
α
k

(
2Γ(N + 1 − α

k )
πΓ(N + 1)

+
1
Γ(αk )

)]
≤ max

τ→J
|E∗tr(τ)|.

Applying the condition (4.16), we obtain the following result

0 <
Lk

1−α
k

ρ
α
k α

(ψ(b) − ψ(a))
α
k < Γ

(
α

k

)
.

Then,

−
2Γ(αk )Γ(N + 1 − α

k )
πΓ(N + 1)

< 1 −
Lk1− αk

ρ
α
k α

(ψ(b) − ψ(a))
α
k

(
2Γ(N + 1 − α

k )
πΓ(N + 1)

+
1
Γ(αk )

)
< 1.
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For N sufficiently large number, we obtain the property (4.24). Therefore, there exists a function B
(depending on α, ρ, k, τ but independent of N), such that

δuN ≤ Bψ(α, k, ρ, τ)N−
α
k ,

where

Bψ(α, k, ρ, τ) =
M(τ)(ψ(b) − ψ(a))

α
k (b − a)(

α
k

)
Γ
(
−αk

)
Γk(k + α)

 αΓ(αk )

ρ
α
k αΓ(αk ) − Lk1− αk (ψ(b) − ψ(a))

α
k

 . (4.25)

Remark 4.3. Under Theorem 4.1 and Theorem 4.2, we have the following results:

(i) If k = 1 and ψ(τ) = τ then, Theorem 4.1 and Theorem 4.2 reduce to the results as in [20].
(ii) If k > 1, ρ = 1, and ψ(τ) = τµ, where µ > 0 then, Theorem 4.1 and Theorem 4.2 reduce to the

results as in [21].
(iii) If k > 1, ρ = 1 and ψ(τ) = τ then, Theorem 4.1 and Theorem 4.2 reduce to the results as

in [22, 23].
(iv) If k > 1, ρ = 1, and ψ(τ) = τµ, where µ → 0+ then, Theorem 4.1 and Theorem 4.2 reduce to the

results as in [24].

5. Applications

This section provides two different numerical examples of applications to verify the theoretical
results of our main results.

5.1. A numerical example

Example 5.1. Consider the following Cauchy-type problem under the (k, ψ)-Caputo-PFDO:
C
0,kD

α,ρ;ψu(τ) =
ρ
α
k Γk (ω + k)
Γk (ω + k − α)

ρ
kΨ

ω−α
k

ψ (τ, 0) +
1

2τ+3
ρ
kΨ

ω
k
ψ (τ, 0) −

1
2τ+3 u(τ), τ ∈ [0, 1],

u(0) = 0, α ∈ (0, 1], ρ ∈ (0, 1], k > 0.
(5.1)

The exact solution of the problem (5.1) is provided by u(τ) = ρ
kΨ

ω
k
ψ (τ, 0), where ω ∈ R and ω > k.

From the problem (5.1), we get

f (τ, u(τ)) =
ρ
α
k Γk (ω + k)
Γk (ω + k − α)

ρ
kΨ

ω−α
k

ψ (τ, 0) +
1

2τ+3
ρ
kΨ

ω
k
ψ (τ, 0) −

1
2τ+3 u(τ).

For every u, v ∈ R, τ ∈ [0, 1], we get that

| f (τ, u(τ)) − f (τ, v(τ))| ≤
1

2τ+3 |u(τ) − v(τ)| ≤
1
8
|u(τ) − v(τ)| . (5.2)

It is noticed that the assumption (A1) is held with L = 1/8. By setting α = 22/25, ρ = 1/4,
k = 5/4, ω = 3/2, and ψ(τ) = τ, then (L (ψ(b) − ψ(a))

α
k )/(ρ

α
k Γk(α + k)) ≈ 0.311730513 < 1. Since all
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34032

assumptions in Theorem 3.2 are satisfied, the proposed problem (5.1) has a unique solution on [0, 1].
From Theorem 3.10, we can compute that

C f :=
(ψ(b) − ψ(a))

α
k

ρ
α
k Γk(α + k)

≈ 2.493844103 > 0, and κ f := Lρ−
α
k ≈ 0.331711285 ≥ 0.

Then, the proposed problem (5.1) is UH-ML stable on [0, 1]. If we set G f (ϵ) = C f ϵ under the condition
G f (0) = 0, then we obtain the proposed problem (5.1) is generalized UH-ML stable on [0, 1]. In

addition, by setting a non-decreasing function Φ(τ) = ρ
kΨ

3
k
ψ(τ, a), we have

a,kI
α,ρ;ψΦ(τ) =

Γk(3)ρkΨ
3+α

k −1
ψ (τ, a)

ρ
α
k Γk(3 + α)

=
Γk(3)(ψ(τ) − ψ(a))

α
k

ρ
α
k Γk(3 + α)

Φ(τ).

This yields that C fΦ := χΦ = (Γk(3))/(ρ
α
k Γk(3 + α)) (ψ(τ) − ψ(a))

α
k ≈ 1.276974061 > 0 and κ fΦ :=

Lρ−
α
k ≈ 0.331711285 ≥ 0. Hence, the proposed problem (5.1) is UHR-ML stable on [0, 1]. If we take

ϵ = 1, then the proposed problem (5.1) is generalized UHR-ML stable on [0, 1].
To achieve the numerical approximation of the proposed problem (5.1), we apply (4.4) in Theorem

4.1. Then, the operator C
0,kD

α,ρ;ψu(τ) can be replaced as follows:

C
0,kD

α,ρ;ψu(τ) ≈ AN(ψ(τ) − ψ(0))1− αk

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

]
−e

ρ−1
kρ ψ(τ)

N∑
i=1

BN,i(ψ(τ) − ψ(0))1− αk −iVi(τ), (5.3)

where AN , BN,i, andVi(τ) are given by (4.1), (4.2), and (4.3), respectively, in Theorem 4.1. Then V
′
i (τ) = (ψ(τ) − ψ(0))i−1 ψ′(τ)e

1−ρ
kρ ψ(τ)

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

]
, i = 1, 2, . . . ,N,

Vi(0) = 0.
(5.4)

By applying (5.3) and (5.4), then

AN(ψ(τ) − ψ(0))1− αk

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

]
−e

ρ−1
kρ ψ(τ)

N∑
i=1

BN,i(ψ(τ) − ψ(0))1− αk −iVi(τ)

=
ρ
α
k Γk (ω + k)
Γk (ω + k − α)

ρ
kΨ

ω−α
k

ψ (τ, 0) +
1

2τ+3
ρ
kΨ

α
k
ψ (τ, 0) −

1
2τ+3 u(τ), τ ∈ [0, 1],

V′i (τ) = (ψ(τ) − ψ(0))i−1ψ′(τ)e
1−ρ
kρ ψ(τ)

[
(1 − ρ)u(τ) + kρ

u′(τ)
ψ′(τ)

]
, i = 1, 2, . . . ,N,

u(0) = 0, Vi(0) = 0.

(5.5)

The proposed system (5.5) can solve the numerical solution by applying ode45 in MATLAB
software, which applies the explicit Runge-Kutta technique to achieve the approximated solution. The
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exact solution (continuous line) and numerical approximations (dot lines) of the proposed problem are
compared with different parameters ρ = 1/4, 1/3, 1/2, and k = 1/2, 3/4.

Figure 1 displays the behavior of the exact and approximate solutions under the fixed value α =
9/10, and vary values ρ = 1/4, 1/3, 1/2, k = 1/2, 3/4, N = 2, 8, 16 for the proposed problem (5.1).
While Figure 2 displays the behavior of the absolute error between the exact and approximate solutions
under the fixed values α = 9/10, and vary values ρ = 1/4, 1/3, 1/2 , k = 1/2, 3/4, N = 2, 8, 16 for the
proposed problem (5.1). Figures 1a–1b illustrate that as the value k increases, the approximate solution
quickly converges to the exact solution. Moreover, the absolute error values rapidly decrease to zero,
as can be seen from Figures 2a–2b. Conversely, Figures 1c–1d indicate that as the value ρ increases,
the approximate solution converges to the exact solution more quickly and to greater values. While the
absolute error values increase, as can be seen from the Figures 2c–2d.
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(a) ρ = 1/4 and k = 1/2.
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(b) ρ = 1/4 and k = 3/4.
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(c) ρ = 1/3 and k = 3/4.
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(d) ρ = 1/2 and k = 3/4.

Figure 1. The behavior of exact and approximate solutions under α = 9/10, ρ = 1/4, 1/3,
1/2, k = 1/2, 3/4, and N = 2, 8, 16 for the proposed problem (5.1).
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(a) ρ = 1/4 and k = 1/2.
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(b) ρ = 1/4 and k = 3/4.
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(c) ρ = 1/3 and k = 3/4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025
The absolute error between exact and approximate solutions

(d) ρ = 1/2 and k = 3/4.

Figure 2. The absolute error between exact and approximate solutions under α = 9/10,
ρ = 1/4, 1/3, 1/2, k = 1/2, 3/4, and N = 2, 8, 16 for the proposed problem (5.1).

5.2. An Application to Blood Alcohol Levels (BALs) problem

Now, an application has been developed to support our theoretical results. We study a basic model
for determining BALs that is characterized by two differential equations with real-data individuals.
The BALs problem is explained by the following Cauchy-type system of the form:

dS
dτ
= −c1S(τ), S(0) = S0,

dB
dτ
= c1S(τ) − c2B(τ), B(0) = B0 = 0,

(5.6)

where S(τ) and B(τ) denote the concentrations (mg/L) of alcohol in the stomach and blood of a human
body at time τ (min), respectively. The rate law constants i (min−1) are given by ci, i = 1, 2, and S0, B0

represent the subject’s initial alcohol intake in the stomach and blood, respectively. The exact solution
for the system (5.6) is fairly simple and may be determined using the Laplace transform approach

S(τ) = S0 exp(−c1τ), (5.7)
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B(τ) =
c1S0

c1 − c2

(
exp(−c2τ) − exp(−c1τ)

)
, c1 , c2. (5.8)

Fractional-order models have been recognized as being more useful in estimating experimental data
than integer-order models. Another reason is that various parameters can be adjusted accordingly.
Then, by taking the (k, ψ)–Caputo–PFDO into the left-sided of the problem (5.6), the problem (5.6)
can be rewritten as:

C
0,kD

α,ρ;ψS(τ) = −c1S(τ), α ∈ (0, 1], ρ ∈ (0, 1], k > 0,

C
0,kD

α,ρ;ψB(τ) = c1S (τ) − c2B(τ), α ∈ (0, 1], ρ ∈ (0, 1], k > 0,

S(0) = S0, B(0) = B0 = 0.

(5.9)

Similarly procedure in Example 5.1, we obtain that

AN(ψ(τ) − ψ(0))1− αk

[
(1 − ρ)S(τ) + kρ

S′(τ)
ψ′(τ)

]
−e

ρ−1
kρ ψ(τ)

N∑
i=1

BN,i(ψ(τ) − ψ(0))1− αk −iVi(τ) = −c1S(τ),

AN(ψ(τ) − ψ(0))1− αk

[
(1 − ρ)B(τ) + kρ

B′(τ)
ψ′(τ)

]
−e

ρ−1
kρ ψ(τ)

N∑
i=1

BN,i(ψ(τ) − ψ(0))1− αk −iUi(τ) = c1S(τ) − c2B(τ),

V′i (τ) = (ψ(τ) − ψ(0))i−1ψ′(τ)e
1−ρ
kρ ψ(τ)

[
(1 − ρ)S(τ) + kρ

S′(τ)
ψ′(τ)

]
, i = 1, 2, . . . ,N,

U′i (τ) = (ψ(τ) − ψ(0))i−1ψ′(τ)e
1−ρ
kρ ψ(τ)

[
(1 − ρ)B(τ) + kρ

B′(τ)
ψ′(τ)

]
, i = 1, 2, . . . ,N,

S(0) = S0, B(0) = B0 = 0, Vi(0) = 0, Ui(0) = 0.

(5.10)

In all graphical simulations, we use the parameters k1 = 0.12, k2 = 0.01, and ψ(τ) = τ based on the
experimental results for the BALs of a real individual in Table 1. We separated them into three cases,
which are shown in Figure 3.

Table 1. Experimental results for the BALs of a real individual.

Time (min) 0 10 20 30 45 80 90 110 170
BAL (mg/L) 0 150 200 160 130 170 60 40 20

Case (1): We set the initial conditions S0 = 330, B0 = 0, ρ = 0.988, and k = 0.995 with the
varied α ∈ {0.80, 0.85, 0.90, 0.95, 1.00}. The graphical simulation of B(τ) with the common parameters
is shown as in Figure 3a. Case (2): We set the initial conditions S0 = 280, B0 = 0, α = 0.95, and
k = 0.9 with the varied ρ ∈ {0.992, 0.994, 0.996, 0.998, 1.000}. The graphical simulation of B(τ) with
the common parameters is shown as in Figure 3b. Case (3): We set the initial conditions S0 = 255,
B0 = 0, α = 0.95, and ρ = 0.998 with the varied k ∈ {0.88, 0.90, 0.92, 0.94, 0.96}. The graphical
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simulation of B(τ) with the common parameters is shown as in Figure 3c. Case (4): We set the initial
conditions S0 = 255, B0 = 0, α = 0.90, ρ = 0.25, k = 0.5, and N = 2, 5, 20. The graphical simulation
of B(τ) with the common parameters is shown as in Figure 4.
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(a) α ∈ {0.80, 0.85, 0.90, 0.95, 1.00}.
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(b) ρ ∈ {0.992, 0.994, 0.996, 0.998, 1.000}.
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(c) k ∈ {0.88, 0.90, 0.92, 0.94, 0.96}.

Figure 3. BAL compared with real data in Table 1 under α ∈ {0.80, 0.85, 0.90, 0.95, 1.00},
ρ ∈ {0.992, 0.994, 0.996, 0.998, 1.000}, and k ∈ {0.88, 0.90, 0.92, 0.94, 0.96} for the BAL
model (5.9).

We calculate the relative absolute error, EN = |(xe − xa)/xe| between the exact solution xe(τ) and the
approximation solution xa(τ) for the concentration of alcohol in the blood of a human body at time τ,
B(τ), as displayed in Table 2. The presented technique is applicable. Also, the results agree with the
exact solutions, and the error decreases as N increases.
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Figure 4. N ∈ {2, 5, 20}.

Table 2. The relative absolute error EN at α = 0.90, ρ = 0.25, k = 0.5 with different value of
N = 2, 5, and 20.

Time (min) BAL (mg/L) S2 S5 S20 E2 E5 E20

0 0 0.0000 0.0000 0.0000 - - -
10 150 182.4541 183.2365 183.7853 0.2164 0.2216 0.2252
20 200 198.0376 198.9739 199.5539 0.0098 0.0051 0.0022
30 160 176.2629 176.7983 177.0553 0.1016 0.1050 0.1066
45 130 138.3014 138.3158 138.2298 0.0639 0.0640 0.0633
80 70 75.1240 74.6521 74.2932 0.0732 0.0665 0.0613
90 60 62.7600 62.2160 61.8149 0.0460 0.0369 0.0302

110 40 43.4365 42.7890 42.3281 0.0859 0.0697 0.0582
170 20 13.0767 12.3641 11.8921 0.3462 0.3818 0.4054

6. Conclusions

In this work, we analyzed an extended Gronwall inequality in the context of the (k, ψ)-PFOs and
proved its properties. A Cauchy-type problem under the (k, ψ)-Caputo-PFDO is the highlight of our
presentation. First, the existence and uniqueness results of the proposed problem (1.1) were
established by applying Banach’s contraction mapping principle and Leray-Schauder’s nonlinear
alternative. Then, UH-ML stability was studied to guarantee the existing results. Moreover, a
numerical technique is demonstrated based on a decomposition formula for the (k, ψ)-Caputo-PFDO.
Finally, numerical examples are shown to verify the theoretical results. As seen in Example 5.1, we
set the specific type of Cauchy problem and showed numeric calculations to confirm the accuracy of
Theorem 3.2, which expresses the unique solution. We also showed the calculation satisfied the
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conditions for various Ulam stability to guarantee the results. For the fixed value of order α and with
the different parameters ρ and k, we found the result’s behavior through the graphic numerical
simulation that the approximate solution of the system converges to the exact solution as ρ and k
increased. In contrast, the absolute error values decreased to zero for increasing value k but increased
for decreasing value ρ. Furthermore, to strengthen our study in a broader domain, we applied the
established numerical technique to the BALs problem as seen in Example 5.2. We expressed a
numerical simulation of this problem under different parameters. The graphical results illustrated that
various values of α, ρ, and k gave the corresponding behavior of the system in the same trend as the
data. Consequently, the fractional-order form may approximate the alcohol concentration in a
human’s blood under a range of circumstances, as proven with data.

In future works, we can discuss applying (k, ψ)-Caputo-PFDO to real-world problems. This larger
paradigm greatly contributes to the development of fractional calculus. It is paving the way for exciting
future studies in this dynamic and developing discipline.
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