The pivotal differential parameters inherent in chaotic systems hold paramount significance across diverse disciplines. This study delves into the distinctive features of discrete differential parameters within three typical chaotic systems: the logistic map, the henon map, and the tent map. A pivotal discovery emerges: both the mean value of the first-order continuous and discrete derivatives in the logistic map coincide, mirroring a similar behavior observed in the henon map. Leveraging the insights gained from the first derivative formulations, we introduce the discrete n-order derivative formulas for both logistic and henon maps. This revelation underscores a discernible mathematical correlation linking the mean value of the derivative, the respective chaotic parameters, and the mean of the chaotic sequence. However, due to the discontinuous points in the tent map, its continuous differential parameter cannot characterize its derivative properties, but its discrete differential has a clear functional relationship with the parameter μ. This paper proposes the use of discrete differential derivatives as an alternative to traditional derivatives, and demonstrates that the mean value of discrete derivatives has a clear mathematical relationship with chaotic map parameters in a statistical sense, providing a new direction for subsequent in-depth research and applications.
Citation: Xinyu Pan. Research on discrete differential solution methods for derivatives of chaotic systems[J]. AIMS Mathematics, 2024, 9(12): 33995-34012. doi: 10.3934/math.20241621
The pivotal differential parameters inherent in chaotic systems hold paramount significance across diverse disciplines. This study delves into the distinctive features of discrete differential parameters within three typical chaotic systems: the logistic map, the henon map, and the tent map. A pivotal discovery emerges: both the mean value of the first-order continuous and discrete derivatives in the logistic map coincide, mirroring a similar behavior observed in the henon map. Leveraging the insights gained from the first derivative formulations, we introduce the discrete n-order derivative formulas for both logistic and henon maps. This revelation underscores a discernible mathematical correlation linking the mean value of the derivative, the respective chaotic parameters, and the mean of the chaotic sequence. However, due to the discontinuous points in the tent map, its continuous differential parameter cannot characterize its derivative properties, but its discrete differential has a clear functional relationship with the parameter μ. This paper proposes the use of discrete differential derivatives as an alternative to traditional derivatives, and demonstrates that the mean value of discrete derivatives has a clear mathematical relationship with chaotic map parameters in a statistical sense, providing a new direction for subsequent in-depth research and applications.
[1] | S. Zhou, X. Wang, Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations, Chaos Soliton. Fract., 139 (2020), 109981. https://doi.org/10.1016/j.chaos.2020.109981 doi: 10.1016/j.chaos.2020.109981 |
[2] | Z. Z. Ma, Q. C. Yang, R. P. Zhou, Lyapunov exponent algorithm based on perturbation theory for discontinuous systems, Acta Phys. Sin., 70 (2021), 240501. https://doi.org/10.7498/aps.70.20210492 doi: 10.7498/aps.70.20210492 |
[3] | F. Nazarimehr, S. Panahi, M. Jalili, M. Perc, S. Jafari, B. Fercec, Multivariable coupling and synchronization in complex networks, Appl. Math. Comput., 372 (2020), 124996. https://doi.org/10.1016/j.amc.2019.124996 doi: 10.1016/j.amc.2019.124996 |
[4] | N. Zandi-Mehran, S. Jafari, S. M. R. H. Golpayegani, Signal separation in an aggregation of chaotic signals, Chaos Soliton. Fract., 138 (2020), 109851. https://doi.org/10.1016/j.chaos.2020.109851 doi: 10.1016/j.chaos.2020.109851 |
[5] | S. J. Cang, L. Wang, Y. P. Zhang, Z. Wang, Z. Chen, Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator, Chaos Soliton. Fract., 158 (2022), 112016. https://doi.org/10.1016/j.chaos.2022.112016 doi: 10.1016/j.chaos.2022.112016 |
[6] | V. V. Klinshov, V. A. Kovalchuk, I. Franović, M. Perc, M. Svetec, Rate chaos and memory lifetime in spiking neural networks, Chaos Soliton. Fract., 158 (2022), 112011. https://doi.org/10.1016/j.chaos.2022.112011 doi: 10.1016/j.chaos.2022.112011 |
[7] | K. D. S. Andrade, M. R. Jeffrey, R. M. Martins, M. A. Teixeira, Homoclinic boundary-saddle bifurcations in planar nonsmooth vector fields, Int. J. Bifurcat. Chaos, 32 (2022), 22300099. https://doi.org/10.1142/S0218127422300099 doi: 10.1142/S0218127422300099 |
[8] | N. Yadav, S. Shah, Topological weak specification and distributional chaos on noncompact spaces. Int. J. Bifurcat. Chaos, 32 (2022), 2250048. https://doi.org/10.1142/S0218127422500481 doi: 10.1142/S0218127422500481 |
[9] | X. Y. Pan, H. M. Zhao, Research on the entropy of logistic chaos, Acta Phys. Sin., 61 (2012), 200504. https://doi.org/10.7498/aps.61.200504 doi: 10.7498/aps.61.200504 |
[10] | H. P. Wen, S. M. Yu, J. H. Lü, Encryption algorithm based on Hadoop and non-degenerate high-dimensional discrete hyperchaotic system, Acta Phys. Sin., 66 (2017), 230503. https://doi.org/10.7498/aps.66.230503 doi: 10.7498/aps.66.230503 |
[11] | X. Y. Wan, J. M. Zhang, A novel image authentication and recovery algorithm based on dither and chaos, Acta Phys. Sin., 63 (2014), 210701. https://doi.org/10.7498/aps.63.210701 doi: 10.7498/aps.63.210701 |
[12] | B. Yang, X. Liao, Some properties of the Logistic map over the finite field and its application, Signal process., 153 (2018), 231–242. https://doi.org/10.1016/j.sigpro.2018.07.011 doi: 10.1016/j.sigpro.2018.07.011 |
[13] | M. Lazaros, V. Christos, J. Sajad, J. M. Munoz-Pacheco, J. Kengne, K. Rajagopal, et al., Modification of the logistic map using fuzzy numbers with application to pseudorandom number generation and image encryption, Entropy, 22 (2020), 474. https://doi.org/10.3390/e22040474 doi: 10.3390/e22040474 |
[14] | M. Wang, X. Wang, T. Zhao, C. Zhang, Z. Xia, N. Yao, Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme, Inform. Sciences, 554 (2021), 1–24. https://doi.org/10.1016/j.ins.2020.07.051 doi: 10.1016/j.ins.2020.07.051 |
[15] | X. Y. Wang, S. Gao, X. L. Ye, S. Zhou, M. X. Wang, A new image encryption algorithm with cantor diagonal scrambling based on the PUMCML system, Int. J. Bifurcat. Chaos, 31 (2021), 2150003. https://doi.org/10.1142/S0218127421500036 doi: 10.1142/S0218127421500036 |
[16] | Z. P. Zhao, S. Zhou, X. Y. Wang, A new chaotic signal based on deep learning and its application in image encryption, Acta Phys. Sin., 70 (2021), 230502. https://doi.org/10.7498/aps.70.20210561 doi: 10.7498/aps.70.20210561 |
[17] | B. X. Mao, Two methods contrast of sliding mode synchronization of fractional-order multy-chaotic systems, Acta Electronica Sin., 48 (2020), 2215–2219. https://doi.org/10.3969/j.issn.0372-2112.2020.11.017 doi: 10.3969/j.issn.0372-2112.2020.11.017 |
[18] | B. X. Mao, D. X. Wang. Self-adaptive sliding mode synchronization of uncertain fractional-order high-dimension chaotic systems, Acta Electronica Sin., 49 (2021), 775–780. https://doi.org/10.12263/DZXB.20200316 doi: 10.12263/DZXB.20200316 |
[19] | Z. C. Zhu, Q. X. Zhu, Adaptive neural prescribed performance control for non-triangular structural stochastic highly nonlinear systems under hybrid attacks, IEEE T. Automat. Sci. Eng., 2024. https://doi.org/10.1109/TASE.2024.3447045 doi: 10.1109/TASE.2024.3447045 |
[20] | Q. X. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lexvy processes, IEEE T. Automat. Control, 2024. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128 |
[21] | Y. Xue, J. Han, Z. Tu, X. Y. Chen, Stability analysis and design of cooperative control for linear delta operator system, AIMS Math., 8 (2023), 12671–12693. https://doi.org/10.3934/math.2023637 doi: 10.3934/math.2023637 |
[22] | H. Bi, G. Qi, J. Hu, P. Faradja, G. Chen, Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle, Chaos Soliton. Fract., 138 (2020), 109815. https://doi.org/10.1016/j.chaos.2020.109815 doi: 10.1016/j.chaos.2020.109815 |
[23] | L. X. Fu, S. B. He, H. H. Wang, K. H. Sun, Simulink modeling and dynamic characteristics of discrete memristor chaotic system, Acta Phys. Sin., 71 (2022), 030501. https://doi.org/10.7498/aps.71.20211549 doi: 10.7498/aps.71.20211549 |
[24] | J. Y. Ruan, K. H. Sun, J. Mou. Memristor-based Lorenz hyper-chaotic system and its circuit implementation, Acta Phys. Sin., 65 (2016), 190502. https://doi.org/10.7498/aps.65.190502 doi: 10.7498/aps.65.190502 |
[25] | J. V. N. Tegnitsap, H. B. Fotsin, Multistability, transient chaos and hyperchaos, synchronization, and chimera states in wireless magnetically coupled VDPCL oscillators, Chaos Soliton. Fract., 158 (2022), 112056. https://doi.org/10.1016/j.chaos.2022.112056 doi: 10.1016/j.chaos.2022.112056 |
[26] | H. Xiao, Z. Li, H. Lin, Y. Zhao, A sual rumor spreading model with consideration of fans versus ordinary people, Mathematics, 11 (2023), 2958. https://doi.org/10.3390/math11132958 doi: 10.3390/math11132958 |
[27] | Q. Yang, X. Wang, X. Cheng, B. Du, Y. Zhao, Positive periodic solution for neutral-type integral differential equation arising in epidemic model, Mathematics, 11 (2023), 2701. https://doi.org/10.3390/math11122701 doi: 10.3390/math11122701 |