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Abstract: The pivotal differential parameters inherent in chaotic systems hold paramount significance 
across diverse disciplines. This study delves into the distinctive features of discrete differential 
parameters within three typical chaotic systems: the logistic map, the henon map, and the tent map. A 
pivotal discovery emerges: both the mean value of the first-order continuous and discrete derivatives 
in the logistic map coincide, mirroring a similar behavior observed in the henon map. Leveraging the 
insights gained from the first derivative formulations, we introduce the discrete n-order derivative 
formulas for both logistic and henon maps. This revelation underscores a discernible mathematical 
correlation linking the mean value of the derivative, the respective chaotic parameters, and the mean 
of the chaotic sequence. However, due to the discontinuous points in the tent map, its continuous 
differential parameter cannot characterize its derivative properties, but its discrete differential has a 
clear functional relationship with the parameter μ. This paper proposes the use of discrete differential 
derivatives as an alternative to traditional derivatives, and demonstrates that the mean value of discrete 
derivatives has a clear mathematical relationship with chaotic map parameters in a statistical sense, 
providing a new direction for subsequent in-depth research and applications. 
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1. Introduction 

In recent years, with the rapid development of communication and signal processing theories as 
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well as control theories, traditional chaotic signals have not only continued to deepen their fundamental 
theoretical research but also shown a diversified trend in applications across different fields. 

Over the past few years, significant strides have been achieved in the foundational theory of 
chaotic systems, encompassing novel methodologies for calculating Lyapunov exponents [1,2], 
synchronization of chaotic signals [3], as well as advancements in separation techniques [4]. 
Furthermore, there have been remarkable accomplishments in the exploration of chaotic dynamics and 
topology [5–8]. Within the realm of chaos theory applications, research has delved into chaotic 
information entropy [9], and a plethora of groundbreaking results have emerged in the field of image 
encryption [10–16]. The investigation into the uncertainty and stability of chaotic systems has garnered 
attention [17,18], facilitating their seamless integration into control systems. Chaotic systems are also 
applied to being approximated by neural networks for nonlinear functions, as well as to being analyzed 
for the stability performance of neural networks [19–21]. Notably, some scholars have successfully 
applied these findings to the control of quadrotor aircraft, demonstrating their practical potential [22]. 
Concurrently, chaos theory has yielded numerous favorable outcomes in the investigation of memristor 
circuits, representing a significant milestone in this area of research [23–25]. Even in the field of social 
sciences, chaotic systems hold equally important application scenarios [26,27]. 

Drawing upon the current landscape of research in the fundamental theory of chaos and its diverse 
applications, it is evident that a vast majority of the research outcomes, either directly or indirectly, 
harness the differential characteristics of chaotic systems. A prime example of this is the utilization of 

these characteristics in solving for Lyapunov exponents (𝜆 = lim
→ஶ

ଵ


∑ ln ቚ

ௗ(௫)

ௗ௫
ቚ

ୀଵ ), which is a pivotal 

metric in understanding the stability and predictability of chaotic systems. 
Taking the logistic map as an example, its chaotic expression is 𝑓(𝑥) = 𝜇𝑥(1 − 𝑥). According 

to the conventional method, the first derivative equation is 𝑓ᇱ(𝑥) =
ௗ(௫)

ௗ௫
= 𝜇 − 2𝜇𝑥. Then the second 

derivative can be obtained as 𝑓ᇱᇱ(𝑥) = −2𝜇 . Then the third derivative must be 𝑓ଷ(𝑥) = 0 . The 
aforementioned derivative solutions can be regarded as continuous in nature, standing in stark contrast 
to the derivatives of genuine the logistic chaotic sequences. Numerical evaluations reveal that, beyond 
the third order, the discrete derivatives of the logistic map do not converge to zero, underscoring the 
need for further analysis. 

Through the examples provided above, it can be observed that there exists a deviation in the 
continuous derivative form for chaotic systems. Thus, the focal point of this paper lies in dissecting 
the continuous and discrete derivative formulations for three ubiquitous chaotic systems: the logistic 
map, the henon map, and the tent map. Taking the logistic map as an example, we present the 
continuous first derivative formula in Eq (1) and its discrete counterpart in Eq (2). Here, 𝐸{∙} denotes 
taking the mean of a sequence. 

ௗ(௫)

ௗ௫
= 𝜇 − 2𝜇𝑥 → 𝐸 ቄ

ௗ(௫)

ௗ௫
ቅ = 𝜇 − 2𝜇𝐸{𝑥},     (1) 

∆𝑓(𝑥) =
(௫శభ)ି(௫)

௫శభି௫
=

௫శమି௫శభ

௫శభି௫
 → 𝐸{∆𝑓(𝑥)} = 𝐸 ቄ

௫శమି௫శభ

௫శభି௫
ቅ.   (2) 

The main research findings of this paper include: 
1-The use of discrete difference derivative forms as a substitute for continuous derivatives. And 

derive the formula for higher-order discrete derivatives. Thereby avoiding the situation where the 
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continuous higher-order derivatives are zero. 
2-Through rigorous mathematical formula derivation and numerical simulations, it is found that 

despite the notable discrepancies in the computational outcomes for discrete points of chaotic signals 
between the two differentiation methods, the average values of their respective derivatives coincide. 

3-There exists a clear mathematical relationship between the average value of the discrete 
differential derivatives of chaotic maps and the parameters of those systems. In applications where the 
derivative of a chaotic sequence is required, the discrete difference derivative method proposed in this 
paper can be adopted. 

2. Analysis of differential characteristic of several discrete chaotic system 

2.1. Logistic map 

The continuous expression of the logistic map is shown in Eq (3). 

𝑓(𝑥) = 𝜇𝑥(1 − 𝑥).         (3) 

More often, it is described in the form of discretization, and its discrete expression is shown in Eq (4). 

𝑥ାଵ = 𝜇𝑥(1 − 𝑥).         (4) 

According to Eq (3), the differential expression of the continuous function of the logistic chaotic 
system can be obtained as shown in Eq (5). 

𝑓ᇱ(𝑥) =
ௗ(௫)

ௗ௫
= 𝜇 − 2𝜇𝑥.        (5) 

And the differential expression in the form of discretization according to Eq (4) is shown as Eq (6). 

∆𝑓(𝑥) =
𝑓(𝑥ାଵ) − 𝑓(𝑥)

𝑥ାଵ − 𝑥
=

𝑥ାଶ − 𝑥ାଵ

𝑥ାଵ − 𝑥
=

𝜇𝑥ାଵ(1 − 𝑥ାଵ) − 𝜇𝑥(1 − 𝑥)

𝑥ାଵ − 𝑥
 

=
ఓ௫శభିఓ௫శభ

మିఓ௫ାఓ௫
మ

௫శభି௫
= 𝜇 − 𝜇(𝑥ାଵ + 𝑥) = 𝜇 − (𝜇 + 𝜇ଶ)𝑥 + 𝜇ଶ𝑥

ଶ.  (6) 

For each discrete chaotic sample point, Eqs (5) and (6) are not equal in form. However, the mean 
values of both could potentially be equal. So we assume that the mean values of Eqs (5) and (6) are 

equal, 𝐸 ቄ
ௗ(௫)

ௗ௫
ቅ = 𝐸{∆𝑓(𝑥)} and obtain Eq (7) below. 

𝜇 − 2𝜇𝐸{𝑥} =  𝜇 − 𝜇𝐸{𝑥} − 𝜇ଶ𝐸{𝑥} + 𝜇ଶ𝐸{𝑥ଶ}, 

𝐸{𝑥} =
ఓ

ఓିଵ
𝐸{𝑥ଶ}.         (7) 

According to Eq (2), the expression of the 2nd derivative can be derived, as shown in Eq (8). 

∆ଶ𝑓(𝑥) =
∆𝑓(𝑥ାଵ) − ∆𝑓(𝑥)

𝑥ାଵ − 𝑥
 

=
𝜇 − (𝜇 + 𝜇ଶ)𝑥ାଵ + 𝜇ଶ𝑥ାଵ

ଶ − 𝜇 + (𝜇 + 𝜇ଶ)𝑥 − 𝜇ଶ𝑥
ଶ

𝑥ାଵ − 𝑥
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 =
−(𝜇 + 𝜇ଶ)𝑥ାଵ + 𝜇ଶ𝑥ାଵ

ଶ + (𝜇 + 𝜇ଶ)𝑥 − 𝜇ଶ𝑥
ଶ

𝑥ାଵ − 𝑥
 

=
−(𝜇 + 𝜇ଶ)(𝑥ାଵ − 𝑥) + 𝜇ଶ(𝑥ାଵ

ଶ − 𝑥
ଶ)

𝑥ାଵ − 𝑥
 

= −(𝜇 + 𝜇ଶ) + 𝜇ଶ(𝑥ାଵ + 𝑥) 

= −𝜇ଷ𝑥
ଶ + 𝜇ଶ(𝜇 + 1)𝑥 − (𝜇 + 𝜇ଶ).         (8) 

According to Eq (6) and Eq(8), the expression of the n-order derivative can be supposed as Eq(9). 

∆𝑓(𝑥) = ൜
𝜇ଶ𝑥

ଶ − (𝜇 + 𝜇ଶ)𝑥 + 𝜇,

(−1)ିଵ𝜇ାଵ𝑥
ଶ + (−1)𝜇(𝜇 + 1)𝑥 + (−1)ିଵ𝜇ିଵ(𝜇 + 1),

  
𝑛 = 1,
𝑛 ≥ 2.

  (9) 

When 𝑛 ≥ 2, the hypothesis of Eq (9) can be proved by mathematical induction, as shown in Eq (10). 

∆ାଵ𝑓(𝑥) =
∆𝑓(𝑥ାଵ) − ∆𝑓(𝑥)

𝑥ାଵ − 𝑥
 

=
(−1)ିଵ𝜇ାଵ𝑥ାଵ

ଶ + (−1)𝜇(𝜇 + 1)𝑥ାଵ − (−1)ିଵ𝜇ାଵ𝑥
ଶ − (−1)𝜇(𝜇 + 1)𝑥

𝑥ାଵ − 𝑥
 

= (−1)𝜇(𝜇 + 1) + (−1)ିଵ𝜇ାଵ(𝑥ାଵ + 𝑥) 

= (−1)𝜇(𝜇 + 1) + (−1)ିଵ𝜇ାଵ((𝜇 + 1)𝑥 − 𝜇𝑥
ଶ) 

= (−1)𝜇ାଶ𝑥
ଶ + (−1)ାଵ𝜇ାଵ(𝜇 + 1)𝑥 + (−1)𝜇(𝜇 + 1).      (10) 

2.2. Henon map 

The continuous expression for the henon map is 𝑥 = 1 − 𝑎𝑥ଶ + 𝑦  and 𝑦 = 𝑏𝑥 . The one-
dimensional expression of the henon map, as shown in Eq (11), can be obtained by combining the two 
formulas. 

𝑓(𝑥) = 1 + 𝑏𝑥 − 𝑎𝑥ଶ.        (11) 

Its discrete expression is given by Eq (12). 

𝑥ାଵ = 1 + 𝑏𝑥 − 𝑎𝑥
ଶ.        (12) 

According to Eq (11), the continuous differential derivative of the henon map is shown in Eq (13). 

𝑓ᇱ(𝑥) =
ௗ(௫)

ௗ௫
= 𝑏 − 2𝑎𝑥.        (13) 

According to Eq (12), the discretized differential expression is shown in Eq (14). 

∆𝑓(𝑥) =
𝑓(𝑥ାଵ) − 𝑓(𝑥)

𝑥ାଵ − 𝑥
 

=
1 + 𝑏𝑥ାଵ − 𝑎𝑥ାଵ

ଶ − 1 − 𝑏𝑥 + 𝑎𝑥
ଶ

1 + 𝑏𝑥 − 𝑎𝑥
ଶ − 𝑥
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=
𝑏(𝑥ାଵ − 𝑥) − 𝑎(𝑥ାଵ

ଶ − 𝑥
ଶ)

𝑥ାଵ − 𝑥
 

= 𝑏 − 𝑎(𝑥ାଵ + 𝑥) 

= 𝑏 − 𝑎(1 + 𝑏𝑥 − 𝑎𝑥
ଶ + 𝑥) 

= 𝑏 − 𝑎 − 𝑎(𝑏 + 1)𝑥 + 𝑎ଶ𝑥
ଶ.       (14) 

If the mean values of the two differential derivatives are assumed to be equal, that is, Eq (13) and 

Eq (14) are equal, then 𝐸 ቄ
ௗ(௫)

ௗ௫
ቅ = 𝐸{∆𝑓(𝑥)}, and the Eq (15) is obtained. 

𝐸{∆𝑓(𝑥)} = 𝑏 − 2𝑎𝐸{𝑥} = 𝑏 − 𝑎 − 𝑎(𝑏 + 1)𝐸{𝑥} + 𝑎ଶ𝐸{𝑥ଶ}, 

𝐸{𝑥ଶ} =
(ିଵ)ா{௫}ାଵ


.         (15) 

The variance relation Eq (16) is thus obtained. 

𝑉𝑎𝑟{𝑥} = 𝐸{(𝑥 − �̅�)ଶ} = 𝐸{𝑥ଶ} − 𝐸{𝑥}ଶ =
(ିଵ)


𝐸{𝑥} +

ଵ


− 𝐸{𝑥}ଶ.   (16) 

According to Eq (14), the expression of the 2nd derivative can be derived, as shown in Eq (17). 

∆ଶ𝑓(𝑥) =
∆𝑓(𝑥ାଵ) − ∆𝑓(𝑥)

𝑥ାଵ − 𝑥
 

=
𝑏 − 𝑎 − 𝑎(𝑏 + 1)𝑥ାଵ + 𝑎ଶ𝑥ାଵ

ଶ − 𝑏 + 𝑎 + 𝑎(𝑏 + 1)𝑥 − 𝑎ଶ𝑥
ଶ

𝑥ାଵ − 𝑥
 

=
−𝑎(𝑏 + 1)(𝑥ାଵ − 𝑥) + 𝑎ଶ(𝑥ାଵ

ଶ − 𝑥
ଶ)

𝑥ାଵ − 𝑥
 

= −𝑎(𝑏 + 1) + 𝑎ଶ(𝑥ାଵ + 𝑥) 

= −𝑎ଷ𝑥
ଶ + 𝑎ଶ(𝑏 + 1)𝑥 − 𝑎𝑏 − 𝑎 + 𝑎ଶ.         (17) 

According to Eq (13) and Eq (14), the expression of the n-order derivative can be supposed to be Eq (18). 

∆𝑓(𝑥) = ൜
𝑎ଶ𝑥

ଶ − 𝑎(𝑏 + 1)𝑥 + 𝑏 − 𝑎,

(−1)ିଵ𝑎ାଵ𝑥
ଶ + (−1)𝑎(𝑏 + 1)𝑥 + (−1)ିଵ𝑎ିଵ(𝑏 + 1) + (−1)𝑎,

 
𝑛 = 1,
𝑛 ≥ 2.

 (18) 

When 𝑛 ≥ 2,the hypothesis of Eq (18) can be proved by mathematical induction, as shown in Eq (19). 

∆ାଵ𝑓(𝑥) =
∆𝑓(𝑥ାଵ) − ∆𝑓(𝑥)

𝑥ାଵ − 𝑥
 

=
(−1)ିଵ𝑎ାଵ𝑥ାଵ

ଶ + (−1)𝑎(𝑏 + 1)𝑥ାଵ − (−1)ିଵ𝑎ାଵ𝑥
ଶ − (−1)𝑎(𝑏 + 1)𝑥

𝑥ାଵ − 𝑥
 

= (−1)𝑎(𝑏 + 1) + (−1)ିଵ𝑎ାଵ(𝑥ାଵ + 𝑥) 

= (−1)𝑎(𝑏 + 1) + (−1)ିଵ𝑎ାଵ(1 + (𝑏 + 1)𝑥 − 𝑎𝑥
ଶ) 
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= (−1)𝑎ାଶ𝑥
ଶ + (−1)ାଵ𝑎ାଵ(𝑏 + 1)𝑥 + (−1)𝑎(𝑏 + 1) + (−1)ାଵ𝑎ାଵ.  (19) 

2.3. Tent map 

The continuous expression of the tent map is shown in Eq (20). 

𝑓(𝑥) = ቐ

௫

ఓ
, 0 < 𝑥 ≤ 𝜇,

ଵି௫

ଵିఓ
, 𝜇 < 𝑥 < 1.

        (20) 

Its discretized form is shown in Eq (21). 

𝑥ାଵ = ቐ

௫

ఓ
, 0 < 𝑥 ≤ 𝜇,

ଵି௫

ଵିఓ
, 𝜇 < 𝑥 < 1.

       (21) 

The value range of the tent map is 0 < 𝑥 < 1, and it satisfies uniform distribution. 
The continuous differential form of the tent chaotic derivative obtained from Eq (20) is shown in 

Eq (22). 

ௗ(௫)

ௗ௫
= ቐ

ଵ

ఓ
, 0 < 𝑥 ≤ 𝜇,

ିଵ

ଵିఓ
, 𝜇 < 𝑥 < 1.

        (22) 

the tent chaotic system has discontinuous points, and the discrete differential expression of its 

derivative can be expressed by Eq (2) (∆𝑓(𝑥) =
௫శమି௫శభ

௫శభି௫
), but four different cases can be obtained 

according to the different value range of 𝑥. 
The first case is shown in Eq (23): 

𝐸ଵ{∆𝑓(𝑥)} =

ೣ
ഋమି

ೣ
ഋ

ೣ
ഋ

ି௫
=

ଵ

ఓ
,        (23) 

where 0 < 𝑥 ≤ 𝜇 and 0 <
௫

ఓ
≤ 𝜇, then 0 < 𝑥 ≤ 𝜇ଶ. 

The second case is shown in Eq (24): 

∆𝑓(𝑥) =

భష
ೣ
ഋ

భషഋ
ି

ೣ
ഋ

ೣ
ഋ

ି௫
=

ఓା(ఓିଶ)௫

(ఓିଵ)మ௫
=

ଵ

(ఓିଵ)మ
ቀ

ఓ

௫
+ 𝜇 − 2ቁ =

ఓିଶ

(ఓିଵ)మ
+

ఓ

(ఓିଵ)మ

ଵ

௫
,  (24) 

where 0 < 𝑥 ≤ 𝜇 and 𝜇 ≤
௫

ఓ
< 1, then 𝜇ଶ ≤ 𝑥 ≤ 𝜇. 

According to the uniform distribution characteristics of the tent map and the value range of 𝜇ଶ ≤

𝑥 ≤ 𝜇, the average value of the derivative of the chaotic system is as Eq (25). 

𝐸ଶ{∆𝑓(𝑥)} =
ఓିଶ

(ఓିଵ)మ
+

ఓ

(ఓିଵ)మ
𝐸 ቄ

ଵ

௫
ቅ.      (25) 
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When the range of the tent map is 𝜇ଶ ≤ 𝑥 ≤ 𝜇, its probability density function is as in Eq (26). 

𝑓(𝑥) =
ଵ

ఓିఓమ
.         (26) 

Using the property of the probability density function of the random variable, the result of Eq (25) can 
be obtained as shown in Eq (27). 

𝐸ଶ{∆𝑓(𝑥)} =
ఓିଶ

(ఓିଵ)మ
+

ఓ

(ఓିଵ)మ ∫
ଵ

ఓିఓమ
𝑥

ଵ

௫మ

భ

ഋమ

భ

ഋ

𝑑𝑥  

=
ఓିଶ

(ఓିଵ)మ
+

ఓ

(ఓିଵ)మ

ିఓ

ఓିఓమ
=

ఓିଶ

(ఓିଵ)మ
−

ఓ

(ଵିఓ)య
.     (27) 

The third case is shown in Eq (28): 

𝐸ଷ{∆𝑓(𝑥)} =

భష
భషೣ
భషഋ

భషഋ
ି

భషೣ
భషഋ

భషೣ
భషഋ

ି௫
=

ିଵ

ଵିఓ
,       (28) 

where 𝜇 ≤ 𝑥 < 1 and 𝜇 ≤
ଵି௫

ଵିఓ
< 1, then 𝜇 ≤ 𝑥 ≤ 𝜇ଶ − 𝜇 + 1. 

The fourth case is shown in (29): 

∆𝑓(𝑥) =
𝑥ାଶ − 𝑥ାଵ

𝑥ାଵ − 𝑥
=

𝑥ାଵ

𝜇
− 𝑥ାଵ

𝑥ାଵ − 𝑥
 

=
1 − 𝜇

𝜇

𝑥ାଵ

𝑥ାଵ − 𝑥
=

1 − 𝜇

𝜇

𝑥ାଵ

𝑥ାଵ − 1 + (1 − 𝜇)𝑥ାଵ
 

=
1 − 𝜇

𝜇(2 − 𝜇)

(2 − 𝜇)𝑥ାଵ − 1 + 1

(2 − 𝜇)𝑥ାଵ − 1
 

=
1 − 𝜇

𝜇(2 − 𝜇)
(1 +

1

(2 − 𝜇)𝑥ାଵ − 1
) 

=
ଵିఓ

ఓ(ଶିఓ)
(1 +

ଵିఓ

ଵି(ଶିఓ)௫
),           (29) 

where 𝜇 ≤ 𝑥 < 1 and 0 <
ଵି௫

ଵିఓ
≤ 𝜇, then 𝜇ଶ − 𝜇 + 1 ≤ 𝑥 < 1. 

According to the uniform distribution characteristics of the tent map and the value range of 𝜇ଶ −

𝜇 + 1 ≤ 𝑥 < 1, the average value of the derivative of this chaotic system is shown in (30). 

𝐸ସ{∆𝑓(𝑥)} =
ଵିఓ

ఓ(ଶିఓ)
+

(ଵିఓ)మ

ఓ(ଶିఓ)
𝐸 ቄ

ଵ

ଵି(ଶିఓ)௫
ቅ.     (30) 

When the tent map ranges from 𝜇ଶ − 𝜇 + 1 ≤ 𝑥 < 1, its probability density function is shown in (31). 

𝑓(𝑥) =
ଵ

ఓିఓమ
.         (31) 
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Similarly, the result of Eq (25) can be obtained by using the probability density function characteristics 
of random variables, as shown in Eq (32). 

𝐸ସ{∆𝑓(𝑥)} =
1 − 𝜇

𝜇(2 − 𝜇)
+

(1 − 𝜇)ଶ

𝜇(2 − 𝜇)
න

1

𝜇 − 𝜇ଶ
𝑥

1

2 − 𝜇

1

𝑥ଶ
𝑑𝑥

ଵ
ఓିଵ

ଵ
ଵି(ଶିఓ)(ఓమିఓାଵ)

 

=
1 − 𝜇

𝜇(2 − 𝜇)
+

(1 − 𝜇)ଶ

𝜇(2 − 𝜇)
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.         (32) 

By combining the above four cases, the mean value of the discretized derivative of the tent map can 
be obtained as shown in Eq (33). 

𝐸{∆𝑓(𝑥)} = ∑ 𝐸{∆𝑓(𝑥)}𝑃
ସ
ୀଵ ,       (33) 

where 𝑃 is the probability of each segment. Since the tent map satisfies the uniform distribution and 
the value range is 0 < 𝑥 < 1, the value of 𝑃 is equal to the value range of x. The final result of 
𝐸{∆𝑓(𝑥)} is shown in (34). Because of the discontinuity of the tent map, the expression of discrete 
differential derivative is more reasonable. 

𝐸{∆𝑓(𝑥)} = 𝐸ଵ{∆𝑓(𝑥)}(𝜇ଶ − 0) + 𝐸ଶ{∆𝑓(𝑥)}(𝜇 − 𝜇ଶ) 

+ 𝐸ଷ{∆𝑓(𝑥)}(𝜇ଶ − 𝜇 + 1 − 𝜇) + 𝐸ସ{∆𝑓(𝑥)}(𝜇 − 𝜇ଶ) 

=
1

𝜇
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−1
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+ ቆ
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+
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1 − (2 − 𝜇)(𝜇ଶ − 𝜇 + 1)

𝜇 − 1
ቇ (𝜇 − 𝜇ଶ) 

= 2𝜇 − 1 +
ఓ(ఓିଶ)

ଵିఓ
−

ఓఓ

(ଵିఓ)మ
+

(ଵିఓ)మ

(ଶିఓ)
+

(ଵିఓ)మ

ఓ(ଶିఓ)మ
𝑙𝑛

ଵି(ଶିఓ)(ఓమିఓାଵ)

ఓିଵ
 .    (34) 

3. Experimental results and analysis 

3.1. Numerical simulation 

Numerical simulation experiments were conducted to verify the equality in the average sense 
between continuous derivatives and discrete derivatives. Several numerical simulation experiments are 
as follows: 

1-Using both continuous and discrete derivatives, the derivative values at each sample of the 
chaotic sequences were calculated separately. 

For the logistic chaotic system, parameterized with μ = 3.71 and an initial value of 0.1, we derived 
the continuous differential derivative curves and the discrete differential derivative sequence using 
Eqs (5) and (6), respectively. These results are visually presented in Figure 1. 
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Similarly, for the henon chaotic system, with parameters a=1.6, b=1.6, and an initial value of 0.1, 
the continuous differential derivative curves and the discrete differential derivative sequence were 
obtained by applying Eq (13) and Eq (14), respectively. These outcomes are depicted in Figure 2. 

 

Figure 1. Comparison of derivative of the logistic map (𝜇 = 3.71, initial value is 0.1). 

 

Figure 2. Comparison of derivative of the henon map (𝑎 = 1.6, 𝑏 = 1.6, initial value is 0.1). 

The results obtained by using continuous derivatives and discrete derivatives, respectively, for 
each discrete chaotic sampling point, exhibit differences. 

2-The mean value graphs of continuous and discrete derivatives for three chaotic systems under 
different initial values and chaotic parameters are presented separately, as well as the mean value slice plots. 
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To comprehensively compare the mean values, Figures 3 and 4 showcase the relationship between 
the mean continuous and discrete differential derivatives of the logistic map system under varying μ 
values (ranging from 3.6 to 4) and initial conditions (x varying between 0.01 and 0.99), with increments 
of 0.001 for both parameters and a sequence length of 500,000. Figure 5 further illustrates the cross-
sectional view of this comparison at x=0.1, where μ varies within the same range. 

 

Figure 3. The mean for derivative of the logistic map calculated by Eq (5). 

 

Figure 4. The mean for derivative of the logistic map calculated by Eq (6). 
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Figure 5. The curve of the cross-section of Figures 3 and 4 (3.6 < μ < 4, 𝑥 = 0.1). 

Analogously, Figures 6 and 7 compare the mean values of the continuous and discrete differential 
derivatives for the henon map system, exploring various values of the parameter a (from 1 to 2, with 
b set equal to a) and initial conditions (x ranging from 0.01 to 0.99), again with increments of 0.001 
and a sequence length of 500,000. Figure 8 provides a cross-sectional view of this comparison, 
specifically for x=0.1 and a varying within the aforementioned range, with b=a. 

 

Figure 6. The mean for derivative of the henon map calculated by Eq (13). 
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Figure 7. The mean for derivative of the henon map calculated by Eq (14). 

 

Figure 8. The curve of the cross-section of Figures 6 and 7 (1 < a < 2, 𝑥 = 0.1). 

The mean values of the discrete differential derivatives for the tent map chaotic system, under 
varying μ values within the range of 0 to 1 and initial conditions x spanning from 0.01 to 0.99, are 
presented in Figure 9. Here, the increments for μ and the initial value x are set to 0.001, and the 
sequence length is fixed at 500,000. For a closer inspection, Figure 10 showcases the comparison 
between the cross-sectional curve extracted from Figure 9 and the theoretical prediction based on 
Eq (34), specifically for μ ranging from 0 to 1 and an initial value of x=0.1. 
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Figure 9. The mean for derivative of the tent map calculated by Eq (2). 

 

Figure 10. The comparison between the curve of the cross-section of Figure 9 and Eq (34). 

3-Select representative chaotic parameters and present the differences in mean values between 
continuous and discrete derivatives. 

To facilitate a more comprehensive understanding, Tables 1–3 have been compiled to 
systematically compare the mean values of partial derivatives for the logistic, henon, and tent chaotic 
systems, respectively. Table 1 details the mean values of partial derivatives for the logistic chaotic 
system, Table 2 presents the analogous data for the henon chaotic system, and Table 3 provides a 
similar comparison for the tent chaotic system. The results indicate that there is little or no difference 
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between the mean values of continuous and discrete derivatives in most cases. These tables offer a 
concise and structured view of the key findings, enabling readers to easily compare and analyze the 
behavior of partial derivatives across different chaotic systems. 

Table 1. Comparison the mean for derivative of the logistic map. 

𝜇 3.6 3.7 3.8 3.9 

Mean of Eq (5) -1.054 -1.242 -1.079 -0.721 
Mean of Eq (6) -1.054 -1.242 -1.079 -0.721 

Table 2. Comparison the mean for derivative of the henon map. 

a 1.5 1.6 1.7 1.8 1.9 

Mean of Eq (13) -1.025 -1.054 -1.242 -1.080 -0.724 
Mean of Eq (14) -1.025 -1.054 -1.242 -1.080 -0.724 

Table 3. Comparison the mean for derivative of the tent map. 

𝜇 0.2 0.4 0.6 0.8 

Mean of Eq (2) -0.633 -0.383 -0.121 0.179 
Mean of Eq (34) -0.632 -0.383 -0.119 0.184 

 

Figure 11. Application of discrete derivative in DCSK modulated signal. 

4-To verify the application of the discrete derivative method in communication systems, a discrete 
derivative calculation was performed on the DCSK (differential chaos shift keying) modulated signal. 
The results are shown in Figure 11. In this context, the carrier signal employs the logistic map with a 
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parameter 𝜇 =3.63 and an initial value of 0.1. The DCSK baseband signal consists of 10 randomly 
generated symbols (where symbols are either 1 or -1), with each symbol represented by 100 chaotic 
samples. The results indicate that after applying the discrete derivative, abrupt changes in the chaotic 
sequence can be clearly identified within the -1 symbols, facilitating the detection of differences 
between 1 and -1 symbols. Of course, due to the diverse types of chaotic maps and their variable 
parameters, the application of the discrete derivative method in communication systems warrants 
further in-depth research. 

3.2. Analysis 

Based on the equations detailed in the second part and the aforementioned chart, the following 
insights can be distilled: 

1-As evident from Figures 1 and 2, the logistic map and the henon map exhibit distinct behaviors 
in terms of their continuous differential derivative curves and discrete differential derivative series, 
respectively. Notably, the continuous derivative's outcomes span a broader range, whereas the discrete 
derivatives cluster more tightly. This underscores the inherent difference between these two derivative 
series. 

2-Analyzing the outcomes presented in Figures 3 through 10 reveals that the mean values of both 
continuous and discrete differential derivatives across three chaotic systems are largely equivalent. As 
can be seen from the figures, the mean value is only related to the parameter 𝜇 and is independent of 
the initial value. Further examination of Tables 1 to 3 highlights a subtle discrepancy solely in the 
thousandths place between the mean values of the continuous and discrete derivatives for the tent map. 

3-The Eq (6) through (10) and (12) through (19) clearly illustrate a straightforward mathematical 
correlation between the mean discrete derivatives of the logistic map and the henon map, and the mean 
of their chaotic series. This relationship underscores the fundamental interdependence between these 
variables. 

4-The discontinuous nature of the tent map precludes its direct representation through continuous 
function derivatives. Nevertheless, Eq (34) establishes a definitive mathematical link between the 
mean of the tent map's discretized derivative and the parameter μ, offering valuable insight into the 
system's behavior. 

5-Numerical computations affirm that the mean values of the first-order continuous and 
discrete differentials for the three chaotic systems are indeed equivalent, thereby validating the 
accuracy of Eqs (6), (14), and (34). Consequently, the derived n-order discrete differential equations, 
namely Eq (9) and (18), can also be considered valid and trustworthy. 

6-Both formula derivation and numerical simulation demonstrate that the first-order discrete 
derivative can serve as a substitute for the first-order continuous derivative, and it addresses the issue 
of some chaotic maps lacking higher-order continuous derivatives. In situations where derivative and 
differential calculations are required for chaotic maps, the discrete differentiation method proposed in 
this paper can be adopted. 

4. Results 

In this paper, the relationship between the continuous and discrete differential derivatives of three 
key chaotic systems (logistic, henon, and tent) is thoroughly investigated. Both formula derivation and 



34010 

AIMS Mathematics  Volume 9, Issue 12, 33995–34012. 

numerical simulation have revealed a clear mathematical correlation between the mean values of these 
derivatives and the average values of the chaotic series or specific parameters. This discovery is 
embodied in Eqs (6), (14), and (34), providing valuable insights. Additionally, methodologies are 
presented for calculating the n-order discrete derivatives of both the logistic and the henon maps, as 
specified in Eqs (9) and (18), respectively. The issue that some chaotic maps lack higher-order 
derivatives is addressed. Despite the inherent unpredictability of chaotic systems, the results indicate 
that the discrete differential properties of these three chaotic systems can be statistically analyzed, 
suggesting their potential applicability to the other discrete chaotic systems. The outcomes of this study 
have broad implications. 
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