Research article

Optimal dividends in a discrete-time dual risk model with stochastic expenses

  • Received: 02 September 2024 Revised: 21 October 2024 Accepted: 30 October 2024 Published: 07 November 2024
  • MSC : 49M25, 60G51, 93E20

  • Dividend policies play a pivotal role in financial management by aiming to maximize shareholders' interest and effectively managing risk. In this paper, we explore the optimal dividend strategy in a discrete-time compound binomial dual risk framework. This model is suitable for a company whose income comes from occasional operating expenses and settlements only once per unit of time. We assume that expenses are subject to dynamic changes influenced by economic factors, following a Markov chain. With or without a ceiling constraint on dividend payments, we prove that the optimal value function serves as the exclusive solution to a discrete Hamilton-Jacobi-Bellman (HJB) equation through the utilization of the fixed-point theorem. Furthermore, we derive a straightforward computational approach for determining the optimal strategy. Finally, we provide numerical examples to illustrate the theoretical findings and calculation methods.

    Citation: Li Deng, Zhichao Chen. Optimal dividends in a discrete-time dual risk model with stochastic expenses[J]. AIMS Mathematics, 2024, 9(11): 31696-31720. doi: 10.3934/math.20241524

    Related Papers:

  • Dividend policies play a pivotal role in financial management by aiming to maximize shareholders' interest and effectively managing risk. In this paper, we explore the optimal dividend strategy in a discrete-time compound binomial dual risk framework. This model is suitable for a company whose income comes from occasional operating expenses and settlements only once per unit of time. We assume that expenses are subject to dynamic changes influenced by economic factors, following a Markov chain. With or without a ceiling constraint on dividend payments, we prove that the optimal value function serves as the exclusive solution to a discrete Hamilton-Jacobi-Bellman (HJB) equation through the utilization of the fixed-point theorem. Furthermore, we derive a straightforward computational approach for determining the optimal strategy. Finally, we provide numerical examples to illustrate the theoretical findings and calculation methods.



    加载中


    [1] D. Konstantinides, Q. Tang, G. Tsitsiashvili, Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails, Insur. Math. Econ., 31 (2002), 447–460. https://doi.org/10.1016/S0167-6687(02)00189-0 doi: 10.1016/S0167-6687(02)00189-0
    [2] H. U. Gerber, E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, N. Am. Actuar. J., 10 (2006), 76–93. http://doi.org/10.1080/10920277.2006.10596249 doi: 10.1080/10920277.2006.10596249
    [3] B. Avanzi, H. U. Gerber, E. S. W. Shiu, Optimal dividends in the dual model, Insur. Math. Econ., 41 (2007), 111–123. http://doi.org/10.1016/j.insmatheco.2006.10.002 doi: 10.1016/j.insmatheco.2006.10.002
    [4] H. U. Gerber, N. Smith, Optimal dividends with incomplete information in the dual model, Insur. Math. Econ., 43 (2008), 227–233. https://doi.org/10.1016/j.insmatheco.2008.06.002 doi: 10.1016/j.insmatheco.2008.06.002
    [5] A. C. Y. Ng, On a dual model with a dividend threshold, Insur. Math. Econ., 44 (2009), 315–324. https://doi.org/10.1016/j.insmatheco.2008.11.011 doi: 10.1016/j.insmatheco.2008.11.011
    [6] D. J. Yao, H. L. Yang, R. M. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, Eur. J. Oper. Res., 211 (2011), 568–576. https://doi.org/10.1016/j.ejor.2011.01.015 doi: 10.1016/j.ejor.2011.01.015
    [7] Y. X. Zhao, R. M. Wang, D. J. Yao, P. Chen, Optimal dividends and capital injections in the dual model with a random time horizon, J. Optimiz. Theory Appl., 167 (2015), 272–295. https://doi.org/10.1007/s10957-014-0653-0 doi: 10.1007/s10957-014-0653-0
    [8] C. Yang, K. P. Sendova, Z. Li, Parisian ruin with a threshold dividend strategy under the dual Lévy risk model, Insur. Math. Econ., 90 (2020), 135–150. https://doi.org/10.1016/j.insmatheco.2019.11.002 doi: 10.1016/j.insmatheco.2019.11.002
    [9] A. Fahim, L. J. Zhu, Asymptotic analysis for optimal dividends in a dual risk model, Stoch. Models, 38 (2022), 605–637. https://doi.org/10.1080/15326349.2022.2080709 doi: 10.1080/15326349.2022.2080709
    [10] Z. J. Song, F. Y. Sun, The dual risk model under a mixed ratcheting and periodic dividend strategy, Commun. Stat. Theor. M., 52 (2023), 3526–3540. https://doi.org/10.1080/03610926.2021.1974483 doi: 10.1080/03610926.2021.1974483
    [11] Z. Liu, P. Chen, Y. J. Hu, On the dual risk model with diffusion under a mixed dividend strategy, Appl. Math. Comput., 376 (2020), 125115. https://doi.org/10.1016/j.amc.2020.125115 doi: 10.1016/j.amc.2020.125115
    [12] J. L. Pérez, K. Yamazaki, Optimality of hybrid continuous and periodic barrier strategies in the dual model, Appl. Math. Optim., 82 (2020), 105–133. https://doi.org/10.1007/s00245-018-9494-9 doi: 10.1007/s00245-018-9494-9
    [13] E. Bayraktar, A. E. Kyprianou, K. Yamazaki, Optimal dividends in the dual model under transaction costs, Insur. Math. Econ., 54 (2014), 133–143. https://doi.org/10.1016/j.insmatheco.2013.11.007 doi: 10.1016/j.insmatheco.2013.11.007
    [14] Y. X. Zhao, P. Chen, H. L. Yang, Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes, Insur. Math. Econ., 74 (2017), 135–146. https://doi.org/10.1016/j.insmatheco.2017.03.006 doi: 10.1016/j.insmatheco.2017.03.006
    [15] D. C. M. Dickson, A. D. E. Reis, H. R. Waters, Some stable algorithms in ruin theory and their applications, Astin Bull., 25 (1995), 153–175. https://doi.org/10.2143/AST.25.2.563245 doi: 10.2143/AST.25.2.563245
    [16] H. Cossette, D. Landriault, É. Marceau, Compound binomial risk model in a Markovian environment, Insur. Math. Econ., 35 (2004), 425–443. https://doi.org/10.1016/j.insmatheco.2004.07.009 doi: 10.1016/j.insmatheco.2004.07.009
    [17] H. U. Gerber, Mathematical fun with the compound binomial process, Astin Bull., 18 (1988), 161–168. https://doi.org/10.2143/AST.18.2.2014949 doi: 10.2143/AST.18.2.2014949
    [18] Z. H. Bao, A note on the compound binomial model with randomized dividend strategy, Appl. Math. Comput., 194 (2007), 276–286. https://doi.org/10.1016/j.amc.2007.04.023 doi: 10.1016/j.amc.2007.04.023
    [19] D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scand. Actuar. J., 2008 (2008), 1–15. https://doi.org/10.1080/03461230701642489 doi: 10.1080/03461230701642489
    [20] X. X. Yang, J. Y. Tan, H. J. Zhang, Z. Q. Li, An optimal control problem in a risk model with stochastic premiums and periodic dividend payments, Asia Pac. J. Oper. Res., 34 (2017), 1740013. https://doi.org/10.1142/S0217595917400139 doi: 10.1142/S0217595917400139
    [21] S. Drekic, J. K. Woo, R. Xu, A threshold-based risk process with a waiting period to pay dividends, J. Ind. Manag. Optim., 14 (2018), 1179–1201. https://doi.org/10.3934/jimo.2018005 doi: 10.3934/jimo.2018005
    [22] J. Y. Tan, S. L. Yuan, A dividend optimization problem with constraint of survival probability in a Markovian environment model, Commun. Stat. Theor. M., 50 (2021), 3522–3546. https://doi.org/10.1080/03610926.2019.1705981 doi: 10.1080/03610926.2019.1705981
    [23] X. Lin, Compound binomial risk model in a Markovian environment with capital cost and the calculation algorithm, Appl. Math. Comput., 424 (2022), 126969. https://doi.org/10.1016/j.amc.2022.126969 doi: 10.1016/j.amc.2022.126969
    [24] A. S. Dibu, M. J. Jacob, On a double barrier hybrid dividend strategy in a compound Poisson risk model with stochastic income, Ann. Oper. Res., 315 (2022), 969–984. https://doi.org/10.1007/s10479-021-03937-0 doi: 10.1007/s10479-021-03937-0
    [25] R. E. Greenblatt, A dual theory of price and value in a meso-scale economic model with stochastic profit rate, Physica A, 416 (2014), 518–531. https://doi.org/10.1016/j.physa.2014.08.061 doi: 10.1016/j.physa.2014.08.061
    [26] R. J. Boucherie, O. J. Boxma, K. Sigman, A note on negative customers, GI/G/1 workload, and risk processes, Probab. Eng. Inform. Sc., 11 (1997), 305–311. https://doi.org/10.1017/S0269964800004848 doi: 10.1017/S0269964800004848
    [27] K. P. Sendova, C. Yang, R. X. Zhang, Dividend barrier strategy: Proceed with caution, Stat. Probabil. Lett., 137 (2018), 157–164. https://doi.org/10.1016/j.spl.2018.01.016 doi: 10.1016/j.spl.2018.01.016
    [28] E. C. K. Cheung, J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, Eur. J. Oper. Res., 257 (2017), 159–173. https://doi.org/10.1016/j.ejor.2016.09.018 doi: 10.1016/j.ejor.2016.09.018
    [29] K. Hu, J. C. Li, J. M. Zhou, On the dual risk model with Parisian implementation delays under a mixed dividend strategy, Probab. Eng. Inform. Sc., 37 (2023), 442–461. https://doi.org/10.1017/S0269964822000481 doi: 10.1017/S0269964822000481
    [30] D. J. Yao, H. L. Yang, R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, J. Ind. Manag. Optim., 6 (2010), 761–777. https://doi.org/10.3934/jimo.2010.6.761 doi: 10.3934/jimo.2010.6.761
    [31] J. Y. Tan, X. Q. Yang, Optimal dividend strategy in compound binomial model with bounded dividend rates, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 859–870. https://doi.org/10.1007/s10255-014-0428-2 doi: 10.1007/s10255-014-0428-2
    [32] A. Bazyari, On the evaluation of ruin probabilities in a generalized dual binomial risk model using Markov property, Commun. Stat. Theor. M., 53 (2024), 1162–1187. https://doi.org/10.1080/03610926.2022.2093910 doi: 10.1080/03610926.2022.2093910
    [33] S. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J., 1989 (1989), 69–100. https://doi.org/10.1080/03461238.1989.10413858 doi: 10.1080/03461238.1989.10413858
    [34] E. Marciniak, Z. Palmowski, On the optimal dividend problem in the dual model with surplus-dependent premiums, J. Optim. Theory Appl., 179 (2018), 533–552. https://doi.org/10.1007/s10957-016-1050-7 doi: 10.1007/s10957-016-1050-7
    [35] R. Xu, J. K. Woo, Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments, Insu. Math. Econ., 92 (2020), 1–16. https://doi.org/10.1016/j.insmatheco.2020.02.008 doi: 10.1016/j.insmatheco.2020.02.008
    [36] J. Y. Tan, Y. Yang, S. R. Liu, K. N. Xiang A consistent estimation of optimal dividend strategy in a risk model with delayed claims, Commun. Stat.-Simul. C., 51 (2022), 6840–6853. https://doi.org/10.1080/03610918.2020.1818096 doi: 10.1080/03610918.2020.1818096
    [37] R. G. Alcoforado, A. I. Bergel, R. M. R. Cardoso, A. D. E. Reis, E. V. Rodríguez-Martínez, Ruin and dividend measures in the renewal dual risk model, Methodol. Comput. Appl. Probab., 24 (2022), 537–569. https://doi.org/10.1007/s11009-021-09876-4 doi: 10.1007/s11009-021-09876-4
    [38] R. Wang, J. Q. Huang, L. Z. Zhang, Y. Xia, X. Xu, T. L. Nong, Assessments of air pollution control effectiveness based on a sharp regression discontinuity design—evidence from China's Environmental Big Data, Front. Environ. Sci., 9 (2021), 724716. https://doi.org/10.3389/fenvs.2021.724716 doi: 10.3389/fenvs.2021.724716
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(112) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog