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Abstract: Dividend policies play a pivotal role in financial management by aiming to maximize
shareholders’ interest and effectively managing risk. In this paper, we explore the optimal dividend
strategy in a discrete-time compound binomial dual risk framework. This model is suitable for a
company whose income comes from occasional operating expenses and settlements only once per
unit of time. We assume that expenses are subject to dynamic changes influenced by economic factors,
following a Markov chain. With or without a ceiling constraint on dividend payments, we prove that the
optimal value function serves as the exclusive solution to a discrete Hamilton-Jacobi-Bellman (HJB)
equation through the utilization of the fixed-point theorem. Furthermore, we derive a straightforward
computational approach for determining the optimal strategy. Finally, we provide numerical examples
to illustrate the theoretical findings and calculation methods.
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1. Introduction

In finance and insurance, the classic risk model primarily focuses on discussing the ruin probability
and dividend strategies for insurance companies (see, e.g., Konstantinides et al. [1], Gerber and
Shiu [2]). In the past year, there has been a growing number of studies concentrated on a model that is
dual to the classic risk model. Apart from the ruin probabilities of pension funds, dual risk models can
also be used to describe the surplus of companies whose income is derived from occasional operating
expenses, such as pharmaceutical or petroleum businesses. Some of these studies include Avanzi et
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al. [3], Gerber and Smith [4], Ng [5], Yao et al. [6], Zhao et al. [7], Yang et al. [8], Fahim and Zhu [9],
and Song and Sun [10], among others. In this model, a company’s surplus takes the form of

U(t) = u − ct + S (t), t ≥ 0, (1.1)

where U(0) = u(u ≥ 0) denotes the initial surplus, the constant c ≥ 0 is the rate of expenses, and the
process {S (t)} is the aggregate gains or profits.

Dividend problems under the model (1.1) were first considered by Avanzi et al. [3]. Since then,
various studies have mainly focused on continuous-time dual risk models, such as compound Poisson
dual models (see, e.g., Avanzi et al. [3], Liu et al. [11], Pérez and Yamazaki [12]) and spectrally positive
Lévy risk models (see, e.g., Bayraktar et al. [13], Zhao et al. [14], Song and Sun [10]). Contrary to
continuous-time dual risk models, the discrete-time risk model has its special features and is closer
to reality, as in practice, many risk events often occur in discrete and intermittent forms. In addition,
they are also of independent interest since formulas for discrete-time models are recursive in nature
and easily programmable in practice, while still reproducing the continuous analog results as limiting
cases (see, e.g., Dickson et al. [15] and Cossette et al. [16]). Therefore, it is meaningful to consider the
discrete-time dual risk model.

The compound binomial risk model, first proposed by Gerber [17], can serve as an approximation
to the continuous-time compound Poisson model, where premiums, claim amounts, and the initial
surplus are assumed to be integers. There have been several extensions discussed, including Bao [18],
Landriault [19], Yang et al. [20], Drekic et al. [21], Tan and Yuan [22], and Lin [23]. Regarding
the dual risk model, most existing research has obtained explicit expressions for value functions and
optimal strategies when gains follow exponential or mixed exponential distributions. However, a
general solution method is currently lacking to handle cases where gains are distributed according
to a general distribution. This situation was one of the main motivations for discussing a compound
binomial model in this paper.

Motivated by the works of Yang et al. [20], Dibu and Jacob [24], Tan and Yuan [22], and
Greenblatt [25], we delve into the optimal dividend problems with a stochastic expense per each unit
of time. In most previous discussions about model (1.1), the assumption was that the expenses rate c
remained constant (see, e.g., Avanzi et al. [3], Ng [5], Yao et al. [6], and Liu et al. [11]). However,
the expenses in company business activities may change due to the economic environment and the
company’s cash flow, which may be influenced by different types of information from the market. For
example, petroleum companies are often affected by significant changes in investment prices caused
by political and economic factors. The idea of incorporating stochastic expenses Ct(t ≥ 0) into dual
models is inspired by the concept of stochastic premiums in classical risk models. This concept was
first proposed by Boucherie et al. [26], who based their work on the composite Poisson classical risk
model. Afterward, Yang et al. [20] discussed risk models with stochastic premiums in a Markovian
environment and obtained optimal dividend strategies. Dibu and Jacob [24] discussed a dividend
strategy in which premiums and claims both follow compound Poisson processes in the risk model.
Tan and Yuan [22] provided an algorithm for the optimal control strategy by constructing a nonlinear
operator, under the assumption of stochastic premiums. The analysis of expenses, considering that they
are subject to random fluctuations influenced by various factors, including the economic environment
and market conditions, can help companies make more scientific and rational investment decisions.
This is one of the main research objectives of this paper.
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The optimal strategy manifests as a barrier strategy when the dividend process is unconstrained.
Avanzi et al. [3] presented an extensive analysis on the establishment of the most advantageous
dividend barrier within the compound Poisson dual risk model. Then, Gerber and Smith [4] devised
some approximate algorithms for calculating optimal dividends based on the research by Avanzi et
al. [3]. Due to the lack of constraints imposed by barrier strategies on dividends, companies’ ruin
occurs with probability one (see Sendova et al. [27]). To alleciate this, Ng [5] considered employing a
threshold strategy to restrict dividend payments. They proposed a method for calculating the optimal
dividend threshold using two integro-differential equations and the Laplace transform. Several recent
contributions on the threshold dividend strategy have been made by Yao et al. [6], Cheung and
Wong [28], Liu et al. [11], Yang et al. [8], and Hu et al. [29], among others. Unlike previous studies
on dividend strategies within specified dividend methods, we want to find the optimal strategy among
all feasible strategies, inspired by Yao et al. [30].

This paper aims to find the optimal dividend strategy for shareholders in a compound binomial
dual risk model, under the assumption that the occurrence of a gain Xt(Xt > 0) during a time period
(t − 1, t] is related to the expenditure of expenses Ct. Compared with the existing research results,
we propose several differences, advantages, and novelty. First, this paper formulates the optimal
dividend framework for a discrete-time compound binomial dual model, which is different from both
the existing continuous-time dual risk model (Avanzi et al. [3], Yang et al. [8]) and the compound
binomial risk model (Tan and Yang [31], Bazyari [32]). Currently, there is no universal method for
obtaining the optimal value function when gains are governed by compound binomial distributions
and there is a lack of rigorous numerical analysis or specific characterization of optimal strategies.
Second, we discuss the stochastic expenses in a Markovian environment, where the future state is solely
dictated by the present state, regardless of antecedent states. The Markovian environment, known for
its probabilistic properties, provides a concise mathematical framework for modeling decision-making
processes in economics (Asmussen [33]). Third, considering both the existence and nonexistence of
constraints on the upper limit of dividend payments, we employ the fixed-point principle derived from
a contraction mapping to establish the uniqueness of the optimal value function as the solution to a
discrete HJB equation (see, e.g., Marciniak and Palmowski [34], Xu and Woo [35]). Additionally,
we also provide a specific algorithm for optimal strategies. By comparing the two dividend payments
scenarios mentioned above, we have concluded that the strategy without a ceiling constraint is feasible
and in line with the principle of economic market’s distribution of dividends based on investment
ratios. However, most literature on optimal dividends mainly focuses on dividend payments with
an upper bound constraint, disregarding the importance of situations without any ceiling constraints.
Finally, the numerical example illustrates that the optimal strategy under a payment limit constraint is a
threshold strategy. In contrast, without this constraint, the optimal strategy becomes a barrier strategy.

The rest of this paper is organized as follows: In Section 2, a surplus process with stochastic
expenses will be established. The existence and uniqueness of the optimal strategy are proved in
Section 3. Sections 4 and 5 discuss the Bellman recursive algorithm and provide two functions for
approximating the optimal value function, considering the presence or absence of a ceiling constraint
on dividend payments, respectively. Section 6 presents two numerical examples to validate the
algorithm. A conclusion is provided in Section 7.
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2. Model setup

Before we proceed, let us introduce some symbols that will be utilized later.
(a) Let a1 ∨ a2 = max{a1, a2} and a1 ∧ a2 = min{a1, a2}.
(b) Let N = {0, 1, 2, . . .}, Nk = {0, 1, 2, . . . k}(k ∈ N), and N+ = {1, 2, . . .}.
(c) Unless specifically stated otherwise, both i and j denote the elements within set {1, 2, . . . ,m}(m ∈

N+).
Suppose there exists only one settlement within the per unit time interval (t − 1, t] for the company,

occurring at time t. In this section, we will initially explore the dynamics of expense rates Ct within
each discrete (t − 1, t]. We shall presume that the sequence {Ct} follows the dynamics of a Markov
chain, where every state Ct is measurable with respect to a σ-algebra Ft within a finite state space
consisting of enumerable components {c1, c2, · · · , cm}. Specifically, let the initial state C0 represent
the expense in the time interval (−1, 0]. The transition probability from state i to j is denoted as
pi j = Pr(Ct = c j|Ct−1 = ci).

In this paper, we are investigating a discrete-time dual risk model that incorporates both dynamic
expenses and stochastic gains. In this model, the company has decided to manage funds and make
strategic choices exclusively at times t = 0, 1, . . . Before imposing a dividend strategy, the dual risk
model should be considered

U(t) = u −
t∑

k=1

Ck + S (t), t ∈ N+. (2.1)

The surplus process (2.1) is a discrete-time model with expenses as random variables, which differs
from model (1.1). Therefore, this paper presents an expanded version of a classical dual risk model
that incorporates additional factors. We assume that within each discrete time interval (t − 1, t], only
one potential gain may occur immediately before time t, and the occurrence of gains hinges upon
the variable Ct. Then, we use εCt

t = 0 to indicate that no gain events occur during the time interval
(t − 1, t] under the condition Ct = ci. Additionally, εCt

t = 1 indicates that a gain event occurrs, with the
corresponding amount denoted as Xt(Xt ∈ N

+). The probability distribution of {εCt
t } is given by

Pr(εCt
t = h|Ct = ci) = θhi (1 − θi)1−h, h = 0, 1,

where 0 < θi < 1.
The binomial sequence N(t) =

∑t
k=1 ε

Ck
k represents the cumulative count of gains received by the

company until time t. Subsequently, the total gains can be expressed as a compound binomial sequence,
as demonstrated in Tan and Yang [31]:

S (t) =
t∑

k=1

Xkε
Ck
k ,

where the sequence {Xt : Xt ∈ N
+} represents a collection of gains that are independent and identically

distributed. Furthermore, these gains {Xt} are independent of the sequence {εCt
t }. Here, {Xt} and {εCt

t }

are both assumed to be {Ft}-measurable (Tan et al. [36]), where Ft includes all the information at time
t and prior. Let us denote the probability function, distribution function, and mean of the random
variables Xt by f , F, and µXt , respectively.
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In model (2.1), we subsequently consider incorporating an admissible dividend strategy at time t,
denoted as dt. The value of dt should be a nonnegative integer and must not exceed the surplus at time
t. Additionally, the dividend sequences {dt} are measurable with respect to Ft. The set consisting of
these admissible strategies is denoted as Θ. Consequently, the surplus process, under the control of Θ
and with an initial state C0 = ci, is described as follows:

UΘi (t) = UΘi (t − 1) −Ct + Xtε
Ct
t − dt, t ∈ N+, (2.2)

where UΘi (0) = u and d0 = 0. In model (2.2), even though fund fluctuations occur continuously,
financial settlements take place at the end of each fixed operating period, and shareholder dividends
are also distributed. This can be seen as a simplified version of the continuous model, which aligns with
the operating mode of most financial companies in the real world. In this model, both the company’s
expenses and gains are treated as random variables, enhancing its practicality.

Let ΓΘi,u = inf{t : UΘi (t) < 0}(ΓΘi,u = ∞ if ruin does not occur) be the time of ruin with the initial
expenses state C0 = ci. For a given valuation discount factor ν(0 < ν < 1), the expected total discounted
dividends until ruin with the initial expenses state C0 = ci is

Vi(u,Θ) = E[
ΓΘi,u∑
k=0

νkdk|UΘi (0) = u]. (2.3)

Since the model (2.1) exhibits the Markov property, which states that the future state is solely
determined by the present state, regardless of antecedent states (Asmussen [33]), this indicates that
if the surplus remains the same at any two time periods, then the optimal dividend amounts should also
be the same. Therefore, we only need to consider admissible dividend strategies that depend on the
surplus at each time t. This type of dividend strategy in Θ is a function of the surplus (as described in
Theorem 3.1). In order to facilitate the discussion, we will use φi(u) to represent the dividend amount
when the surplus is u and expenses state is ci. The dividend in the expenses state Ct = c j for t ∈ N+ is
rewritten as φ j(UΘ(t − 1) − Ct + Xtε

Ct
t ). To determine the optimal value function V∗i (u, φi) and optimal

strategy φ∗i (u) in (2.3), we will use appropriate calculations and consider the relevant equation, which
satisfies the following conditions:

V∗i (u, φi) = sup
φi∈Θ

Vi(u, φi), (2.4)

and
φ∗i (u) = arg sup

φi∈Θ

Vi(u, φi). (2.5)

3. The optimal strategy

The main goal of this section is to use the associated HJB equation and fixed-point theorem for
contraction mapping to find the explicit solution of V∗i and φ∗i for compound binomial distributed gains.
We will discuss the optimal strategy in two cases: the presence and absence of a ceiling constraint on
dividend payments. For any strategy φi(u) ∈ Θ, we possess

φi(u) ∈ [0, u ∧ M0], (3.1)
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where M0 is a nonnegative integer that includes the case of M0 < ∞ and M0 = ∞.
For the sake of convenience, we abbreviate Vi(u, φi) and V∗i (u, φi) as Vi(u) and V∗i (u), respectively,

in the following discussion. By applying the principle of total expectation, the function Vi(u) can be
shown to satisfy the following discrete equation:

Vi(u) = ν
m∑

j=1

pi j

{
(1 − θ j)

[
V j

(
u − c j − φ j(u − c j)

)
+ φ j(u − c j)

]
+ θ j

∞∑
x=1

[
V j

(
u − c j + x − φ j(u − c j + x)

)
+ φ j(u − c j + x)

]
f (x)

}
.

(3.2)

The optimization problem in this paper aims to find the optimal strategies φ∗i so that the value function
Vi in (3.2) can attain its maximum value V∗i .
Theorem 3.1. For every φi(u) ∈ Θ, the optimal value function V∗i (u) for each i satisfies a discrete HJB
equation, which can be stated as follows:

V∗i (u) = ν
m∑

j=1

pi j

{
(1 − θ j) max

a∈N((u−c j)∧M0)∨0

[
V j(u − c j − a) + a

]
+ θ j

∞∑
x=1

[
max

a∈N((u−c j+x)∧M0)∨0

(
V j(u − c j + x − a) + a

)
f (x)

]}
.

(3.3)

Proof. The optimal value of (3.2) can be obtained by

V∗i (u) = sup
φ j∈Θ

{
ν

m∑
j=1

pi j

[
(1 − θ j)

(
V j

(
u − c j − φ j(u − c j)

)
+ φ j(u − c j)

)
+ θ j

∞∑
x=1

(
V j

(
u − c j + x − φ j(u − c j + x)

)
+ φ j(u − c j + x)

)
f (x)

]}
,

(3.4)

which is equivalent to (3.3). Hence, (3.3) holds. □

Note that L∞ represents the set of all bounded sequences of real numbers within the product space
[0,+∞) × {1, 2, · · · ,m}. For any two points X =

(
Xi(u)

)
and Y =

(
Yi(u)

)
∈ L∞, a distance in L∞ is

defined as follows:
d(X,Y) = sup

u,i
|Xi(u) − Yi(u)|, (3.5)

then L∞ = (L∞, d) is a complete Banach space.
Thus, for any V =

(
Vi(u)

)
∈ L∞, we can define a strategy bVi(u) as follows:

bVi(u) = arg max
x∈Nu∧M0

{Vi(u − x) + x}. (3.6)

If such a strategy exists, for any
(
Zi(u)

)
∈ L∞, define an operator T = (T1,T2, · · · ,Tm), where Ti are m

nonlinear operators on L∞, which satisfy

TiZi(u) = ν
m∑

j=1

pi j

{
(1 − θ j)

[
Z j

(
u − c j − bZ j(u − c j)

)
+ bZ j

(
u − c j

)]
+ θ j

∞∑
x=1

[
Z j

(
u − c j + x − bZ j(u − c j + x)

)
+ bZ j

(
u − c j + x

)]
f (x)

}
,

(3.7)
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and then operator Ti is a mapping on L∞ → L∞. Let TV∗ = (T1V∗1 ,T2V∗2 , · · · ,TmV∗m) and V∗ =
(
V∗i (u)

)
,

then (3.3) can be written as
V∗i (u) = TiV∗i (u), (3.8)

or
V∗ = TV∗. (3.9)

Theorem 3.2. Based on the condition of 0 < ν < 1, (3.9) has a solution, which is unique.

Proof. Without loss of generality, let us suppose that for any X =
(
Xi(u)

)
and Y =

(
Yi(u)

)
∈ L∞, the

following inequality Xi(u − bXi(u)) + bXi(u) − [Yi(u − bYi(u)) + bYi(u)] ≥ 0 holds; from (3.5) and (3.6),
we have ∣∣∣Xi(u − bXi(u)) + bXi(u) − [Yi(u − bYi(u)) + bYi(u)]

∣∣∣
≤
∣∣∣Xi(u − bXi(u)) + bXi(u) − [Yi(u − bXi(u)) + bXi(u)]

∣∣∣
≤d(X,Y).

Thus, we can obtain

d(TX,TY) ≤ν
m∑

j=1

pi j

[
(1 − θ j) + θ j

∞∑
x=1

f (x)
]
d(X,Y)

≤νd(X,Y).

Due to the restriction 0 < ν < 1, it can be inferred that the operator T is a contraction mapping on
L∞. Therefore, for any u ∈ N, (3.9) has a solution, which is unique. □

Remark 3.1. Theorem 3.2 shows that the strategy bVi exists in Θ and is a function of the Vi.
Furthermore, Theorem 3.1 provides the explicit expression of the optimal value function V∗i , while
Theorem 3.2 establishes the incontrovertible existence and uniqueness of V∗i .

Theorem 3.3. For every φi(u) ∈ Θ, the value function Vi(u) attains optimality if and only if

φi(u) = arg sup
x∈Nu∧M0

{Vi(u − x) + x}. (3.10)

Proof. If Vi(u) is optimal value function, it satisfies both (3.2) and (3.3). By comparing the two
equations, we can deduce that

Vi(u − φi(u)) + φi(u) = max
x∈Nu∧M0

[Vi(u − x) + x].

Thus, (3.10) holds. Conversely, if we have (3.10), then the corresponding value function Vi(u) becomes
the optimal value function. This is due to the existence and uniqueness of the solution of (3.9). □

Conclusion 3.1. For any φi(u) ∈ Θ, the strategy that fulfills (3.10) is considered optimal, and an
explicit solution is available:

φ∗i (u) = bVi(u), (3.11)

and (3.10) is equivalent to

φ∗i (u) = u − arg sup
x∈[0∨(u−M0),u]

{Vi(x) − x}, x ∈ N. (3.12)
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4. Properties and algorithm for the optimal strategy with a ceiling restriction

In this section, we consider the case where M0 < ∞ in (3.1) to provide a clearer illustration of the
algorithm for V∗i and φ∗i . We use Θ0 to denote the set of all admissible dividend strategies with a ceiling
constraint of a nonnegative integer M0(M0 < ∞) in Θ.

Lemma 4.1. For every φi(u) ∈ Θ0 and 0 < ν < 1, the value function is bounded and satisfies the
following inequality:

0 ≤ Vi(u) ≤
νM0

1 − ν
. (4.1)

Proof. For any φi(u) ∈ Θ0, we have

sup
u

Vi(u) ≤ ν
m∑

j=1

pi j

{
(1 − θ j)

[
max

j
sup

u
V j(u) + M0

]
+ θ j

∞∑
x=1

[
max

j
sup

u
V j(u) + M0

]
f (x)

}
,

hence, (4.1) holds. □

From Eq (3.1), let u→ ∞, we can apply the dominated convergence theorem to obtain that

lim
u→∞

Vi(u) = ν
m∑

j=1

pi j[ lim
u→∞

V j(u) + lim
u→∞
φ j(u)].

If limu→∞ φi(u) = M0, we have

lim
u→∞

Vi(u) =
νM0

1 − ν
. (4.2)

Theorem 4.1. For each strategy φi(u) ∈ Θ0, it holds that

lim inf
u→∞

φ∗i (u) = M0. (4.3)

Proof. Suppose there is an integer q ∈ {1, 2, . . . ,m} that satisfies

lim
u→∞
φ∗q(u) = M1 < M0. (4.4)

Then, there must be a nonnegative integer sequence {un} such that lim
n→∞
φ∗q(un − cq) = M1, and for any

given i, we have

V∗i (un) = ν
m∑

j=1

pi j

{
(1 − θ j)

[
V∗j

(
un − c j − φ

∗
j(un − c j)

)
+ φ∗j(un − c j)

]
+ θ j

∞∑
x=1

[
V∗j

(
un − c j + x − φ∗j(un − c j + x)

)
+ φ∗j(un − c j + x)

]
f (x)

}
.

(4.5)
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By taking the limit as n→ ∞ on both sides of (4.5), we can obtain:

lim
u→∞

V∗i (u) ≤
νM0

1 − ν
+
νpiq(1 − θq)(M1 − M0)

1 − ν
<
νM0

1 − ν
. (4.6)

Combining with (4.2), it becomes evident that inequality (4.6) contradicts the optimality of ϕ∗i (u). This
indicates that (4.4) is incorrect, while (4.3) is true. □

Remark 4.1. According to Theorem 4.1, there exists a positive integer N∗ such that

φ∗i (u) = M0, for all u ≥ N∗. (4.7)

If a positive integer value denoted by u0 satisfies the condition V(u0) ≥ ⌊ νM0
1−ν ⌋, where ⌊x⌋ represents the

largest integer less than or equal to x, then

φ∗i (u) = M0, for all u ≥ N∗ = u0 + M0. (4.8)

That is because
⌊
νM0

1 − ν
⌋ ≤ Vi(u − M0) < Vi(u) ≤

νM0

1 − ν
,

and
Vi(u − M0) + M0 = max

x∈Nu∧M0
{Vi(u − x) + x}, for all u ≥ N∗ = u0 + M0.

Conclusion 4.1. Based on Theorem 4.1 and Remark 4.1, the following conclusions can be drawn:
(i) The optimal dividend strategy φ∗i (u) ∈ Θ0 is a threshold strategy. The expression of φ∗i (u) ∈ Θ0

can be rephrased as

φ∗i (u) = b̂Vi(u) =


arg sup

x∈Nu∧M0

{Vi(u − x) + x}, 0 ≤ u < N∗,

M0, u ≥ N∗.

(4.9)

(ii) The set Θ includes threshold strategies.
Next, we will provide specific algorithms to calculate φ∗i and V∗i . Sometimes, the possible gains Xt

are unbounded, leading to a sum of infinite terms in (3.9). In the design of specific algorithms, we
approximate the value of V∗i by utilizing an upper and lower bound through the squeeze theorem. This
method allows us to avoid summing an infinite number of terms when calculating V∗i . We can represent
this approximation with the following two equations:

V∗(1)
i (u) =ν

m∑
j=1

pi j

{
(1 − θ j)

[
V∗(1)

j
(
u − c j − b̂V∗(1)

j
(u − c j)

)
+ b̂V∗(1)

j
(u − c j)

]
+θ j

n0∑
x=1

[
V∗(1)

j
(
u − c j + x − b̂V∗(1)

j
(u − c j + x)

)
+ b̂V∗(1)

j
(u − c j + x)

]
f (x)

}
,

(4.10)

V∗(2)
i (u) = ν

m∑
j=1

pi j

{
(1 − θ j)

[
V∗(2)

j
(
u − c j − b̂V∗(2)

j
(u − c j)

)
+ b̂V∗(2)

j
(u − c j)

]
+ θ j

n0∑
x=1

[
V∗(2)

j
(
u − c j + x − b̂V∗(2)

j
(u − c j + x)

)
+ b̂V∗(2)

j
(u − c j + x)

]
f (x)

}
+
νM0F̄(n1)Ji

1 − ν
,

(4.11)
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where Ji =
∑m

j=1 pi jθ j, F̄ = 1 − F, and n0 is a positive integer. Define operators T(1) = (T (1)
1 , . . . ,T

(1)
m )

and T(2) = (T (2)
1 , . . . ,T

(2)
m ), where T (1)

i V∗(1)
i equals the right-hand side of (4.10), and T (2)

i V∗(2)
i equals the

right-hand side of (4.11). Clearly, T(1) and T(2) are also contraction mappings. Therefore, based on
the discussion in Section 3, we can conclude that Eqs (4.10) and (4.11) both exist and have unique
solutions.
Theorem 4.2. For each strategy that φi(u) ∈ Θ0, the following inequality holds:

V∗(1)
i (u) ≤ V∗i (u) ≤ V∗(2)

i (u). (4.12)

Proof. (I) We first prove the inequality V∗(1)
i (u) ≤ V∗i (u). According to (4.10), for any given i, we obtain

that

V∗(1)
i (u) ≤ ν

m∑
j=1

pi j

{
(1 − θ j)

[
V∗(1)

j
(
u − c j − b̂V∗(1)

j
(u − c j)

)
+ b̂V∗(1)

j
(u − c j)

]
+ θ j

∞∑
x=1

[
V∗(1)

j
(
u − c j + x − b̂V∗(1)

j
(u − c j + x)

)
+ b̂V∗(1)

j
(u − c j + x)

]
f (x)

}
.

(4.13)

The right side of (4.13) is denoted as M∗(1)
i,1 (u), and

M∗(1)
i,1 (u) ≤ ν

m∑
j=1

pi j

{
(1 − θ j)

[
M∗(1)

i,1
(
u − c j − b̂M∗(1)

i,1
(u − c j)

)
+ b̂M∗(1)

i,1
(u − c j)

]
+ θ j

∞∑
x=1

[
M∗(1)

i,1
(
u − c j + x − b̂M∗(1)

i,1
(u − c j + x)

)
+ b̂M∗(1)

i,1
(u − c j + x)

]
f (x)

}
.

(4.14)

We have defined m as the new operator T̄i to transform M∗(1)
i,1 (u) to the right-hand side of (4.14). Then,

we have V∗(1)
i (u) ≤ M(1)

i,1 (u) ≤ T̄iM
(1)
i,1 (u), and the operator T̄i is a contraction mapping operator in

Banach space L∞.
Let M(1)

i,2 (u) = T̄iM
(1)
i,1 (u), and then M(1)

i,2 (u) ≤ T̄iM
(1)
i,2 (u). After proceeding, we obtain a monotonically

increasing sequence of functions {M(1)
i,n (u)} that satisfies M(1)

i,n (u) ≤ T̄iM
(1)
i,n (u) = M(1)

i,n+1(u), and then we
have

lim
n→∞

M(1)
i,n (u) = V∗i (u).

Therefore, V∗(1)
i (u) ≤ V∗i (u).

(II) In the same way, it can be proven that V∗i (u) ≤ V∗(2)
i (u). For any given i, according to (3.3) and

(4.11), we have

V∗i (u) ≤ ν
m∑

j=1

pi j

{
(1 − θ j)

[
V∗j

(
u − c j − b̂V∗j (u − c j)

)
+ b̂V∗j (u − c j)

]
+ θ j

n0∑
x=1

[
V∗j

(
u − c j + x − b̂V∗j (u − c j + x)

)
+ b̂V∗j (u − c j + x)

]
f (x)

}
+
νM0F̄(n0)

∑m
j=1 pi jθ j

1 − ν
.

(4.15)
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The new m operators T̂i are defined to transform the function V∗i (u) to the right side of (4.15), which is
denoted as M(2)

i,1 (u). Obviously, the operator T̂i is also a contraction mapping operator in Banach space
L∞. Hence, we have V∗i (u) ≤ T̂iV∗i (u) = M(2)

i,1 (u).
Let M(2)

i,2 (u) = T̂iM
(2)
i,1 (u), and then M(2)

i,1 (u) ≤ T̂iM
(2)
i,1 (u) = M(2)

i,2 (u). Similarly, we can obtain a new
monotonically increasing sequence of functions {M(2)

i,n (u), n ∈ N+} that satisfies M(2)
i,n (u) ≤ T̂iM

(2)
i,n (u) =

M(2)
i,n+1(u), and

lim
n→∞

M(2)
i,n (u) = V∗(2)

i (u).

Therefore, we have V∗i (u) ≤ V∗(2)
i (u). By combining (I) and (II), we can deduce that (4.12) holds. □

Theorem 4.3. For any φi(u) ∈ Θ0 and 0 < ν < 1, it holds that

d
(
V∗(1)

i (u),V∗(2)
i (u)

)
≤

νM0F̄(n0)J(m)

(1 − ν)
[
1 − ν + νJ(1)F̄(n0)

] . (4.16)

where J(m) = maxi Ji, and J(1) = mini Ji.

Proof. According to the proof of Theorem 3.2 , we can conclude that

d
(
V∗(1)

i (u),V∗(2)
i (u)

)
≤ ν

m∑
j=1

pi j

[
(1 − θ j)d

(
V∗(1)

j (u),V∗(2)
j (u)

)
+ θ j

n0∑
x=1

d
(
V∗(1)

j (u),V∗(2)
j (u)

)
f (x)

]
+
νM0F̄(n0)J(m)

1 − ν
,

then, we have

max
i

d
(
V∗(1)

i (u),V∗(2)
i (u)

)
≤ ν

[
1 −

m∑
j=1

pi jθ jF̄(n0)
]
max

i
d
(
V∗(1)

i (u),V∗(2)
i (u)

)
+
νM0F̄(n0)J(m)

1 − ν
.

Hence, inequality (4.16) holds. □

According to Theorems 4.2 and 4.3, as the value of n0 approaches infinity, F̄(n0) tends to zero, and
both V∗(1)

i (u) and V∗(2)
i (u) can indefinitely converge toward the optimal value function V∗i (u) using the

fixed-point principle.
To streamline the computation process, we exclusively present the Bellman recursive algorithm on

V∗(1)
i (u) as an approximate value of V∗i (u), based on V∗(1)

i (u) being a fixed point of T̄i. The corresponding
algorithm on V∗(2)

i (u) can be obtained in a similar manner. For any given initial function column(
V (1)

i,0 (u)
)
, we can use a recursive formula to calculate subsequent values

(
V (1)

i,s (u)
)
, where s = 1, 2, · · · .

The recursive formula is as follows:

V (1)
i,s (u) =ν

m∑
j=1

pi j

{
(1 − θ j)

[
V (1)

j,s−1
(
u − c j − b̂V (1)

j,s−1
(u − c j)

)
+ b̂V (1)

j,s−1
(u − c j)

]
+θ j

n0∑
x=1

[
V (1)

j,s−1
(
u − c j + x − b̂V (1)

j,s−1
(u − c j + x)

)
+ b̂V (1)

j,s−1
(u − c j + x)

]
f (x)

}
.

(4.17)

AIMS Mathematics Volume 9, Issue 11, 31696–31720.



31707

and the value of V∗(1)
i (u) satisfies:

V∗(1)
i (u) = lim

n→∞
V (1)

i,n (u) = lim
n→∞

T̄ n
i V (1)

i,0 (u). (4.18)

Therefore, in instances where the value of n(n ∈ N+) exceeds a specific threshold, it becomes
permissible to select V (1)

i,n (u) as a viable approximation for V∗(1)
i (u). According to the proof of Theorem

3.2 and (4.18), the error estimation formula can be expressed as follows:

d
(
V∗(1)

i (u),V (1)
i,n (u)

)
≤
νn

1 − ν
. (4.19)

Correspondingly, the optimal strategy φ∗i (u) can be obtained. More specifically, the Bellman recursive
algorithm for V∗(1)

i (u) and φ∗i (u) works as follows:
Step 1. Precision control: the value of n0 is obtained using (4.16) to meet the desired level of accuracy.
Step 2. Determine the iteration steps n using (4.19) in order to reach the desired level of accuracy
precisely.
Step 3. Iterative calculation: given an initial function column

(
V (1)

i,0 (u)
)
, where u ∈ N+, calculate(

V (1)
i,s (u)

)
for values of s ranging from 1 to n. Finally, obtain the approximate values of

(
φ∗i (u)

)
and(

V∗(1)
i (u)

)
.

5. Optimal strategy without payment restrictions

In this section, we will delve into an algorithm and its properties for achieving the most favorable
approach in scenarios where M0 = ∞ as depicted in (3.1). We use a subset Θ1 within Θ to indicate
all admissible strategies without a ceiling constraint for dividend payments. From Theorems 3.1 and
3.2, we are aware that the optimal strategy exists within Θ1, and it is a function in relation to Vi(u).
However, an unbounded surplus leads to an unlimited computational burden when M0 = ∞. To make
the computation feasible, we need to confine the surplus u within certain boundaries by analyzing the
properties exhibited by the strategies. Let H = maxi

∑m
j=1 pi j(θ jµx−c j). We assume that c j, µx are finite,

and H ≥ 0. This assumption requires finite expenses and expected gains. Additionally, the condition
H ≥ 0 ensures the company’s operations are profitable.
Lemma 5.1. For any φi(u) ∈ Θ1 and 0 < ν < 1, it holds that

sup
u∈N

(
Vi(u) − u

)
≤
νH

1 − ν
. (5.1)

Proof. From (3.2), we have

Vi(u) − u = (ν − 1)u + ν
m∑

j=1

pi j(θ jµx − c j)

+ ν

m∑
j=1

pi j

{
(1 − θ j)

[
V j

(
u − c j − φ j(u − c j)

)
−

(
u − c j − φ j(u − c j)

)]
+ θ j

∞∑
x=1

[
V j

(
u − c j + x − φ j(u − c j + x)

)
−

(
u − c j + x − φ j(u − c j + x)

)]
f (x)

}
.
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then,

sup
u

(
Vi(u) − u

)
≤ ν

m∑
j=1

pi j max
j

sup
u

(
V j(u) − u

)
+ νH,

it is obvious that
max

i
sup

u

(
Vi(u) − u

)
≤ νmax

j
sup

u

(
V j(u) − u

)
+ νH.

Hence, inequality (5.1) holds. □

Theorem 5.1. Assume that φ∗i (u) ∈ Θ1 and 0 < ν < 1, it can be concluded that

arg sup
u∈N

(
Vi(u) − u

)
≤
νH

(1 − ν)2 , (5.2)

The proof process here is similar to that of Theorem 5.1 in Yang et al. [20], so it is omitted here.
Through the above discussion, we can draw the following conclusion: the surplus in company

operations is influenced by expenses, expected earnings, and dividends over a unit of time. When the
initial surplus u exceeds a positive integer, only a portion of u is used in operations while the remaining
surplus remains idle. The value of V∗i (u), which is influenced by the discount rate, will be lower than
u, and the company operates with debt. This lacks practical significance for profit-driven companies.
Therefore, according to Theorem 5.1 and the optimal strategy control inΘ1, the surplus u is assumed to
have an upper bound of ⌊ νH(1−ν)2 ⌋ after dividend payments at each time t, and this upper bound is denoted
as H0.

Let LH0 represent the set of all bounded sequences of real numbers within the product space [0,H0]×
{1, 2, . . . ,m}. Consequently,

(
Vi(u)

)
∈ LH0 whenever the variable u is confined within the interval

[0,H0]. For any two points X = (Xi(u)) , Y = (Yi(u)) ∈ LH0 , we define a distance in LH0 by

d1(X,Y) = sup
u∈NH0 ,i

|Xi(u) − Yi(u)|, (5.3)

then, LH0 = (LH0 , d1) is a complete Banach space.
For any

(
Vi(u)

)
∈ LH0 , we define an admissible strategy

b̃Vi(u) = u − arg sup
x∈Nu∧H0

{Vi(x) − x}, (5.4)

and the mappings T̃ = (T̃1, T̃2, · · · , T̃m), where T̃i is a nonlinear operator on LH0 , which satisfies

T̃iVi(u) = ν
m∑

j=1

pi j

{
(1 − θ j)

[
V j

(
u − c j − b̃V j(u − c j)

)
+ b̃V j

(
u − c j

)]
+ θ j

∞∑
x=1

[
V j

(
u − c j + x − b̃V j(u − c j + x)

)
+ b̃V j

(
u − c j + x

)]
f (x)

}
.

(5.5)

Similar in the arrangement on space L∞, proof of T̃ being a contraction mapping on LH0 is easily
achievable, and the existence of b̃Vi(u) in Θ1 is effortlessly attainable. Therefore, an optimal value
function V∗i (u)(u ∈ NH0) that satisfies (5.5) exists and is unique, and the corresponding strategy b̃Vi(u)
is an optimal strategy in Θ1.
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Given the constraint that the surplus after each dividend payments should not exceed H0, we will
propose a specific algorithm to determine the optimal strategy φi(u) ∈ Θ1. In cases where the potential
gains Xt are an unbounded random variable, we will explore the utilization of the following two
functions to approximate

(
V∗i (u)

)
∈ LH0 , i.e.,

Ṽ∗(1)
i (u) = ν

m∑
j=1

pi j

{
(1 − θ j)

[
Ṽ∗(1)

j
(
u − c j − b̃Ṽ∗(1)

j
(u − c j)

)
+ b̃Ṽ∗(1)

j
(u − c j)

+ θ j

n1∑
x=1

[
Ṽ∗(1)

j
(
u − c j + x − b̃Ṽ∗(1)

j
(u − c j + x)

)
+ b̃Ṽ∗(1)

j
(u − c j + x)

]
f (x)

}
,

(5.6)

Ṽ∗(2)
i (u) = ν

m∑
j=1

pi j

{
(1 − θ j)

[
Ṽ∗(2)

j
(
u − c j − b̃Ṽ∗(2)

j
(u − c j)

)
+ b̃Ṽ∗(2)

j
(u − c j)

]
+ θ j

n1∑
x=1

[
Ṽ∗(2)

j
(
u − c j + x − b̃Ṽ∗(2)

j
(u − c j + x)

)
+ b̃Ṽ∗(2)

j
(u − c j + x)

]
f (x)

}
+ ν

(
Q(n1)Ji − F̄(n1)

m∑
j=1

pi jθ jc j
)
,

(5.7)

where Q(n1) =
( νH

1−ν + H0
)
F̄(n1) + µx −

∑n1
x=1 x f (x), and n1 ∈ N

+.
Similarly, we can easily demonstrate that

Ṽ∗(1)
i (u) ≤ V∗i (u) ≤ Ṽ∗(2)

i (u), for u ∈ NH0 , (5.8)

where V∗i (u) satisfies the right-hand side of (5.5) with V j replaced by V∗j for all j. By Eqs (5.6)–(5.8),
the deviation between Ṽ (1)

i (u) and Ṽ∗(2)
i (u) is

d1
(
Ṽ∗(1)

i (u), Ṽ∗(2)
i (u)

)
≤
ν
[
Q(n1)J(m) − JcF̄(n1)

]
1 − ν + νJ(1)F̄(n1)

, (5.9)

where Jc = mini
∑m

j=1 pi jθ jc j. By assuming that c j < ∞, µx < ∞ and considering the formulas in
(5.6) and (5.7), we can find that the right-hand side of (5.9) is nonnegative and also approaches zero as
F̄(n1)→ 0 when n1 → ∞.

Therefore, as the value of n1 increases, Ṽ (1)
i (u) and Ṽ∗(2)

i (u) can approach V∗i (u) infinitely. We define
an operator T̃

′
= (T̃ ′1, T̃

′
2, · · · , T̃

′
m), where T̃ ′i Ṽ

(1)
i (u) is the right-hand side of (5.6). Obviously, T̃

′

also exhibits the characteristics of a contraction mapping when applied to LH0 . The Bellman recursive
algorithm for Ṽ (1)

i (u) under restrictions on unbounded dividend payments is as follows: Given an initial
function column

(
Ṽ (1)

i,0 (u)
)

in the range of [0, νH0 +
νH
1−ν )], we can construct a new recursive formula(

Ṽ (1)
i,s (u)

)
(s = 1, 2, . . . , n) that replaces b̂V (1)

j,s−1
on the right side of (4.17) with b̃Ṽ (1)

j,s−1
. Then, the estimated

error between Ṽ (1)
i,n (u) and Ṽ∗(1)

i (u) is less than or equal to νn+1/(1 − ν).
The calculation steps are similar to the steps of the algorithm provided at the end of Section 4, but

with specific conditional assumptions taken into account for surplus u.
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6. Numerical illustration

To demonstrate the computation of the value of φ∗i and V∗i , we present two numerical examples. For
each example, we consider scenarios with and without ceiling constraints on dividend payments, along
with various gains probability distributions.
Example 6.1. Let us assume that the discount factor ν = 0.97 and the expenses {Ct} follow a Markov
chain that comprises three distinct states, with values of 3, 5, and 6. The transition probability is as
follows:

P =


0.5 0.2 0.3

0.15 0.6 0.25
0.1 0.2 0.7

 .
Next, let us assume that the probabilities of gains occurrence θi(i = 1, 2, 3) are 0.5, 0.76, and 0.9,

respectively, associated with Ci. The goal of this example is to discuss the optimal strategy under the
different payment conditions given in Sections 4 and 5 using a discrete random distribution and the
geometric distribution with an expected gain of µx = 8.

1) Discrete random distribution. The probability function satisfies:

x 2 3 7 10 28 52 88
f (x) 0.17 0.2 0.28 0.2 0.12 0.025 0.005

2) Geometric distribution. The probability function satisfies:

f (x) =
1

10

(
9

10

)x−1

, x = 1, 2, · · · .

Assuming that both the estimated deviation and iterative calculation error are no more than 10−4,
we obtained a total of n = 418 iterations in the two distributions mentioned above. We obtain n0 = 168
in the geometric distribution when M0 = 5 in Section 4. Similarly, we determine n1 = 196 when
M0 is considered infinite. In the algorithm provided in Section 5, for any positive integer u1 ∈ N

H0 ,
we aim to obtain an approximation of V∗i (u)(u ∈ Nu1). To achieve this goal, for example, calculate
iteratively Ṽ (1)

i,s (u)(u ∈ Nu1+196×(418−s)) for s ranging from 1 to 418 according to a geometric distribution,
using an initial value function Ṽ (1)

i,0 (u) = 1(u ∈ Nu1+196×418). After the iterative calculations, we choose
Ṽ (1)

i,418(u)(u ∈ Nu1) as an approximation of V∗i (u), where H0 = 3039.
Tables 1 and 2 show approximate values of φ∗i (u) in the two distributions mentioned above. It

can be easily seen that the φ∗i (u) are threshold strategies (see Ng [5] and Yang et al. [8]) when the
dividend payments have a ceiling restriction, and the corresponding thresholds are 25 and 24 for the
two different distributions, respectively. In addition, Tables 1 and 2 demonstrate that φ∗i (u) without
ceiling constraints are barrier strategies (see Avanzi [3] and Bayraktar et al. [13]). The corresponding
barriers for these example are {32, 32, 32} and {29, 30, 30}, respectively.
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Table 1. The optimal strategy φ∗i (u) with discrete random distribution in Example 6.1.

M0 = 5
u 0-25 26 27 28 29 30 31 others
φ∗i (u)(i = 1, 2, 3) 0 1 2 3 4 5 5 5
M0 = ∞

u 0-31 32 33 34 35 36 37 · · ·

φ∗i (u)(i = 1, 2, 3) 0 1 2 3 4 5 6 · · ·

Table 2. The optimal strategy φ∗i (u) with geometric distribution in Example 6.1.

M0 = 5
u 0-24 25 26 27 28 29 30 others
φ∗1(u) 0 1 2 3 4 5 5 5
u 0-25 26 27 28 29 30 31 others
φ∗i (u)(i = 2, 3) 0 1 2 3 4 5 5 5
M0 = ∞

u 0-29 30 31 32 33 34 35 · · ·

φ∗1(u) 0 1 2 3 4 5 6 · · ·

u 0-30 31 32 33 34 35 36 · · ·

φ∗i (u)(i = 2, 3) 0 1 2 3 4 5 6 · · ·

Figures 1–4 show the partial approximations of V∗i (u), which are affected by the presence or absence
of a ceiling constraint on dividend payments. It can be observed that the optimal value functions
V∗i (u) consistently exhibit an increasing trend across different distributions within the same state.
The value of V∗i (u) initially increases rapidly, which indicates that the company is performing well
operationally. However, once the surplus u surpasses a certain threshold due to operational constraints,
further increases may not yield any additional benefits. Instead, they could potentially reduce overall
profits through discounting and capital accumulation. Particularly when the dividend payments have
a ceiling restriction, as u → ∞, V∗i (u) gradually levels off, which is consistent with the conclusion of
(4.2). These phenomena align with real-world financial and economic environments.
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Figure 1. The value of V∗i (u)(u ≤ 10) with discrete random distribution in Example 6.1.

Figure 2. The value of V∗i (u)(u ≤ 300) with discrete random distribution in Example 6.1.
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Figure 3. The value of V∗i (u)(u ≤ 10) with geometric distribution in Example 6.1.

Figure 4. The value of V∗i (u)(u ≤ 300) with geometric distribution in Example 6.1.

Example 6.2. Let us assume that the discount factor ν = 0.97, the expenses {Ct} follow a four-state
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Markov chain, with values of 2, 3, 4, and 5, and the transition probability matrix is

P =


0.45 0.15 0.25 0.15
0.2 0.35 0.15 0.3
0.1 0.2 0.5 0.2

0.05 0.2 0.1 0.65

 .
Let us assume that the probabilities of gains occurrence θi are 0.4, 0.55, 0.7, and 0.85, respectively,

with relation to Ci. In this example, we discuss the discrete uniform distribution and mixed geometric
distribution with µx = 8.

3) Discrete uniform distribution. The probability function satisfies:

f (x) =
1

15
, x = 1, 2, . . . , 15.

4) Mixed geometric distribution. The probability function satisfies:

f (x) =
4
5
×

1
7
×

(
6
7

)x−1

+
1
5
×

1
12
×

(
11
12

)x−1

, x = 1, 2, . . .

Applying an iterative process similar to Example 6.1, we also assume that estimation accuracy and
calculation error do not exceed 10−4. In the mixed geometric distribution, we obtained that n0 = 181
when M0 = 5, and n1 = 212 when M0 = ∞. Then, we choose V (1)

i,418(u) and Ṽ (1)
i,418(u)(u ∈ NH0) as

approximations of V∗i (u), respectively, where H0 = 1799.
Tables 3 and 4 show that the optimal strategies can be categorized as threshold strategies under

the constraint M0 = 4. The corresponding thresholds for these strategies are {18, 18, 18, 18} and
{19, 19, 19, 20}, respectively. Additionally, the optimal strategies can also be classified as barrier
strategies when M0 = ∞. The barriers for these strategies are {20, 20, 21, 21} and {23, 23, 23, 24}.
Finally, Tables 5 and 6 show some specific approximations value of V∗i (u).

Table 3. The optimal strategy φ∗i (u) with discrete uniform distribution in Example 6.2.

M0 = 4
u 0-18 19 20 21 22 23 others
φ∗i (u)(i = 1, 2, 3, 4) 0 1 2 3 4 4 4
M0 = ∞

u 0-20 21 22 23 24 25 · · ·

φ∗i (u)(i = 1, 2) 0 1 2 3 4 5 · · ·

u 0-21 22 23 24 25 26 · · ·

φ∗i (u)(i = 3, 4) 0 1 2 3 4 5 · · ·
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Table 4. The optimal strategy φ∗i (u) with mixed geometric distribution in Example 6.2.

M0 = 4
u 0-19 20 21 22 23 24 others
φ∗i (u)(i = 1, 2, 3) 0 1 2 3 4 4 4
u 0-20 21 22 23 24 25 others
φ∗4(u) 0 1 2 3 4 4 4
M0 = ∞

u 0-23 24 25 26 27 28 · · ·

φ∗i (u)(i = 1, 2, 3) 0 1 2 3 4 5 · · ·

u 0-24 25 26 27 28 29 · · ·

φ∗4(u) 0 1 2 3 4 5 · · ·

Table 5. The value of V∗i (u) with discrete uniform distribution in Example 6.2.

M0 = 4
u 0 1 2 3 4 5 17 18 19 20 21
V∗1(u) 13.022 14.507 19.294 21.926 25.486 27.826 45.438 46.439 47.414 48.369 49.312
V∗2(u) 13.991 15.636 18.779 22.583 25.422 28.077 45.584 46.587 47.565 48.523 49.465
V∗3(u) 14.571 16.307 18.820 21.830 25.770 28.104 45.625 46.631 47.612 48.572 49.516
V∗4(u) 15.443 17.363 19.706 22.892 25.493 28.716 45.835 46.840 47.820 48.781 49.724
u 22 23 24 25 26 27 28 100 300 500 700
V∗1(u) 50.247 51.175 52.096 53.006 53.902 54.787 55.661 97.878 126.375 129.055 129.307
V∗2(u) 50.398 51.323 52.242 53.151 54.047 54.931 55.804 97.939 126.381 129.056 129.307
V∗3(u) 50.448 51.371 52.288 53.196 54.093 54.978 55.851 97.959 126.383 129.056 129.307
V∗4(u) 50.656 51.578 52.492 53.397 54.292 55.176 56.047 98.044 126.391 129.057 129.307
M0 = ∞

u 0 1 2 3 4 5 17 18 19 20 21
V∗1(u) 13.302 14.818 19.709 22.397 26.033 28.424 46.431 47.466 48.479 49.477 50.461
V∗2(u) 14.291 15.971 19.182 23.067 25.968 28.680 46.576 47.613 48.628 49.627 50.614
V∗3(u) 14.884 16.657 19.224 22.299 26.323 28.708 46.617 47.656 48.675 49.677 50.666
V∗4(u) 15.774 17.735 20.129 23.384 26.040 29.332 46.825 47.862 48.879 49.880 50.868
u 22 23 24 25 26 27 28 100 300 500 700
V∗1(u) 51.437 52.410 53.380 54.350 55.320 56.290 57.260 127.100 321.100 515.100 709.100
V∗2(u) 51.592 52.565 53.535 54.505 55.475 56.445 57.415 127.255 321.255 515.255 709.255
V∗3(u) 51.646 52.620 53.590 54.560 55.530 56.500 57.470 127.310 321.310 515.310 709.310
V∗4(u) 51.849 52.823 53.795 54.765 55.735 56.705 57.675 127.515 321.515 515.515 709.515
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Table 6. The value of V∗i (u) with mixed geometric distribution in Example 6.2.

M0 = 4
u 0 1 2 3 4 5 18 19 20 21 22
V (1)

1,463(u) 8.985 10.293 13.917 16.200 19.110 21.210 40.023 41.041 42.033 43.003 43.955
V (1)

2,463(u) 9.546 10.932 13.470 16.516 19.003 21.304 40.134 41.157 42.152 43.125 44.079
V (1)

3,463(u) 9.891 11.325 13.448 16.042 19.203 21.285 40.166 41.191 42.190 43.165 44.121
V (1)

4,463(u) 10.363 11.859 13.819 16.491 18.947 21.595 40.326 41.354 42.354 43.331 44.289
u 23 24 25 26 27 28 29 100 300 500 700
V (1)

1,463(u) 44.898 45.834 46.763 47.685 48.595 49.493 50.380 93.675 125.534 128.929 129.290
V (1)

2,463(u) 45.021 45.955 46.882 47.803 48.713 49.612 50.499 93.730 125.540 128.929 129.290
V (1)

3,463(u) 45.063 45.996 46.921 47.841 48.751 49.651 50.538 93.747 125.542 128.929 129.290
V (1)

4,463(u) 45.232 46.164 47.088 48.006 48.914 49.813 50.700 93.822 125.550 128.930 129.290
M0 = ∞

u 0 1 2 3 4 5 18 19 20 21 22
Ṽ (1)

1,549(u) 9.750 11.169 15.101 17.578 20.735 23.013 43.394 44.494 45.565 46.610 47.634
Ṽ (1)

2,549(u) 10.359 11.863 14.616 17.922 20.620 23.115 43.518 44.622 45.697 46.746 47.774
Ṽ (1)

3,549(u) 10.734 12.289 14.593 17.407 20.837 23.096 43.553 44.661 45.739 46.791 47.821
Ṽ (1)

4,549(u) 11.246 12.870 14.996 17.895 20.560 23.433 43.732 44.842 45.923 46.977 48.010
u 23 24 25 26 27 28 29 100 300 500 700
Ṽ (1)

1,549(u) 48.641 49.634 50.615 51.590 52.562 53.533 54.503 123.373 317.373 511.373 705.373
Ṽ (1)

2,549(u) 48.784 49.780 50.765 51.742 52.714 53.685 54.655 123.525 317.525 511.525 705.525
Ṽ (1)

3,549(u) 48.834 49.832 50.819 51.797 52.770 53.741 54.711 123.581 317.581 511.581 705.581
Ṽ (1)

4,549(u) 49.025 50.025 51.014 51.994 52.969 53.940 54.911 123.781 317.781 511.781 705.781

From the numerical examples provided, it is evident that when surplus has an upper limit constraint
M0(M0 < ∞), the optimal strategies after surpassing a certain constant will be M0, which is consistent
with (4.9). In cases where there are no constraints on dividend payments, all surplus exceeding the
barrier will be used for dividends. Numerical examples show that different forms of dividend payments
directly affect the dividend threshold or barrier. In addition, with the same distribution of gains, the
optimal value function is larger when there are no payment constraints, and the difference between
them becomes more significant as the surplus increases. This phenomenon suggests that company
operators should fully consider the optimal dividend problem when making dividend decisions to
ensure adequate funding for production activities. The simulation results indicate that in modern
enterprises, such as pharmaceutical and petroleum companies, maximizing benefits for shareholders
requires a clear understanding of the scale of operations and the expected gains. Subsequently,
companies can develop the most effective financing strategy based on the optimal strategies and
properties obtained from the model. This approach primarily aims to ensure the effective utilization of
company surplus and to optimize dividends for shareholders. These conclusions further enhance the
practical application of the model discussed in this paper.
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7. Conclusions

In this paper, we delve into the optimal dividend problem within the framework of a compound
binomial dual risk model, which is suitable for companies whose income comes from occasional
stochastic operating expenses and generates random gains at each unit time interval. When considering
whether there is a ceiling on dividend payments or not, we have proven that the optimal value function
represents the unique solution of a discrete HJB equation. Furthermore, we have derived an algorithm
for determining the optimal strategy. The estimated results in the numerical examples demonstrate
that our optimal dividend strategy is a threshold strategy, whether with or without a ceiling payment
constraint. In the future, we can consider exploring the optimal dividend problem under the constraint
of survival probability (Alcoforado et al. [37]), incorporating delays in dividend payments (Cheung
and Wong [28]) in the dual risk model with stochastic expenses, or conducting a real data analysis
(Wang et al. [38]).
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problem for spectrally positive Lévy processes, Insur. Math. Econ., 74 (2017), 135–146.
https://doi.org/10.1016/j.insmatheco.2017.03.006

15. D. C. M. Dickson, A. D. E. Reis, H. R. Waters, Some stable algorithms in ruin theory and their
applications, Astin Bull., 25 (1995), 153–175. https://doi.org/10.2143/AST.25.2.563245
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