Research article

Unsupervised segmentation of images using bi-dimensional pairwise Markov chains model

  • Received: 30 July 2024 Revised: 25 September 2024 Accepted: 26 September 2024 Published: 31 October 2024
  • MSC : 62C10, 62H30

  • The pair-wise Markov chain (PMC) model serves as an extension to the hidden Markov chain (HMC) model and has been widely used in unsupervised restoration tasks associated with reconstructing the hidden data. In fact, the PMC model can treat fairly complicated situations for which application of Bayesian restoration estimators such as maximum A Posteriori (MAP), or maximal Posterior mode (MPM) remains possible. The major novelty in this work is to construct a PMC model with observational data in two dimensions, and subsequently adapt the estimation algorithms, as well as, image restoration methods for that context. Often, the transformation of an image from a two-dimensional format to a one-dimensional sequence occurs via Hilbert-Peano scan (HPS), whereas in the proposed model, the second component of the observed process takes over this role to exceed the situation of pixel missing information after transformation for a to be segmented image. To reconstruct the hidden process, we used the MPM decision criterion after estimating the model's parameters with two algorithms: Stochastic expectation maximization (SEM) and iterative conditional estimation (ICE). In this study, experimental, numerical, and visual results are shown to demonstrate the superiority of the proposed model over the classical PMC for unsupervised restorations.

    Citation: A. Joumad, A. El Moutaouakkil, A. Nasroallah, O. Boutkhoum, Mejdl Safran, Sultan Alfarhood, Imran Ashraf. Unsupervised segmentation of images using bi-dimensional pairwise Markov chains model[J]. AIMS Mathematics, 2024, 9(11): 31057-31086. doi: 10.3934/math.20241498

    Related Papers:

  • The pair-wise Markov chain (PMC) model serves as an extension to the hidden Markov chain (HMC) model and has been widely used in unsupervised restoration tasks associated with reconstructing the hidden data. In fact, the PMC model can treat fairly complicated situations for which application of Bayesian restoration estimators such as maximum A Posteriori (MAP), or maximal Posterior mode (MPM) remains possible. The major novelty in this work is to construct a PMC model with observational data in two dimensions, and subsequently adapt the estimation algorithms, as well as, image restoration methods for that context. Often, the transformation of an image from a two-dimensional format to a one-dimensional sequence occurs via Hilbert-Peano scan (HPS), whereas in the proposed model, the second component of the observed process takes over this role to exceed the situation of pixel missing information after transformation for a to be segmented image. To reconstruct the hidden process, we used the MPM decision criterion after estimating the model's parameters with two algorithms: Stochastic expectation maximization (SEM) and iterative conditional estimation (ICE). In this study, experimental, numerical, and visual results are shown to demonstrate the superiority of the proposed model over the classical PMC for unsupervised restorations.



    加载中


    [1] O. Cappé, E. Moulines, T. Rydén, Inference in hidden markov models, Proceedings of EUSFLAT Conference, 2009, 14–16.
    [2] B. Benmiloud, W. Pieczynski, Estimation des paramètres dans les chaînes de markov cachées et segmentation d'images, Traitement du. signal, 12 (1995), 433–454.
    [3] J. B. M. Robert, J. Elliott, L. Aggoun, Hidden Markov models: Estimation and control, Science & Business Media, 1995.
    [4] C. Fernandes, Chaînes de Markov triplets et segmentation non supervisée d'images, Institut Polytechnique de Paris, 2022.
    [5] L. Rabiner, A tutorial on hidden markov models and selected applicationsin speech recognition, Proceedings of IEEE, 77 (1989), 257–286. https://doi.org/10.1109/5.18626 doi: 10.1109/5.18626
    [6] W. Pieczynski, Pairwise markov chains, IEEE T. Pattern Anal., 25 (2003), 634–639. https://doi.org/10.1109/TPAMI.2003.1195998
    [7] C. Fernandes, T. Monti, E. Monfrini, W. Pieczynski, Fast image segmentation with contextual scan and Markov chains, In: 29th European Signal Processing Conference, Dublin, Ireland, 2021,626–630. https://doi.org/10.23919/EUSIPCO54536.2021.9616332
    [8] A. Joumad, A. E. Moutaouakkil, A. Nasroallah, O. Boutkhoum, F. Rustam, I. Ashraf, Unsupervised statistical image segmentation using bi-dimensional hidden markov chains model with application to mammography images, J. King Saud Univ.-Com., 35 (2023), 101715. https://doi.org/10.1016/j.jksuci.2023.101715 doi: 10.1016/j.jksuci.2023.101715
    [9] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
    [10] G. Celeux, F. Forbes, N. Peyrard, EM procedures using mean field-like approximations for markov model-based image segmentation, Pattern Recogn., 36 (2003), 131–144. https://doi.org/10.1016/S0031-3203(02)00027-4 doi: 10.1016/S0031-3203(02)00027-4
    [11] W. Pieczynski, Hidden markov fields and iterative conditional estimation, Traitement du Signal, 11 (1994), 141–154.
    [12] S. Allassonnière, E. Kuhn, Convergent stochastic expectation maximization algorithm with efficient sampling in high dimension. application to deformable template model estimation, Comput. Stat. Data An., 91 (2015), 4–19. https://doi.org/10.1016/j.csda.2015.04.011 doi: 10.1016/j.csda.2015.04.011
    [13] S. Huda, J. Yearwood, R. Togneri, A stochastic version of expectation maximization algorithm for better estimation of hidden Markov model, Pattern Recogn. Lett., 30 (2009), 1301–1309. https://doi.org/10.1016/j.patrec.2009.06.006 doi: 10.1016/j.patrec.2009.06.006
    [14] S. Derrode, W. Pieczynski, Signal and image segmentation using pairwise Markov chains, IEEE T. Signal Proces., 52 (2004), 2477–2489. https://doi.org/10.1109/TSP.2004.832015 doi: 10.1109/TSP.2004.832015
    [15] R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, F. Tupin, Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields, In: IEEE Transactions on Geoscience and Remote Sensing, 41 (2003), 675–686. https://doi.org/10.1109/TGRS.2003.809940
    [16] S. Z. Li, Markov random field modeling in image analysis, Springer Science & Business Media, 2009.
    [17] Q. Jackson, D. A. Landgrebe, Adaptive Bayesian contextual classification based on Markov random fields, In: IEEE Transactions on Geoscience and Remote Sensing, 40 (2002), 2454–2463. https://doi.org/10.1109/TGRS.2002.805087
    [18] K. Kuljus, J. Lember, Pairwise Markov models and hybrid segmentation approach, Methodol. Comput. Appl. Probab., 25 (2023). https://doi.org/10.1007/s11009-023-10044-z
    [19] E. Monfrini, J. Lecomte, F. Desbouvries, W. Pieczynski, Image and signal restoration using pairwise Markov trees, In: IEEE Workshop on Statistical Signal Processing, Saint Louis, MO, USA, 2003,174–177. https://doi.org/10.1109/SSP.2003.1289372
    [20] W. Pieczynski, A. N. Tebbache, Pairwise Markov random fields and segmentation of textured images, Mach. Graph. Vision, 9 (2000), 705–718.
    [21] M. E. Y. Boudaren, L. An, W. Pieczynski, Dempster-Shafer fusion of evidential pairwise Markov fields, Int. J. Approx. Reason., 74 (2016), 13–29. https://doi.org/10.1016/j.ijar.2016.03.006 doi: 10.1016/j.ijar.2016.03.006
    [22] J. B. Courbot, V. Mazet, E. Monfrini, C. Collet, Pairwise Markov fields for segmentation in astronomical hyperspectral images, Signal Process., 163 (2019), 41–48. https://doi.org/10.1016/j.sigpro.2019.05.005 doi: 10.1016/j.sigpro.2019.05.005
    [23] S. Derrode, SAR image segmentation using generalized pairwise Markov chains, In: Proceedings of SPIE-The International Society for Optical Engineering, 4885 (2002). https://doi.org/10.1117/12.463177
    [24] S. Derrode, W. Pieczynski, Segmentation non supervisée d'images par chaîne de Markov couple, In: Ateliers Traitement et Analyse de l'Information: Méeshodes et Applications, Hammamet, Tunisie, 2003.
    [25] N. Brunel, F. Barbaresco, Doppler and polarimetric statistical segmentation for radar clutter map based on pairwise Markov chains, Proc. of IEEE RADAR, (2007), 8–10.
    [26] S. Derrode, W. Pieczynski, Unsupervised data classification using pairwise Markov chains with automatic copulas selection, Comput. Stat. Data An., 63 (2013), 81–98. https://doi.org/10.1016/j.csda.2013.01.027 doi: 10.1016/j.csda.2013.01.027
    [27] A. K. Atiampo, G. L. Loum, Unsupervised image segmentation with pairwise Markov chains based on nonparametric estimation of copula using orthogonal polynomials, Int. J. Image Graph., 16 (2016), 2526–2541. https://doi.org/10.1142/S0219467816500200 doi: 10.1142/S0219467816500200
    [28] S. Rafi, M. Castella, W. Pieczynski, Pairwise Markov model applied to unsupervised image separation, In: IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, Innsbruck, Austria, 2011. https://doi.org/10.2316/P.2011.721-044
    [29] E. Azeraf, E. Monfrini, E. Vignon, W. Pieczynski, Highly fast text segmentation with pairwise Markov chains, In: 6th IEEE International Congress on Information Science and Technology, Machine Learning for Natural Language Processing, Agadir-Essaouira, Morocco, (2020), 361–366. https://doi.org/10.1109/CiSt49399.2021.9357304
    [30] I. Papila, O. Ersoy, Multiscale segmentation of remotely sensed images using pairwise Markov chains, In: IEEE Antennas and Propagation Society Symposium, 2 (2004), 2123–2126. https://doi.org/10.1109/APS.2004.1330629
    [31] S. L. Cam, F. Salzenstein, C. Collet, Fuzzy pairwise Markov chain to segment correlated noisy data, Signal Proces., 88 (2008), 2526–2541. https://doi.org/10.1016/j.sigpro.2008.05.003 doi: 10.1016/j.sigpro.2008.05.003
    [32] C. Carincotte, S. Derrode, S. Bourennane, Multivariate fuzzy hidden Markov chains model applied to unsupervised multiscale SAR image segmentation, In: The 14th IEEE International Conference on Fuzzy Systems, Reno, NV, USA, 2005,288–293. https://doi.org/10.1109/FUZZY.2005.1452408
    [33] B. Tso, R. C. Olsen, Combining spectral and spatial information into hidden Markov models for unsupervised image classification, Int. J. Remote Sens., 26 (2005), 2113–2133. https://doi.org/10.1080/01431160512331337844 doi: 10.1080/01431160512331337844
    [34] J. F. Mari, F. L. Ber, Temporal and spatial data mining with second-order hidden markov models, Soft Comput., 10 (2006), 406–414.
    [35] A. Hafiane, B. Zavidovique, S. Chaudhuri, A modified FCM with optimal Peano scans for image segmentation, In: IEEE International Conference on Image Processing, Genova, Italy, 2005, III–840. https://doi.org/10.1109/ICIP.2005.1530523
    [36] Y. L. Song, B. Adobah, J. F. Qu, C. M. Liu, Segmentation of ordinary images and medical images with an adaptive hidden Markov model and viterbi algorithm, Curr. Signal Transd. T., 15 (2020), 109–123. https://doi.org/10.2174/1574362413666181109113834 doi: 10.2174/1574362413666181109113834
    [37] W. Skarbek, Generalized hilbert scan in image printing, In: Theoretical Foundations of Computer Vision, R. Klette et W. G. Kropetsh, editors, Akademik Verlag, Berlin, 1992, 45–57.
    [38] N. Brunel, Sur quelques extensions des chaînes de Markov cachées et couples. Application à la segmentation non supervisée des signaux radar, Université Pierre et Marie Curie-Paris VI, 2005.
    [39] P. Lanchantin, Chaînes de Markov triplets et segmentation non supervisée de signaux, Evry: Institut national des télécommunications, 2006.
    [40] W. Pieczynski, Chaines de Markov triplet, Comptes Rendus. Mathématiques, 335 (2002), 275–278. https://doi.org/10.1016/S1631-073X(02)02462-7
    [41] W. Pieczynski, F. Desbouvries, On triplet Markov chains, In: Proceeding of the International Symposium on Applied Stochastic Models and Data Analysis, Brest, France, 335 (2005).
    [42] A. Joumad, A. E. Moutaouakkil, A. Nasroallah, O. Boutkhoum, Unsupervised image segmentation using fuzzy hidden Markov chain with bi-dimensional data, In: 11th International Symposium on Signal, Image, Video and Communications, El Jadida, Morocco, 2022, 1–6. https://doi.org/10.1109/ISIVC54825.2022.9800731
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(152) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog