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Abstract: The pair-wise Markov chain (PMC) model serves as an extension to the hidden Markov
chain (HMC) model and has been widely used in unsupervised restoration tasks associated with
reconstructing the hidden data. In fact, the PMC model can treat fairly complicated situations for which
application of Bayesian restoration estimators such as maximum A Posteriori (MAP), or maximal
Posterior mode (MPM) remains possible. The major novelty in this work is to construct a PMC model
with observational data in two dimensions, and subsequently adapt the estimation algorithms, as well
as, image restoration methods for that context. Often, the transformation of an image from a two-
dimensional format to a one-dimensional sequence occurs via Hilbert-Peano scan (HPS), whereas in
the proposed model, the second component of the observed process takes over this role to exceed
the situation of pixel missing information after transformation for a to be segmented image. To
reconstruct the hidden process, we used the MPM decision criterion after estimating the model’s
parameters with two algorithms: Stochastic expectation maximization (SEM) and iterative conditional
estimation (ICE). In this study, experimental, numerical, and visual results are shown to demonstrate
the superiority of the proposed model over the classical PMC for unsupervised restorations.
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1. Introduction

The hidden Markov chain (HMC) model, as characterized in [1–5], is a doubly stochastic process,
usually denoted by (X,Y). The process X, which models a to be segmented image, is assumed to
be hidden and Markovian, and the process Y, which models the noisy version of the image to be
recuperated, is assumed to be observed and real. The success of the HMC model stems from the fact
that, when the noise is not too complex, several Bayesian classification approaches such as maximum
A Posteriori (MAP) or maximal A Posteriori (MPM) estimators can be used to determine the image
X = x from the observed version Y = y. In addition, the spatial regularity of pixels may hinder the
effectiveness of the HMC model in image segmentation.

We consider the problem of segmenting a satellite image into two classes, “water” and “trees”. The
hidden image represents all of the classes, whereas the observed image represents all of the gray levels
on each pixel. In general, all neighboring pixels are considered to have a higher probability of the same
class than pixels situated further from each other. Nevertheless, in this situation, we can detect pixels
that are among a set of pixels in identical groups or near edges but have distinct appearances. According
to the classical hypothesis, this attribute cannot be accommodated in the HMC model. For this reason,
the HMC model has been augmented to include the pair-wise Markov chain (PMC) modelThe PMC
model is more general than the HMC model, given the process X is not necessarily a Markov chain
and the pair (X,Y) is directly Markovian. Another advantage of PMC against HMC is its capacity to
easily take into account the noise correlation. Furthermore, the PMC model, like HMC, is capable of
implementing Bayesian MAP and MPM restorations.

Another major problem is that when a one-dimensional sequence is generated from a two-
dimensional image using any reading process, such as human preference score (HPS), some locality
information of the pixels is lost. What prompted us in this study was the success of adding additional
components to the observations in the studies [6–8] in the framework of the HMC model by taking
advantage of a neighborhood of each pixel (for example, four nearest neighbors), which culminated in
an impressive model on a range of synthetic images. In this work, we apply the same concept to the
PMC model in order to tackle the main issue of spatial regularity of pixels, as well as the problem of
pixel information loss in an image, which is the objective of the segmentation process. As a result, we
formulate a PMC model with bidimensional observed data (BPMC), whose most important task is to
segment images while taking into account the above-mentioned last two difficulties. The focus of this
study is to look into the potential benefits of BPMC over PMC in terms of unsupervised segmentation.
Initially, the unidentified parameters of the model must be estimated. In the case of PMC, we cannot
simply maximize the likelihood analytically, which is the case for the expectation-maximization (EM)
algorithm [9, 10], at each iteration, so we need to apply iterative conditional estimation (ICE) and
SEM [11–13]. In general, the ICE and structural equation models (SEM) algorithms are very powerful
when used with Gaussian estimation and generalized mixture. In this study, we adapt the ICE and SEM
algorithms to the new model. Furthermore, SEM and ICE algorithms are examined in the presence of
Gaussian noise for both PMC and BPMC, and it is discovered that SEM and ICE algorithms are more
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adaptable because likelihood is not always required. In addition, the estimators beyond the maximum
likelihood can also be utilized. Therefore, we need to answer the following questions.

• Does the use of BPMC significantly improve restoration results, compared to the PMC model,
and how do ICE and SEM algorithms work in the BPMC context?

• Does the use of BPMC compared to PMC permit the image to be converted into a one-dimensional
sequence without losing pixel locality information?

The last point ought to be considered since all kinds of hidden Markov chain models based on HPS
have shown potential for image segmentation, and in certain situations, they may even be competing
with the hidden Markov field (HMF) model in classification [14–16]. On top of that, the HMF model
allows for a more precise and more intuitive modeling of the spatial relationships between pixels [17],
while the PMC model requires HPS to account for the spatial details of the pixels. Conversely, the
BPMC model takes into account temporal and spatial pixel information by incorporating an additional
element right into the observed process, allowing it to compete with the PMC model in this regard.

The rest of this paper is structured into seven sections. Section 2 presents studies relevant to the
current study. In Section 3, we provide the reader with a mathematical background of the BPMC
model. Section 4 presents the two models discussed in this study and their properties. Section 5 is
committed to the simulation of PMC and BPMC models in a supervised way using MPM classifier-
based classifications. Section 6 deals with estimating parameter algorithms; here, we describe the main
steps of the ICE and SEM algorithms in the case of the two models, PMC and BPMC. In Section 7, with
numerical experiments for various noise factors, we give a study of comparison of the two estimation
procedures based on the accuracy of parameter estimates for both models. Furthermore, using error
rates and the peak signal-to-noise ratio (PSNR) index, we demonstrate the performance of these models
on a sample of synthetic images. Finally, conclusions and some perspectives are discussed in Section 8.

2. Literature review

The pair-wise terminology was first attached to the hidden Markov model in the works [18–20],
where the main motivation was to solve the problem of correlation between noise and pixels located
on the image boundary. In fact, this difficulty has been emphasized for the first time in the pair-
wise Markov field (PMF) model and the pair-wise Markov tree (PMT) model. The PMF model has
been successfully used for textured image segmentation [20], real synthetic-aperture radar (SAR)
images [21], and hyper-spectral images [22]. The PMT model has also been used for image and
signal restoration tasks [19]. Recently, the PMC model [18] has been used for applications including
signal and image processing. The PMC model has specific applications in image processing, such as
textured and real images segmentation [14, 23–27] and text segmentation [28, 29], where the authors
used an HPS for converting the image and copula to model conditional densities of class. Images
with multi-scale can be segmented using PMC [30]. Other uses include fuzzy PMC to treat spatially
correlated fuzzy classes between observations [31, 32].

Several other methods based on hidden Markov models have been attempted in order to solve the
question of the relationship between pixels in the chain after the transformation of a bidimensional
image. Among these, an approach suggested by [15] is based on a combination of the HMC and HMF
models. The first model is employed in the estimation phase and the second is exploited in the final
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classification to determine the X configuration. Besides, another strategy in [33, 34] is centered on
the integration of spectral and contextual information into the HMC model, where the structure of the
gathered data is no more Markov when modeling an image using HPS. Additionally, the study [35]
entails another suggestion for an algorithm that incorporates fuzzy C-means combined with HPS.
In [36], a new HMC is proposed for representing the semantic and spatial interactions between pixels.

A new segmentation method in [7] has recently been introduced that tackles the issues of spatial and
temporal pixels via contextual HPS. This method adds an additional element to the observation process
in the HMC model so that each pixel recovered from the HPS is linked to another pair of pixels next to
it in the image but not in the chain. Similarly, in [8], a second component is introduced in the process
Y and a two-dimensional model is generated with estimation and segmentation techniques adapted to
this scenario. Table 1 summarizes all of the methods covered here.

Table 1. A brief overview of research into noise correlation and pixel misplacement in
image segmentation.

Models Image used Technique suggested Year Reference
PMF Textured image Pixel neighborhood 2001 [20]
PMT Synthetic image Partition of pixels set 2003 [19]
PMC Synthetic and SAR

images
HPS 2004 [14]

PMC Textured and SAR
images

HPS and copula 2013 [26]

PMC Scanned document HPS 2011 [28]
FPMC Fuzzy and

Astronomical images
HPS 2008 [31]

HMC Synthetic image Spectral and spatial pixel
information

2005 [33]

Fuzzy
segmentation

multi-spectral image FCM algorithm and HPS 2005 [35]

HMM Medical image Adapted Viterbi algorithm 2020 [36]
HMC Textured image Contextual HPS 2021 [7]
Bi-dimensional
HMC

Synthetic and
mammography image

Bi-dimensional observation 2023 [8]

3. Mathematical context

In this part, we describe a brief mathematical basis for the BPMC model given in this study. We
consider a couple of stochastic processes (X,Y) = ((Xn)1≤n≤N , (Yn)1≤n≤N), where N is the number of
pixels. As previously explained, in the segmentation of images with the hidden Markov model (HMM),
we need to estimate the latent process X = x via the observed process Y = y.

In the context of the PMC model with two-dimensional observed data, we consider another
realization of a random variable Ȳ = ȳ modeling information about each pixel based on its
neighborhood in the image, but not in the chain, in such a way that the observed process is two-
dimensional and is denoted by (Y, Ȳ). Then, we intend to estimate the parameters of the joint
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probability p(x, y, ȳ) by using data unsupervisedly. Based on the observation, Bayesian estimators
are used to restructure the hidden process. In the present model’s segmentation problem, it considers
two laws: An a priori law p(x) and a two-dimensional conditional density p(y, ȳ|x).

To take on the above-mentioned segmentation problem, the a posteriori distribution must be
identified, which contains all of the information on X that is available at (Y, Ȳ). This distribution
was supplied by: p(x|y, ȳ) =

p(x,y,ȳ)∑
x

p(x, y, ȳ)
, where p(x, y, ȳ) = p(x) × p(y, ȳ|x).

Let L be a bivariate loss function and x̂ be an approximation of the hidden realization, where the
latter is obtained by this method:

x̂ = arg min
x′

∑
x

L(x, x′)p(x|y, ȳ). (3.1)

In Bayesian statistics, the two best-known estimators are MAP and MPM, which are associated

respectively with the two loss functions LMAP(x, x′) = L(x, x′) and LMPM(x, x′) =

N∑
n=1

L(xn, x′n), with L

here representing the Kronecker symbol.
The two estimators are consequently and respectively defined by:

x̂MAP = arg min
x′

∑
x

LMAP(x, x′)p(x|y, ȳ)

= arg min
x′

∑
x,x′

p(x|y, ȳ)

= arg min
x′

(1 − p(x′|y, ȳ))

= arg max
x′

p(x′|y, ȳ),

and

x̂MPM = arg min
x′

∑
x

LMPM(x, x′)p(x|y, ȳ)

= arg min
x′

∑
x

N∑
n=1

L(xn, x′n)p(x|y, ȳ)

= arg min
x′

N∑
n=1

∑
xn,x′n

p(xn|y, ȳ)

= arg min
x′

N∑
n=1

(1 − p(x′n|y, ȳ))

= arg max
x′

N∑
n=1

p(x′n|y, ȳ).
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When comparing these two estimators, MPM maximizes the a posteriori marginal probability for
each xn, while MAP maximizes the a posteriori probability p(x|y, ȳ) in a direct way, and allows us to
estimate the whole x sequence. Next, we only utilize the MPM estimator since it is straightforward
to use. We use iterative strategies to estimate the joint distribution of the unobserved process using
the data available (y, ȳ). For calculating the joint distribution, we often use a conditional expectation
approximation in the case of the ICE method or stochastic generators to estimate a sequence of model
parameters from the dataset in the case of the SEM algorithm.

4. Models

Let’s consider two stochastic processes X = (Xn)1≤n≤N and Y = (Yn)1≤n≤N , where N is the number of
pixels of an image. The process X is the unknown image whereas Y is the observed one. Each random
variable Xn has the values from a finite set of K classes Ω = {ω1, . . . , ωK}, and each Yn has attributed
the values from the set of real numbers IR. Realizations of X and Y are denoted by x = (xn)1≤n≤N and
y = (yn)1≤n≤N , respectively.

We suppose that the process X is stationary and that the random variables Y = (Yn)1≤n≤N are
correlated and conditionally depend on X. As in all Markov models, the difficulty of classification
is estimating the latent process X = x based on the observed process Y = y.

4.1. PMC model

This study uses the PMC model and proposes updating the classical pair-wise model. The classical
PMC model is a doubly stochastic process, usually noted (X, Y), where Y (one-dimensional) represents
the pixels of a hidden image X. The same concept for the bidimensional PMC model is true, except for
the process Y . In the classical model, a direct Hilbert Peano scan is used to transform the image from
its two-dimensional version to a one-dimensional chain, followed by an inverse scan to reconstruct the
final image, but in the suggested model, the second component of Y provides for this goal. The visual
results revealed a significant advantage of the proposed model over the classical model, especially for
isolated pixels in the to-be-segmented image.

An image of a bidimensional form can be transformed into a one-dimensional form inevitably by
combining the image column by column or line by line. Moreover, we can use the classical HPS for
an image 2p × 2p [2], or the generalized HPS for any given image [37]. In a moderately different sense
than above, now let’s consider the pair-wise process Z = (Z1, . . . ,Zn, . . . ,ZN) corresponding to X the
hidden process and Y the observed process, where Zn = (Xn,Yn) for n = 1, . . . ,N. Lowercase letters
are used to identify the realizations of such variables and processes. To keep things straightforward
and brief, we use the letters p and f , respectively, to describe various distributions on Ω and densities
on IR in the following text. p(zn) is also employed for p(Zn = zn). Referring to the previous, the pair Z

is a PMC model when its joint distribution can be given as follows p(z) = p(z1)
N∏

n=2

p(zn|zn−1), with

p(z1) = p(x1, y1)

=
∑

x2

∫
IR

p(x1, x2, y1, y2) dy2
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=
∑

x2

∫
IR

p(x1, x2)p(y1, y2|x1, x2) dy2

=
∑

x2

p(x1, x2)
∫

IR
p(y1, y2|x1, x2) dy2

=
∑

x2

p(x1, x2)p(y1|x1, x2)

=
∑

x2

p(x1, x2) fx1,x2(y1),

and

p(zn|zn−1) = p(xn, yn|xn−1, yn−1) = p(yn|xn−1, yn−1, xn)p(xn|xn−1, yn−1) for n = 2, . . . ,N. (4.1)

Based upon whether the process X is stationary, we can also define the Z distribution only as
p(z1)p(z2|z1) = p(z1, z2). Thus the following proposition is inspired by the following works [4, 6, 38].

Proposition 4.1. For Z a stationary PMC model related to processes X and Y, and for an n from
{2, . . . ,N}, the following results are obtained.
(1) Both the distributions of X conditionally to Y = y and of Y conditionally to X = x are Markovians.
(2) If p(xn|xn−1, yn−1) = p(xn|xn−1) and p(yn|xn, xn−1, yn−1) = p(yn|xn, yn−1), then Z is an HMC with
dependent noise.
(3) If p(xn|xn−1, yn−1) = p(xn|xn−1) and p(yn|xn, xn−1, yn−1) = p(yn|xn), then Z is an HMC with
independent noise.
(4) If p(yn−1|xn−1, xn) = p(yn−1|xn−1), then Z is an HMC with dependent noise.

Proof. (1) Let Z = (X,Y) be a PMC model. Then, n belongs to {2, . . . ,N}, and we have

p(xn|x1, . . . , xn−1, y) =
p(x1, . . . , xn−1, xn, y)

p(x1, . . . , xn−1, y)
=

∑
xn+1,...,xN

p(x, y)∑
xn,...,xN

p(x, y)

=

∑
xn+1,...,xN

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)∑
xn,...,xN

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)

=

p(x1, y1) . . . p(xn, yn|xn−1, yn−1)
∑

xn+1,...,xN

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)

p(x1, y1) . . . p(xn−1, yn−1|xn−2, yn−2)
∑

xn,xn+1,...,xN

p(xn, yn|xn−1, yn−1)p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)

=

p(xn, yn|xn−1, yn−1)
∑

xn+1,...,xN

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)∑
xn,xn+1,...,xN

p(xn, yn|xn−1, yn−1)p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)
.
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We also have

p(xn|xn−1, y) =
p(xn−1, xn, y)

p(xn−1, y)
=

∑
{x1 ,...,xN }\{xn−1 ,xn}

p(x, y)∑
{x1 ,...,xN }\{xn−1}

p(x, y)

=

∑
{x1 ,...,xN }\{xn−1 ,xn}

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)∑
{x1 ,...,xN }\{xn−1}

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)

=

p(xn, yn|xn−1, yn−1)
∑

x1 ,...,xn−2

p(x1, y1)p(x2, y2|x1, y1) . . . p(xn−1, yn−1|xn−2, yn−2)
∑

xn+1 ,...,xN

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)∑
x1 ,...,xn−2

p(x1, y1)p(x2, y2|x1, y1) . . . p(xn−1, yn−1|xn−2, yn−2)
∑

xn ,xn+1 ,...,xN

p(xn, yn|xn−1, yn−1) . . . p(xN , yN |xN−1, yN−1)

=

p(xn, yn|xn−1, yn−1)
∑

xn+1 ,...,xN

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)∑
xn ,xn+1 ,...,xN

p(xn, yn|xn−1, yn−1) . . . p(xN , yN |xN−1, yN−1)
.

This gives p(xn|x1, . . . , xn−1, y) = p(xn|xn−1, y), therefore X conditionally to Y = y is a Markov
chain. In the same way, we can show that Y conditionally to X = x is a Markov chain, and x and y do
a symmetrical function here.
(2) Z is a PMC model, then

p(z) = p(x1, y1)
N∏

n=2

p(yn|xn−1, yn−1, xn)p(xn|xn−1, yn−1)

= p(x1)p(y1|x1)
N∏

n=2

p(yn|xn, yn−1)p(xn|xn−1),

from which Z is an HMC with dependent noise, identified by the initial distribution p(z1) by

p(z1) = p(x1)p(y1|x1),

and the transition matrix p(zn|zn−1) given by

p(zn|zn−1) = p(xn|xn−1)p(yn|xn, yn−1).

(3) Z is a PMC model, then

p(z) = p(x1, y1)
N∏

n=2

p(yn|xn−1, yn−1, xn)p(xn|xn−1, yn−1)

= p(x1)p(y1|x1)
N∏

n=2

p(yn|xn, yn−1)p(xn|xn−1)
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= p(x1)
N∏

n=2

p(xn|xn−1)p(y1|x1)
N∏

n=2

p(yn|xn, yn−1)

= p(x1)
N∏

n=2

p(xn|xn−1)
N∏

n=1

p(yn|xn).

From which Z is an HMC with independent noise.
(4) Let us show here that the process X is a Markov chain. We have, for n from {2, . . . ,N},

p(xn|x1, . . . , xn−1) =
p(x1, . . . , xn−1, xn)

p(x1, . . . , xn−1)
=

∑
xn+1,...,xN

∫
IRN

p(x, y)dy1 . . . dyN

∑
xn,...,xN

∫
IRN

p(x, y)dy1 . . . dyN

=

∑
xn+1,...,xN

∫
IRN

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)dy1 . . . dyN

∑
xn,...,xN

∫
IRN

p(x1, y1)p(x2, y2|x1, y1) . . . p(xN , yN |xN−1, yN−1)dy1 . . . dyN

=

∫
IR p(xn, yn|xn−1, yn−1)dyn

∑
xn+1,...,xN

∫
IRN−n−1

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)dyn+1 . . . dyN−n−2

∑
xn

∫
IR

p(xn, yn|xn−1, yn−1)dyn

∑
xn+1,...,xN

∫
IRN−n−2

p(xn+1, yn+1|xn, yn) . . . p(xN , yN |xN−1, yN−1)dyn+1 . . . dyN−n−2

=

∫
IR

p(xn−1,xn)p(yn−1,yn |xn−1,xn)
p(xn−1)p(yn−1 |xn−1) dyn∑

xn

∫
IR

p(xn−1, xn)p(yn−1, yn|xn−1, xn)
p(xn−1)p(yn−1|xn−1)

dyn

=

p(xn−1,xn)p(yn−1 |xn−1,xn)
p(xn−1)p(yn−1 |xn−1)∑

xn

p(xn−1, xn)p(yn−1|xn−1, xn)
p(xn−1)p(yn−1|xn−1)

.

Taking advantage that p(yn−1|xn−1, xn) = p(yn−1|xn−1), we thus have p(xn|x1, . . . , xn−1) = p(xn|xn−1),
which completes the proof.

�

Remark 4.1. Properties 2 and 3 in Proposition 4.1 demonstrate the strict generality of the PMC model
compared with the HMC model.

4.2. BPMC model

In this model, we consider another observed process noted Ȳ given by Ȳ =

(Y1, Ȳ1, . . . ,Yn, Ȳn, . . . ,YN , ȲN). Consequently, for each n = 1, . . . ,N, the random variable Xn is
associated with the pair (Yn, Ȳn), where Ȳn is related only to the observation Yn as defined below. The
problem remains unchanged; determining X based on Y. To establish this new model, we may then
state the following conditions (Figure1).
(1) The process Z = (X,Y) is a PMC model.
(2) The random variables (Ȳn)1≤n≤N are conditionally independent to Z.
(3) Each Ȳn is conditionally distributed to Z and its distribution is conditionally to Zn.

AIMS Mathematics Volume 9, Issue 11, 31057–31086.



31066

The model to be studied (Z, Ȳ), called the BPMC model, could be interpreted as a semi-hidden
Markov chain model [4]. Its distribution can be stated as follows.

p(z, ȳ) = p(z, ȳ1, . . . , ȳN)
= p(z)p(ȳ1, . . . , ȳN |z)

= p(z1)
N−1∏
n=1

p(zn+1|zn)
N∏

n=1

p(ȳn|zn)

= p(x1, y1, ȳ1)
N−1∏
n=1

p(xn+1, yn+1, ȳn+1|xn, yn).

Figure 1. Probability graph of BPMC model for three successive variables.

Let’s emphasize that the BPMC model is particularly interesting because, given the pair (Y, Ȳ) =

(y, ȳ), the distribution of X is a Markov. Using the same logic as the demonstration of the first point in
Proposition 4.1, we get the following proposition.

Proposition 4.2. For (Z, Ȳ), a stationary BPMC model related to processes X and Y, the following
result is obtained.

The distributions of X conditional on (Y, Ȳ) = (y, ȳ) is a Markov chain.

5. Restoration problem of simulated models

The reason behind the achievements of the HMC model can be attributed to the fact that the process
X conditionally on Y = y is a Markov chain and its transitions can be computed. This observation
holds true in the case of the PMC model. However, when it comes to the BPMC model, this conditional
distribution exhibits a complex structure. That is precisely why we employ the distribution p(x|y, ȳ).
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Both models, PMC and BPMC, are assumed to be stationary, such that their distributions are given by
p(x1, y1, x2, y2) for PMC and p(x1, y1, ȳ1, x2, y2, ȳ2) for BPMC.

In this section, we contrast the two models using the MPM restoration algorithm in the Gaussian
context. Both models utilize Gaussian densities, which implies that p(yn−1, yn|xn−1, xn) and p(ȳn−1|xn−1),
for each n, are Gaussian (in the BPMC model case, we choose p(ȳn−1|xn−1) to be equal to
p(ȳn−1|xn−1, xn)). In this scenario, we have K2 probabilities p(xn−1 = ωi, xn = ω j), K2 mean vectors µi j =(
µ1

i j

µ2
i j

)
, and K2 variance-covariance matrix Σi j =

(
σ1

i j σ12
i j

σ12
i j σ2

i j

)
of the bidimensional densities fi j(yn−1, yn)

to represent the PMC model. Additionally, the BPMC model is represented by the parameters µ1
i j,

µ2
i j, σ

1
i j, and σ2

i j of the K2 mono-dimensional densities fi j(ȳn−1). In the following subsection, we will
simulate the two processes X and Y assuming that all the aforementioned parameters are initially
known. Furthermore, we will reconstruct the process X only based on the process Y using the PMC
model, while considering both Y and Ȳ simultaneously using the BPMC model.

5.1. Simulation of processes in models

Here, we evoke the previously defined distributions of the PMC model and BPMC model. The
distribution of the PMC model is given by p(x1, y1) = p(x1)p(y1|x1) and p(xn, yn|xx−1, yn−1) =

p(yn|xn−1, yn−1, xn)p(xn|xn−1, yn−1), while the distribution of the BPMC model is represented by
p(x1, y1, ȳ1) = p(x1)p(y1|x1)p(ȳ1|x1, y1), p(xn, yn|xn−1, yn−1), and p(ȳn|xn, yn).

We can simulate the processes X, Y and Ȳ of models concurrently and interchangeably using the
following approach.

• For the PMC model, x1, y1, xn, and yn, for each n = 2, . . . ,N, are simulated with the
following probabilities:

p(x1) =
∑

x2

p(x1, x2). (5.1)

p(y1|x1) =
p(x1, y1)

p(x1)
=

∑
x2

p(x1, x2) fx1,x2(y1)∑
x2

p(x1, x2)
. (5.2)

p(xn|xn−1, yn−1) =
p(xn, xn−1, yn−1)

p(xn−1, yn−1)
=

p(xn−1, xn) fxn−1,xn(yn−1)∑
xn

p(xn−1, xn) fxn−1,xn(yn−1)
. (5.3)

p(yn|xn, xn−1, yn−1) =
fxn−1,xn(yn−1, yn)

fxn−1,xn(yn−1)
. (5.4)

• For the BPMC model, x1, y1, xn, and yn are simulated in the same way as above. Additionally, we
have simulated ȳ1 and ȳn, for each n = 2, . . . ,N, with these probabilities:

p(ȳ1|x1, y1) = fx1,x2(ȳ1). (5.5)

p(ȳn|xn, yn) = fxn−1,xn(ȳn). (5.6)
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Remark 5.1. It can be seen here that (to dig deeper, see [14, 39])

• fx1,x2(y1) is a mono-dimensional Gaussian density N
(
µ1

i j,
√
σ1

i j

)
.

• fxn−1,xn(yn−1) is a mono-dimensional Gaussian density N
(
µ1

i j,
√
σ1

i j

)
.

• it can be shown that yn is generated according to a Gaussian drawing, where p(yn|xn, xn−1, yn−1)

is a mono-dimensional Gaussian density of mean µ2
i j +

σ12
i j

σ1
i j

(yn−1 − µ
1
i j) and standard deviation√

σ1
i jσ

2
i j−σ

12
i j

σ1
i j

.

• fx1,x2(ȳ1) is a mono-dimensional Gaussian density N
(
µ1

i j,
√
σ1

i j

)
.

• fxn−1,xn(ȳn) is a mono-dimensional Gaussian density N
(
µ2

i j,
√
σ2

i j

)
.

5.2. Restoration of hidden process in models

In this work, we look at the MPM approach for reconstructing the hidden sequence X = x.
The MPM estimator for the PMC model consists of maximizing a posteriori marginal probability

for each xn as follows:

x̂n = arg max
ωi

χn(ωi), (5.7)

where χn(ωi) = p(xn|y). Formally, this probability is calculated using the “conditional forward
probabilities” αn(ωi) = p(xn = ωi|y1, . . . , yn) and the “conditional backward probabilities” βn(ωi) =
p(yn+1,...,yN |xn=ωi,yn)
p(yn+1,...,yN |y1,...,yn) to avoid the numerical problems encountered by the same probabilities in the classical

case. These conditional probabilities can be given using the following recursion:

• Initiation phase: For i = 1, . . . ,K.

(1) Forward

α1(ωi) =
p(x1 = ωi, y1)

K∑
j=1

p(x1 = ω j, y1)

. (5.8)

(2) Backward
βN(ωi) = 1. (5.9)

• Induction phase: For i = 1, . . . ,K and n = 1, . . . ,N − 1.

(1) Forward

αn+1(ωi) =

K∑
j=1

αn(ω j)p(xn+1 = ωi, yn+1|xn = ω j, yn)

K∑
j=1

K∑
k=1

αn(ω j)p(xn+1 = ωk, yn+1|xn = ω j, yn)

. (5.10)
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(2) Backward

βn(ωi) =

K∑
j=1

βn+1(ω j)p(xn+1 = ω j, yn+1|xn = ωi, yn)

K∑
j=1

K∑
k=1

αn(ωk)p(xn+1 = ω j, yn+1|xn = ωk, yn)

, (5.11)

with p(xn+1, yn+1|xn, yn) =
p(xn,yn,xn+1,yn+1)

p(xn,yn) =
p(xn,xn+1) fxn ,xn+1 (yn,yn+1)∑

xn+1

p(xn, xn+1) fxn,xn+1(yn)
.

It is easy to demonstrate that

χn(ωi) = αn(ωi)βn(ωi). (5.12)

Besides this, the MPM estimator under the BPMC model can be calculated as follows.

x̂n = arg max
ωi

χ∗n(ωi), (5.13)

where χ∗n(ωi) = p(xn|y, ȳ). This probability can be achieved using the following conditional forward
and backward probabilities α∗n(ωi) = p(xn = ωi|y1, ȳ1, . . . , yn, ȳn) and β∗n(ωi) =

p(yn+1,ȳn+1,...,yN ,ȳN |xn=ωi,yn,ȳn)
p(yn+1,ȳn+1,...,yN ,ȳN |y1,ȳ1,...,yn,ȳn) .

These conditional probabilities can be given using the following recursion:

• Initiation phase: For i = 1, . . . ,K.

(1) Forward

α∗1(ωi) =
p(x1 = ωi, y1, ȳ1)

K∑
j=1

p(x1 = ω j, y1, ȳ1)

. (5.14)

(2) Backward
β∗N(ωi) = 1. (5.15)

• Induction phase: For i = 1, . . . ,K and n = 1, . . . ,N − 1.

(1) Forward

α∗n+1(ωi) =

K∑
j=1

α∗n(ω j)p(xn+1 = ωi, yn+1, ȳn+1|xn = ω j, yn, ȳn)

K∑
j=1

K∑
k=1

α∗n(ω j)p(xn+1 = ωk, yn+1, ȳn+1|xn = ω j, yn, ȳn)

. (5.16)

(2) Backward

β∗n(ωi) =

K∑
j=1

β∗n+1(ω j)p(xn+1 = ω j, yn+1, ȳn+1|xn = ωi, yn, ȳn)

K∑
j=1

K∑
k=1

α∗n(ωk)p(xn+1 = ω j, yn+1, ȳn+1|xn = ωk, yn, ȳn)

, (5.17)
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with p(xn+1, yn+1, ȳn+1|xn, yn, ȳn) =
p(xn,xn+1) fxn ,xn+1 (yn,yn+1) fxn ,xn+1 (ȳn+1)∑

xn+1

p(xn, xn+1) fxn,xn+1(yn)
.

Considering the foregoing considerations, the distribution of Xn conditionally on (Y = y, Ȳ = ȳ) is
given by

p(xn|y, ȳ) =
p(xn, y, ȳ)

p(y, ȳ)

=
p(xn, y1, ȳ1, . . . , yn, ȳn)p(yn+1, ȳn+1, . . . , yN , ȳN |xn, y1, ȳ1, . . . , yn, ȳn)

p(yn+1, ȳn+1, . . . , yN , ȳN |y1, ȳ1, . . . , yn, ȳn)p(y1, ȳ1, . . . , yn, ȳn)

=
p(xn|y1, ȳ1, . . . , yn, ȳn)p(yn+1, ȳn+1, . . . , yN , ȳN |xn, y1, ȳ1, . . . , yn, ȳn)

p(yn+1, ȳn+1, . . . , yN , ȳN |y1, ȳ1, . . . , yn, ȳn)
.

This gives

χ∗n(ωi) = α∗n(ωi)β∗n(ωi). (5.18)

5.3. Restoration problem results

In this section, we attempt to show the importance of the BPMC model compared to the PMC
model. For that, we treat an example by considering N = 100000 and K = 2 (i.e., Ω = {ω1, ω2}).
We shall investigate the models’ performance by taking two factors into account, two different chain
homogeneities, noted H1 and H2, and different noise parameters:

• Factor chain:

– Case H1: p(ω1, ω1) = p(ω2, ω2) = 0.48 and p(ω1, ω2) = p(ω2, ω1) = 0.02.

– Case H2: p(ω1, ω1) = p(ω2, ω2) = 0.25 and p(ω1, ω2) = p(ω2, ω1) = 0.25.

• Factor noise:

– Parameters of density fω1,ω1: µ1
ω1,ω1

= −3, µ2
ω1,ω1

= −3, σ1
ω1,ω1

= 14, σ2
ω1,ω1

= 14, and
σ12
ω1,ω1

= 0.1.

– Parameters of density fω1,ω2: µ
1
ω1,ω2

= 5, µ2
ω1,ω2

= −5, σ1
ω1,ω2

= 11, σ2
ω1,ω2

= 9, and σ12
ω1,ω2

=

0.9.

– Parameters of density fω2,ω1: µ
1
ω2,ω1

= −3, µ2
ω2,ω1

= 3, σ1
ω2,ω1

= 9, σ2
ω2,ω1

= 11, and σ12
ω2,ω1

=

0.1.

– Parameters of density fω2,ω2: µ
1
ω2,ω2

= 5, µ2
ω2,ω2

= 5, σ1
ω2,ω2

= 18, σ2
ω2,ω2

= 18, and σ12
ω2,ω2

=

0.1.

The following parameter is used to determine noise correlation influence on the error rate

ρ =

K∑
i, j=1

ρωi,ω j

ρω′i ,ω
′

j


2

with ρωi,ω j > ρω′i ,ω
′

j
, where ρωi,ω j =

σ12
ωi ,ω j√

σ1
ωi ,ω j

√
σ2
ωi ,ω j

, for i, j = 1, . . . ,K.

We consider four sets of ρ and the covariance values associated with these four simulations are
shown in Table 2.
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Table 2. Covariance values associated to parameter ρ used in the four experiments.

Experiments σ12
ω1,ω1

σ12
ω1,ω2

σ12
ω2,ω1

σ12
ω2,ω2

Experiment 1 ρ = 190 0.1 0.9 0.1 0.1
Experiment 2 ρ = 45 0.2 0.9 0.3 0.2
Experiment 3 ρ = 17 0.3 0.1 0.3 0.2
Experiment 4 ρ = 5 0.3 0.4 0.4 0.9

We specify the misclassification rates computed by the MPM method in Table 3 after calculating
the means from 300 independent experiments.

Table 3. Incorrectly classified (%) pixels given by PMC and BPMC models-based Bayesian
MPM for two cases of chain.

Experiments Case H1 Case H2

PMC BPMC PMC BPMC
Experiment 1 13.66 % 9.712 % 32.08 % 35.86 %
Experiment 2 15.74 % 10.42 % 33.31 % 34.57 %
Experiment 3 16.87 % 12.65 % 30.18% 32.73 %
Experiment 4 44.29 % 37.12 % 43.62 % 48.03 %

According to these results, for chain in Case H1, the misclassification rates are more important when
the coefficient ρ is small (Experiment 4), and becomes progressively smaller when the coefficient ρ
decreases. It can be seen from all experiments that the BPMC model-based MPM restorations often
work better than the PMC model-based ones. For the case H2 of chain, the misclassification rates are
consistently more important for both models. In this situation, the PMC model is preferable to the
BPMC model. Other simulations have been done, showing that chain homogeneity is an important
element and it can be used during the restoration phase when the data is complete.

6. PMC and BPMC parameters estimation

The parameter estimation problem from incomplete data for the PMC is considerably more complex
than for the HMM. Considering the fact that we are dealing with unsupervised segmentation, all of the
parameters noted θ = (θ1, . . . , θl) must be estimated. We are interested, in this section, in estimating
K2 probabilities p(ωi, ω j), 2K2 parameters of µi j and 3K2 parameters of Σi j. Considering that the log-
likelihood of the models under examination cannot be maximized analytically, the methods follow the
simulation according to posterior distributions used for parameter estimation. We use here ICE and
SEM algorithms.

6.1. Estimation using ICE algorithm

6.1.1. ICE algorithm according to PMC model

The ICE algorithm under the PMC model is an iterative procedure, working as follows:

• initialize θ0
i ;
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• θq+1
i is calculated using θq+1

i = Eθ
q
i
[θ̂i(X,Y)|Y = y] if this expectation is computable, or θq+1

i =

1
T

T∑
t=1

θ̂i(xi, y) if the expectation above is not computable, where x1, . . . , xT are simulated according

to p(x|y, θq).

Returning to our problem, we can take the following estimator for p(ωi, ω j):

p̂(ωi, ω j)(z) =
1

N − 1

N−1∑
n=1

11{xn=ωi,xn+1=ω j}. (6.1)

The conditional expectation of this estimator, at iteration (q + 1), can be calculated and gives

p(q+1)(ωi, ω j) = E[ p̂(ωi, ω j)(z)|Y = y] =
1

N − 1

N−1∑
n=1

ψ(q)
n (ωi, ω j), (6.2)

where ψ(q)
n (ωi, ω j) = p(xn = ωi, xn+1 = ω j|y) is a joint a posteriori probability of two consecutive

classes, and can be calculated using

ψ(q)
n (ωi, ω j) =

αn(ωi)p(xn+1 = ω j, yn+1|xn = ωi, yn)βn+1(ω j)
K∑

l=1

K∑
k=1

αn(ωl)p(xn+1 = ωk, yn+1|xn = ωl, yn)βn+1(ωk)

. (6.3)

For the parameters µi j and Σi j, we can choose the following estimators:

µ̂i j(z) =

N−1∑
n=1

(
yn

yn+1

)
11{xn=ωi,xn+1=ω j}

N−1∑
n=1

11{xn=ωi,xn+1=ω j}

. (6.4)

Σ̂i j(z) =

N−1∑
n=1

((
yn

yn+1

)
− µ̂i j(z)

) ((
yn

yn+1

)
− µ̂i j(z)

)t

11{Xn=ωi,xn+1=ω j}

N−1∑
n=1

11{Xn=ωi,xn+1=ω j}

. (6.5)

However, we cannot calculate the conditional expectation of these estimators. In this situation, we
employ a stochastic strategy based on the simulation of X according to its a posteriori distribution,
which is a nonstationary Markov chain, as we demonstrated previously:

p(x|y) = p(x1|y)
N−1∏
n=1

p(xn+1|xn, y), (6.6)
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with an initial distribution χ1(ωi) and a transition matrix

p(xn+1 = ω j|xn = ωi, y) =
ψn(ωi, ω j)
χn(ωi)

. (6.7)

The process for applying the ICE algorithm to the PMC model is then presented in the
following manner.

• Iteration (q = 0), for i, j = 1, . . . ,K.

(1) Initialization of the algorithm with p(q)(ωi, ω j), µ
(q)
i j ,Σ

(q)
i j .

(2) Calculation of probabilities α(q)
n (ωi) according to (5.8) and (5.10).

(3) Calculation of probabilities β(q)
n (ωi) according to (5.9) and (5.11).

(4) Deduction of probabilities χ(q)
n (ωi) according to (5.12).

(5) Deduction of probabilities ψ(q)
n (ωi, ω j) according to (6.3).

(6) Simulation of x(q),1, . . . , x(q),T according to (6.6).

• Iteration (q + 1), for i, j = 1, . . . ,K.

(1) Calculation of p(q+1)(ωi, ω j) according to (6.2).

(2) Calculation of µ(q+1)
i j and Σ

(q+1)
i j by

µ
(q+1)
i j =

1
T

T∑
t=1

µt
i j , Σ

(q+1)
i j =

1
T

T∑
t=1

Σt
i j, (6.8)

where µt
i j and Σt

i j are calculated according to (6.4) and (6.5).

• Iterations are stopped if the algorithm converges; otherwise, the preceding step is repeated.

6.1.2. ICE algorithm according to BPMC model

The ICE algorithm follows this method:

• Initialize θ0
i ;

• θq+1
i is calculated using θq+1

i = Eθ
q
i
[θ̂i(X,Y, Ȳ)|Y = y, Ȳ = ȳ] if this expectation is computable, or

θ
q+1
i = 1

T

T∑
t=1

θ̂i(xi, y, ȳ) if the expectation above is not computable, where x1, . . . , xT are simulated

according to p(x|y, ȳ, θq).

Here, we take the same estimator for p(ωi, ω j), as given in (6.1). The conditional expectation of
this estimator, at iteration (q + 1), can be calculated and gives

p(q+1)(ωi, ω j) = E[p̂(ωi, ω j)(z)|Y = y, Ȳ = ȳ] =
1

N − 1

N−1∑
n=1

ψ∗(q)
n (ωi, ω j), (6.9)
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where ψ∗(q)
n (ωi, ω j) = p(Xn = ωi, xn+1 = ω j|y, ȳ) is a joint a posteriori probability of two consecutive

classes, and it can be shown that

ψ∗(q)
n (ωi, ω j) =

α∗n(ωi)p(xn+1 = ω j, yn+1, ȳn+1|xn = ωi, yn, ȳn)β∗n+1(ω j)
K∑

l=1

K∑
k=1

α∗n(ωl)p(xn+1 = ωk, yn+1, ȳn+1|xn = ωl, yn, ȳn)β∗n+1(ωk)

. (6.10)

For the parameters µi j and Σi j, we choose the same estimators as in (6.4) and (6.5).
Here, we simulate the process X according to its a posteriori distribution under BPMC model

p(x|y, ȳ), where

p(x|y, ȳ) = p(x1|y, ȳ)
N−1∏
n=1

p(xn+1|xn, y, ȳ), (6.11)

with an initial distribution χ∗1(ωi) and a transition matrix

p(xn+1 = ω j|xn = ωi, y, ȳ) =
ψ∗n(ωi, ω j)
χ∗n(ωi)

. (6.12)

The ICE algorithm procedure for the BPMC model is then explained as follows.

• Iteration (q = 0), for i, j = 1, . . . ,K.

(1) Initialization of the algorithm with p(q)(ωi, ω j), µ
(q)
i j ,Σ

(q)
i j .

(2) Calculation of probabilities α∗(q)
n (ωi) according to (5.14) and (5.16).

(3) Calculation of probabilities β∗(q)
n (ωi) according to (5.15) and (5.17).

(4) Deduction of probabilities χ∗(q)
n (ωi) according to (5.18).

(5) Deduction of probabilities ψ∗(q)
n (ωi, ω j) according to (6.10).

(6) Simulation of x(q),1, . . . , x(q),T according to (6.11).

• Iteration (q + 1), for i, j = 1, . . . ,K.

(1) Calculation of p(q+1)(ωi, ω j) according to (6.9).

(2) Calculation of µ(q+1)
i j and Σ

(q+1)
i j according to (6.8).

• Iterations are stopped if the algorithm converges; otherwise, the preceding step is repeated.

6.2. Estimation using SEM algorithm

The SEM algorithm is an iterative procedure that uses stochastic drawings to estimate a sequence of
model parameters from observations and realizations of X. In each iteration, we simulate the process
X according to its a posteriori distribution based on the parameters obtained in the current iteration.
Then, the SEM algorithm for the models in this work proceeds as follows:

• We initialize the algorithm with θ0
i .

• At each iteration (q), we simulate just one realization x of X according to its a posteriori
distribution considering the current parameters. The parameters θ(q+1)

i are then calculated.
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6.2.1. SEM algorithm according to PMC model

The SEM algorithm under the PMC model runs as follows:

• Iteration (q = 0), for i, j = 1, . . . ,K.

(1) Initialization of the algorithm with p(q)(ωi, ω j), µ
(q)
i j ,Σ

(q)
i j .

(2) Calculation of probabilities α(q)
n (ωi) according to (5.8) and (5.10).

(3) Calculation of probabilities β(q)
n (ωi) according to (5.9) and (5.11).

(4) Deduction of probabilities χ(q)
n (ωi) according to (5.12).

(5) Deduction of probabilities ψ(q)
n (ωi, ω j) according to (6.3).

(6) Simulation of x(q) according to (6.6).

• Iteration (q + 1), for i, j = 1, . . . ,K.

(1) Calculation of p(q+1)(ωi, ω j) by

p(q+1)(ωi, ω j) =
1

N − 1

N−1∑
n=1

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

. (6.13)

(2) Calculation of µ(q+1)
i j and Σ

(q+1)
i j by

µ
(q+1)
i j =

N−1∑
n=1

(
yn

yn+1

)
11
{x(q)

n =ωi,x
(q)
n+1=ω j}

N−1∑
n=1

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

. (6.14)

Σ
(q+1)
i j =

N−1∑
n=1

((
yn

yn+1

)
− µ

(q)
i j

) ((
yn

yn+1

)
− µ

(q)
i j

)t

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

N−1∑
n=1

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

. (6.15)

• Iterations are stopped if the algorithm converges; otherwise, the preceding step is repeated.

6.2.2. SEM algorithm according to BPMC model

The SEM algorithm under the BPMC model runs as follows:

• Iteration (q = 0), for i, j = 1, . . . ,K.

• Initialization of the algorithm with p(q)(ωi, ω j), µ
(q)
i j ,Σ

(q)
i j .

(1) Calculation of probabilities α∗(q)
n (ωi) according to (5.14) and (5.16).

(2) Calculation of probabilities β∗(q)
n (ωi) according to (5.15) and (5.17).
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(3) Deduction of probabilities χ∗(q)
n (ωi) according to (5.18).

(4) Deduction of probabilities ψ∗(q)
n (ωi, ω j) according to (6.10).

(5) Simulation of x(q) according to (6.11).

• Iteration (q + 1), for i, j = 1, . . . ,K.

(1) Calculation of p(q+1)(ωi, ω j) by

p(q+1)(ωi, ω j) =
1

N − 1

N−1∑
n=1

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

. (6.16)

(2) Calculation of µ(q+1)
i j and Σ

(q+1)
i j by

µ
(q+1)
i j =

N−1∑
n=1

(
yn

yn+1

)
11
{x(q)

n =ωi,x
(q)
n+1=ω j}

N−1∑
n=1

11
{x(q)

n =ωi,x
(q)
n+1=ω j}

. (6.17)

Σ
(q+1)
i j =

N−1∑
n=1

((
yn

yn+1

)
− µ

(q)
i j

) ((
yn

yn+1

)
− µ

(q)
i j

)t

11
{X(q)

n =ωi,x
(q)
n+1=ω j}

N−1∑
n=1

11
{X(q)

n =ωi,x
(q)
n+1=ω j}

. (6.18)

• Iterations are stopped if the algorithm converges; otherwise, the preceding step is repeated.

7. Results of images segmentation

In the present section, we show several results on the use of PMC and BPMC models for gray image
segmentation in the Gaussian context. First, we present a comparative study of the results obtained
from both PMC and BPMC models, concerning the misclassification rates by the Bayesian MPM
algorithm, PSNR index, and the parameters estimation obtained by ICE and SEM algorithms. Second,
we illustrate the segmentation results obtained on simulated images corrupted with some correlated
noise. These tests give an idea about the behavior of the ICE and SEM methods for numerical and
visual results.

7.1. Numerical results

We segment some noisy simulated images with correlated noise using an unsupervised method
for evaluating the endurance of the BPMC model in comparison to the PMC model, as well as the
consequences when the data is not PMC or HMC-suited. For PMC model segmentation methods,
the modeling of the image is done via an HPS to convert the bidimensional collection of pixels as a
mono-dimensional chain, and then reorganize the image for segmentation using an inverse HPS. This
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transformation gives us a stochastic process with a very complex structure. This difficulty can be seen
in a few papers [2, 7, 14].

In this context, the observation process representing the correlated image was obtained as follows:
For each xs, we simulate the variable Ns according to a Gaussian distributionN(µxs , σ

2
xs

), then we take

Ys =
1

4a + 1

Ns + a
4∑

i=1

Nsi

 , for each s ∈ S , (7.1)

where S is the set of pixels in the image in its bidimensional form, where si is a neighbor of pixel s in
a neighborhood of four nearest neighbors.

We study the performance of the models presented in this work on two classes of images of different
sizes, which have been noised by the previous method. However, for BPMC model segmentation
methods, the sequence of pixels has been obtained via a “line by line” proceeding. We use the same
form of Ys as above, and for the second element of the observable process, we set Ȳs as an average of
two observations for pixels neighboring to s in the image but not in the chain.

Original images
Images with correlated
noise (series 2) under

PMC

Images with correlated
noise (series 2) under

BPMC

Image1

Size:
128 × 128

Image2

Size:
256 × 256

Image3

Size:
512 × 512

Image4

Size:
1024 ×
1024

Figure 2. The synthetic images and their noisy versions used in the experiments.
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The sequence of pixels collected by converting a bidimensional image to a chain of one dimension
is designated by (si)1≤i≤N . The two realizations of the stochastic processes X and Y are respectively.
x = (x1, . . . , xn, . . . , xN) and y = (y1, . . . , yn, . . . , yN), where xi = xsi and yi = ysi . Under these
assumptions, both processes Z = (X,Y) and (Z, Ȳ) have fairly complex structures, and we can see
that the distribution of Y conditionally to X = x is not necessarily a Markov; however, we have
segmented the noisy image using an unsupervised method based on MPM restoration under PMC and
BPMC models, where all parameters are estimated with ICE and SEM algorithms. The question is
therefore whether using the BPMC model instead of the PMC model in such a context can improve
segmentation results. To give some experiences, we consider two series of parameters a, µxs , and σxs .
Based on the parameters shown in Table 4, the original images and their noisy versions are reported
in Figure 2.

We performed six segmentations, and we note that the complete data (C-D) means the original
image and its noised version.

• Segmentation by MPM based on parameters of PMC model obtained from the C-D.

• Segmentation by MPM based on parameters of BPMC model obtained from the C-D.

• Segmentation by MPM based on parameters of PMC model obtained with ICE algorithm.

• Segmentation by MPM based on parameters of PMC model obtained with SEM algorithm.

• Segmentation by MPM based on parameters of BPMC model obtained with ICE algorithm.

• Segmentation by MPM based on parameters of BPMC model obtained with SEM algorithm.

Table 4. Parameters used for the segmentation experiments.
a µ1 µ2 σ1 σ2

series 1 0.5 16 10 1 4
series 2 0.05 1 7 1 2

We calculated some evaluated criteria to confirm the visual obtained results. The comparison of the
algorithms is performed using quality measures: the error rate and the PSNR index (Table 5).

To start, we can make a number of important observations. Columns 1 and 2 can be seen as a kind
of reference for the two models presented in this work, on the grounds that the complete data is used in
the estimations. Comparing the results obtained by the estimation algorithms with those calculated by
the complete data, one can notice that both the ICE and SEM algorithms implemented under the BPMC
model shows favorable results indicating that misclassification rates and PSNR indexes are similar for
both noise parameter series, except in the case of Image4 correlated by noise with the parameter of
type series 1.

The first conclusion of interest in image segmentation is that the SEM algorithm behaves correctly
in the situation under consideration. The comparison of BPMC and PMC models is the second
conclusion. It is known that if the data did not fit either an HMC or a PMC, the PMC model-based MPM
with HPS might have given better results than another model. This is not the case, since according to
the findings and other experiments we have executed, regardless of the presence of strong enough
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noise, BPMC model-based MPM restorations surpass PMC model-based ones. Accordingly, using
MPM under the BPMC model, ICE and SEM algorithms provide strong unsupervised segmentation
methods that may substantially beat PMC model-based ones with HPS.

Table 5. Incorrectly classified and PSNR index given by different MPM segmentations for
two series of parameters.

Data

MPM based
on BPMC
and C-D

MPM based
on PMC and

C-D

MPM based
on BPMC
and ICE

MPM based
on PMC and

ICE

MPM based
on BPMC
and SEM

MPM based
on PMC and

SEM
τ(%) PSNR τ(%) PSNR τ(%) PSNR τ(%) PSNR τ(%) PSNR τ(%) PSNR

Image1 series 1 3.483 40.91 8.996 38.12 4.473 40.60 12.06 40.48 5.471 42.25 9.730 37.03
series 2 2.366 40.37 9.654 37.12 3.277 39.50 2.571 39.79 2.030 39.95 3.981 36.69

Image2 series 1 3.013 43.25 6.553 41.99 4.400 43.45 11.89 43.32 2.662 42.59 9.730 40.79
series 2 2.655 42.84 4.801 41.94 2.500 42.87 2.900 43.52 2.465 42.51 2.767 39.84

Image3 series 1 1.437 35.62 2.740 35.52 6.786 35.46 13.36 35.05 0.618 35.69 2.752 35.52
series 2 1.212 35.68 1.820 35.59 4.059 35.58 4.669 35.51 0.688 35.68 1.962 35.56

Image4 series 1 3.561 31.04 11.015 30.74 12.554 30.69 15.53 30.78 4.981 30.73 6.212 30.64
series 2 2.421 31.04 2.713 31.02 3.988 31.03 5.633 30.50 3.117 30.74 4.389 30.67

Also, in Table 6, parameters are also found using complete data and the parameters estimated from
ICE and SEM algorithms based on BPMC and PMC models. Regarding these estimations by both
algorithms, one can perceive that most of the time the estimates are similar by comparing with those
obtained by C-D for PMC and BPMC models in the majority of situations of segmented images. With
respect to this, the takeaway is that the BPMC model, in its current form, provides another choice that
can compete with and likely outperform nearly any other model in the circumstances at hand.
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Table 6. Estimations of the parameters for Image1 with correlated noise by series1.

Data

Estimates
from C-D

under
BPMC

Estimates
from C-D

under PMC

Estimates
from ICE

under
BPMC

Estimates
from ICE

under PMC

Estimates
from SEM

under
BPMC

Estimates
from SEM
under PMC

p(
ω

i,
ω

j) p(ω1, ω1) 0.095 0.098 0.125 0.117 0.141 0.028
p(ω1, ω2) 0.057 0.053 0.374 0.382 0.054 0.032
p(ω2, ω1) 0.057 0.053 0.064 0.109 0.054 0.032
p(ω2, ω2) 0.790 0.794 0.435 0.390 0.749 0.906

f ω
i,
ω

j(y
n,

y n
+

1)

µω1,ω1 (14.97,14.96) (14.30,14.30) (14.68,14.69) (13.90,13.90) (14.44,14.46) (14.73,14.71)
µω1,ω2 (13.95,11.89) (13.22,11.95) (13.18,11.36) (12.17,10.69) (12.86,11.47) (14.46,13.03)
µω2,ω1 (11.90,13,97) (11.94,13.23) (11.37,13.18) (10.69,12.18) (11.47,12.82) (13.07,14.48)
µω2,ω2 (10.13,10.13) (10.27,10.27) (10.20,10.21) (10.17,10.17) (10.06,10.06) (10.59,10.59)
σ1
ω1,ω1

1.059 1.045 1.306 1.322 1.836 0.331
σ2
ω1,ω1

1.065 1.060 1.313 1.316 1.782 0.361
σ12
ω1,ω1

0.092 0.258 0.510 0.602 0.294 0.078
σ1
ω1,ω2

1.022 1.161 3.272 1.713 2.120 0.806
σ2
ω1,ω2

1.405 1.428 2.427 2.113 1.237 1.099
σ12
ω1,ω2

0.018 0.255 1.094 0.943 0.315 0.229
σ1
ω2,ω1

1.393 1.447 2.409 2.122 1.189 1.090
σ2
ω2,ω1

1.045 1.163 3.251 1.725 2.141 0.789
σ12
ω2,ω1

0.047 0.266 1.077 0.966 0.351 0.227
σ1
ω2,ω2

1.084 1.180 1.441 1.242 1.001 2.031
σ2
ω2,ω2

1.085 1.179 1.442 1.242 0.997 2.039
σ12
ω2,ω2

0.073 0.191 0.521 0.530 0.015 0.994

7.2. Visual results

The visual results of the unsupervised segmentation using both BPMC and PMC models are
discussed here. The latter have been initialized using a two-class segmentation done by the K-means
algorithm to generate the initial configuration of the process X.

The images (Figure 2) to be segmented are chosen based on the homogeneity of the objects.
Images 1 and 2 show extremely fine details, however Images 3 and 4 are not particularly
homogeneous and missing fine details. Thus, it is easy to demonstrate a significant advantage of the
BPMC model over the PMC model, with HPS in the context of image segmentation. In fact, regarding
Table 5, the rating is based on the average rate of each algorithm across eight experiments. Under the
BPMC model, ICE was 5.25% and SEM was 2.75%, while under the PMC model, ICE was 8.57%
and SEM was 5.19%. The PSNR index average results in the following rankings: ICE (37.39), SEM
(37.51) under the BPMC model and ICE (37.36), and SEM (35.84) under the PMC model.

We can also visually observe that, depending on the segmentation phase required in these
experiments, the error rate is not always the most important criterion. In fact, in Image 4, the
details of the zebra (Figure 3) are better restored and there are fewer spurious whites and blacks on
the background in the case of the BPMC model, whereas this is not the case for the PMC model
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(Figure 4). However, the error rates of the two models are very close.
Nonetheless, we obtained the following conclusions:
(1) The introduction of a second component in the observation process makes the BPMC model a

good rival to the PMC model with HPS in all numerical (Table 5) and visual scenarios (Figure 3) in
the context of image segmentation.

(2) The SEM algorithm performs better than the ICE algorithm, especially when working on the
BPMC model (Table 5).

Remark 7.1. The HPS is a space-filling curve used to read pixels during image processing. This sweep
takes advantage of the two-dimensional locality of pixels. It should be noted that the introduction of
such a scan is only conceivable in the case of 2n × 2n images, which is why we limit our study to the
PMC model. However, the advantage of the proposed model BPMC is that it is capable of handling
images of any size.

MPM under BPMC
with C-D

MPM under BPMC
with ICE

MPM under BPMC
with SEM

Image1

(series 1)

Image2

(series 1)

Image3

(series 2)

Image4

(series 2)

Figure 3. Segmentation results corresponding to the four synthetic images for two noises
under the BPMC model.
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MPM under PMC with
C-D

MPM under PMC with
ICE

MPM under PMC with
SEM

Image1

(series 1)

Image2

(series 1)

Image3

(series 2)

Image4

(series 2)

Figure 4. Segmentation results corresponding to the four synthetic images for two noises
under PMC model.

7.3. Practical implications of proposed approach

An unsupervised approach is particularly useful when a smaller amount of or no labeled data is
available for training. The proposed approach has shown superior results compared to the classical
PMC model and can be potentially utilized for various applications. Particularly, the suggested model
can be used for the segmentation of radar images, textured images, and medical images, because these
types of images have an important correlation of noise.

8. Conclusions and perspectives

We proposed an unsupervised approach for restoring hidden data by applying the PMC model.
This study contributes to provide a 2D observed process for the latter model. The novel BPMC
model is proposed first to compete with the classical PMC model for image segmentation and then
to solve the problem of correlation between noise and the difficulty of two-dimensional pixel locality
during one-dimensional image transformation. The parameter estimation methods described for this
model are applicable to Gaussian and possibly correlated noise. We initially found that when the

AIMS Mathematics Volume 9, Issue 11, 31057–31086.



31083

data follows a PMC structure, Bayesian restorations according to the BPMC model beat those based
on the PMC model. Likewise, the parameter estimating methods described for the BPMC model
are extremely efficient, as restorations based on complete parameters are comparable to restorations
using approximated values. Next, we executed a series of tests combining the use of unsupervised
segmentation of images via an HPS in the case of the PMC model and the insertion of a second
element into the observed process in the case of the BPMC model. The assessment of interest in this
study is based on two points. In the first step, we show that the BPMC model works best when the
stochastic process from a noisy class image with correlated noise is very complex (which is neither
PMC nor HMC). Several experiments in this study show that the BPMC model always gives better
results compared to the PMC model, and the difference can even be quite significant in some situations.
So, one way to generate complex data is to use a noisy image in a correlative version and an HPS or
line by line technique. In the second step, we proved that estimation methods corresponding to the
proposed model can compete with classical methods based on the PMC model with high efficiency and
are therefore of interest for the image segmentation problem.

As a general conclusion, we can confirm that the proposed model, where we introduced a second
component in the observed process, offers an interesting opportunity compared to the PMC model
with an HPS. Basically, the composition of the second component of Y based on the neighborhood of
four nearest neighbors of each pixel provides the same role as the HPS, while on the other hand, the
BPMC-based unsupervised restorations with parameter estimation methods surpass those based on the
PMC model.

As perspectives for further work, we may apply the concept used here to the triplet Markovian
model described in [40, 41] in the case of Gaussian noise [4], in a way that the observed process will
be two-dimensional and the resulting model will therefore be a bidimensional triplet Markov chain. Of
course, the same concept could be used for the segmentation of fuzzy data. It consists of considering
a fuzzy HMC model with bidimensional observations as presented in [42] and applying it to medical
images. In the proposed model, both spatial correlation and locality details about pixels should be
considered at the same time. Another potential direction is concerning types of noise, such as applying
non-Gaussian noise to image segmentation using bidimensional Markov models.
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1. O. Cappé, E. Moulines, T. Rydén, Inference in hidden markov models, Proceedings of EUSFLAT
Conference, 2009, 14–16.

2. B. Benmiloud, W. Pieczynski, Estimation des paramètres dans les chaı̂nes de markov cachées et
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