Research article

Characterizing N-type derivations on standard operator algebras by local actions

  • On an infinite dimensional complex Hilbert space H, we consider a standard operator algebra S with an identity operator I that is closed with respect to adjoint operation. Pn(X1,X2,X3,,Xn) is set of polynomials defined under indeterminates X1,X2,,Xn by n with multiplicative Lie products with set of positive integers N. It is shown that a map Θ:SS satisfying

    Θ(Pn(D1,D2,D3,,Dn))=ni=1Pn(D1,,Di1,Θ(Di),Di+1,,Dn),

    for any D1,D2,D3,,DnS with D1D2D3Dn=0 can be represented as d(x)+τ(x) for every xS, where d:SS is an additive derivation with another map τ:SZ(S) that vanishes on each (n1)th commutator Pn(D1,D2,D3,,Dn) with D1D2D3Dn= 0.

    Citation: Khalil Hadi Hakami, Junaid Nisar, Kholood Alnefaie, Moin A. Ansari. Characterizing N-type derivations on standard operator algebras by local actions[J]. AIMS Mathematics, 2024, 9(9): 25319-25332. doi: 10.3934/math.20241236

    Related Papers:

    [1] Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126
    [2] Mohd Arif Raza, Aisha Jabeen, Abdul Nadim Khan, Husain Alhazmi . Linear maps on von Neumann algebras acting as Lie type derivation via local actions. AIMS Mathematics, 2021, 6(8): 8453-8465. doi: 10.3934/math.2021490
    [3] Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422
    [4] He Yuan, Zhuo Liu . Lie $ n $-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747
    [5] Senrong Xu, Wei Wang, Jia Zhao . Twisted Rota-Baxter operators on Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 2619-2640. doi: 10.3934/math.2024129
    [6] Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie $ n $-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424
    [7] Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson $ n $-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327
    [8] Zhonghua Wang, Xiuhai Fei . Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305
    [9] He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie $ n $-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446
    [10] Dan Liu, Jianhua Zhang, Mingliang Song . Local Lie derivations of generalized matrix algebras. AIMS Mathematics, 2023, 8(3): 6900-6912. doi: 10.3934/math.2023349
  • On an infinite dimensional complex Hilbert space H, we consider a standard operator algebra S with an identity operator I that is closed with respect to adjoint operation. Pn(X1,X2,X3,,Xn) is set of polynomials defined under indeterminates X1,X2,,Xn by n with multiplicative Lie products with set of positive integers N. It is shown that a map Θ:SS satisfying

    Θ(Pn(D1,D2,D3,,Dn))=ni=1Pn(D1,,Di1,Θ(Di),Di+1,,Dn),

    for any D1,D2,D3,,DnS with D1D2D3Dn=0 can be represented as d(x)+τ(x) for every xS, where d:SS is an additive derivation with another map τ:SZ(S) that vanishes on each (n1)th commutator Pn(D1,D2,D3,,Dn) with D1D2D3Dn= 0.



    The set Z(S) is the center over the complex field C of a standard operator algebra S with a linear mapping d:SS. Here d is a derivation if the condition d(DE)=d(D)E+Dd(E) is satisfied by d for all D,ES. If the requirement for linearity is relaxed to additivity, d is referred to as a derivation with additivity. The map d:SS is known as Lie derivation with multiplication if it fulfills the condition d([D,E])=[d(D),E]+[D,d(E)] for all D,ES, where [D,E]=DEED denotes the Lie bracket. In a similar way, d is called a Lie triple derivation with multiplication if d([[D,E],F])=[[d(D),E],F]+[[D,d(E)],F]+[[D,E],d(F)] for all D,E,FS.

    In the last few years, significant attention has been given to some special conditions that change a linear map into a derivation (class of derivation) including Lie derivation (see [1,2,3,4,5,8,10,11,15,16]). Most of these studies have focused on identifying the specific conditions that allow Lie derivations or even simple derivations to be fully characterized by their action on certain sub-structures of these algebras. Numerous works have been published on the investigation of the local actions of Lie derivations in operator algebras. Lu and Jing [7] demonstrated that if X is a Banach space with dimension greater than two and L:B(X)B(X) is a linear map such that L([D,E])=[L(D),E]+[D,L(E)] for all D,EB(X) with DE=0 (or DE=P, where P is a fixed nontrivial idempotent), then there exists an operator \(T \in \mathcal{B}(\mathcal{X})\) and a linear map ϕ:B(X)CI that vanishes at all commutators [D,E] with DE=0 (or DE=P), such that L(D)=TDDT+ϕ(D) for all DB(X). Similarly, Qi and Hou [9] characterized Lie derivations on any von Neumann algebra \(\mathcal{S}\) without central summands of type \(I_1\). They showed that if \(L: \mathcal{S} \rightarrow \mathcal{S}\) is an additive map such that \(L([\mathcal{D}, \mathcal{E}]) = [L(\mathcal{D}), \mathcal{E}] + [\mathcal{D}, L(\mathcal{E})]\) for all \(\mathcal{D}, \mathcal{E} \in \mathcal{S}\) with \(\mathcal{D}\mathcal{E} = 0\), then there exists an additive derivation \(\delta: \mathcal{S} \rightarrow \mathcal{S}\) and an additive map \(\phi: \mathcal{S} \rightarrow Z(\mathcal{S})\) that vanishes at all commutators \([\mathcal{D}, \mathcal{E}]\) with \(\mathcal{D}\mathcal{E} = 0\), such that \(L = \delta + \phi\). In 2018, Liu [6] investigated the characterization of Lie triple derivations on von Neumann algebras without central abelian projections. He proved that if a linear map \(L: \mathcal{S} \rightarrow \mathcal{S}\) satisfies \(L([[\mathcal{D}, \mathcal{E}], \mathcal{F}]) = [[L(\mathcal{D}), \mathcal{E}], \mathcal{F}] + [[\mathcal{D}, L(\mathcal{E})], \mathcal{F}] + [[\mathcal{D}, \mathcal{E}], L(\mathcal{F})]\) for all \(\mathcal{D}, \mathcal{E}, \mathcal{F} \in \mathcal{S}\) with \(\mathcal{D}\mathcal{E} = 0\) (or \(\mathcal{D}\mathcal{E} = \mathbb{P}\), where \(\mathbb{P}\) is a fixed non-trivial projection in \(\mathcal{S}\)), then there exists an additive derivation \(d: \mathcal{S} \rightarrow \mathcal{S}\) and an additive map \(\gamma: \mathcal{S} \rightarrow Z(\mathcal{S})\) that vanishes on every second commutator \([[\mathcal{D}, \mathcal{E}], \mathcal{F}]\) with \(\mathcal{D}\mathcal{E} = 0\) (or \(\mathcal{D}\mathcal{E} = \mathbb{P}\)), such that \(L(X) = d(X) + \gamma(X)\) for all \(X \in \mathcal{S}\). In recent years, several researchers have explored Lie \(n\)-derivations across various types of algebras (see [12,13,14,17] and related references). However, to date, no research work has been done based on local actions for derivations of Lie type within operator algebras, indicating a need for further investigation in this area.

    Inspired by the aforementioned results, we investigate derivations of Lie type based on algebras like standard operator algebras. We demonstrate that derivations of Lie type on standard operator algebras exhibit a general form at zero products.

    For a fixed positive integer n, where n2, we define polynomials sequence as

    P1(y1)=y1,P2(y1,y2)=[P1(y1),y2]=[y1,y2],P3(y1,y2,y3)=[P2(y1,y2),y3]=[[y1,y2],y3],Pn(y1,y2,,yn)=[Pn1(y1,y2,,yn1),yn].

    The polynomial Pn(y1,y2,,yn) is known as (n1)th commutator. A map Θ:SS that is additive is known as Lie n-derivation or n-type derivation if the following is satisfied:

    Θ(Pn(y1,y2,,yn))=ni=1Pn(y1,,yi1,Θ(yi),yi+1,,yn),

    for all y1,y2,,ynS. More generally, by removing the additivity of Θ, we obtain that Θ is a nonlinear Lie n-derivation. The Lie derivation is a generalization of the Lie 2-derivation. Further, every Lie triple derivation is a generalization of Lie 3-derivation. A combination of these three derivations i.e., Lie derivations, Lie triple derivations, and Lie n-derivations are called derivations of Lie type. On a Hilbert space H over C, the set B(H) represents all algebras with bounded linear operators. The subalgebra of finite rank operators that is bounded is denoted by F(H). It is important to note that F(H) is a -closed ideal within B(H). An algebra SB(H) is referred to as a standard operator algebra if F(H)S. A projection P is an operator PB(H) that satisfies the conditions P=P and P2=P. An algebra S is called a prime algebras if  DSE=0 gives either D=0 or E=0. Interestingly, all standard operator algebras are prime.

    Now, considering a projection P1S so that P2=IP1. Sjk=PjSPk for j=1 and k=2. Then by the Peirce-decomposition of S, we have S=S11S12S21S22 and SjkSkj for any SjkSjk. The following significant result is used frequently in the main results:

    Lemma 2.1. In a Hilbert space H over a complex field C that is closed with respect to adjoint operation, let S be a standard operator algebra with operator I. Further, let D11S11 and D22S22. If D11E12=E12D22 or E21D11=D22E21 for all E12S12,E21S21, then D11+D22Z(S).

    Proof. Let D11S11 and D22S22. Assume that D11E12=E12D22 for all E12S12. For any X11S11 and X12S12, we get

    D11X11X12=X11X12D22=X11D11X12.

    Since S is prime, we have D11X11=X11D11.

    For any X12S12 and X22S22, we have

    X12X22D22=D11X12X22=X12D22X22.

    It follows from the primeness of S that X22D22=D22X22.

    For any X12S12 and X21S21, we obtain

    D22X21X12=X21X12D22=X21D11X12.

    It follows that D22X21=X21D11.

    For any XS, we have

    (D11+D22)X=(D11+D22)(X11+X12+X21+X22)=D11X11+D11X12+D22X21+D22X22=X11D11+X12D22+X21D11+X22D22=(X11+X12+X21+X22)(D11+D22)=X(D11+D22),

    which implies that D11+D22Z(S).

    Similarly, we can prove that if E21D11=D22E21 for all E21S21, then D11+D22Z(S).

    Theorem 3.1. On a Hilbert space H that is infinite-dimensional over a field of complex numbers C with an identity operator I, let S be a standard operator algebra. If S is closed with respect to adjoint operation and map Θ:SS is defined as

    Θ(Pn(D1,D2,D3,,Dn))=ni=1Pn(D1,,Di1,Θ(Di),Di+1,,Dn),

    for any D1,D2,D3,,DnS with D1D2D3Dn=0, then Θ(x)=d(x)+τ(x) for every xS, where the map d:SS is an additive derivation and τ:SZ(S) is a map vanishing on each (n1)th commutator Pn(D1,D2,D3,,Dn) with D1D2D3Dn=0.

    Lemma 3.1. We have that Θ(0)=0.

    Proof. Θ(0)=Θ(Pn(0,0,,0))=Pn(Θ(0),0,,0)++Pn(0,0,,Θ(0))=0.

    Lemma 3.2. For DijSij(1ij2), we have

    (1) Θ(Dii+Dij)Θ(Dii)Θ(Dij)Z(S).

    (2) Θ(Dii+Dji)Θ(Dii)Θ(Dji)Z(S).

    Proof. (1) Firstly, we show the result holds for i=1 and j=2. For that, we consider T=Θ(D11+D12)Θ(D11)Θ(D12). Since

    P2(D11+D12)P1P2P2=P2D11P1P2P2=P2D12P1P2P2=0,

    we obtain

    Θ(D12)=Θ(Pn(P2,D11+D12,P1,P2,,P2))=Pn(Θ(P2),D11+D12,P1,P2,,P2)+Pn(P2,Θ(D11+D12),P1,P2,,P2)+Pn(P2,D11+D12,Θ(P1),P2,,P2)++Pn(P2,D11+D12,P1,,Θ(P2)).

    Alternatively, making use of Lemma 3.1, we have

    Θ(D12)=Θ(Pn(P2,D11+D12,P1,P2,,P2))=Θ(Pn(P2,D11,P1,P2,,P2))+Θ(Pn(P2,D12,P1,P2,,P2))=Pn(Θ(P2),D11+D12,P1,P2,,P2)+Pn(P2,Θ(D11)+Θ(D12),P1,P2,,P2)+Pn(P2,D11+D12,Θ(P1),P2,,P2)++Pn(P2,D11+D12,P1,P2,,Θ(P2)).

    From the last two expressions, we find Pn(P2,T,P1,P2,,P2)=0. This means that P2TP1=P1TP2=0.

    For any X12S12, we have

    X12(D11+D12)P1P2P2=X12D11P1P2P2=X12D12P1P2P2=0.

    That means

    Θ(D11X12)=Θ(Pn(X12,D11+D12,P1,P2,,P2))=Pn(Θ(X12),D11+D12,P1,P2,,P2)+Pn(X12,Θ(D11+D12),P1,P2,,P2)+Pn(X12,D11+D12,Θ(P1),P2,,P2)++Pn(X12,D11+D12,P1,P2,,Θ(P2)).

    On the other hand, by using Lemma 3.1, we have

    Θ(D11X12)=Θ(Pn(X12,D11,P1,P2,,P2))+Θ(Pn(X12,D12,P1,P2,,P2))=Pn(Θ(X12),D11+D12,P1,P2,,P2)+Pn(X12,Θ(D11)+Θ(D12),P1,P2,,P2)+Pn(X12,D11+D12,Θ(P1),P2,,P2)++Pn(X12,D11+D12,P1,P2,,Θ(P2)).

    Comparing the above two equations, we obtain

    Pn(X12,T,P1,P2,,P2)=0.

    On solving the above equation, we obtain P1TP1X12=X12P2TP2 for all X12S12. Therefore, by using Lemma 2.1, we get P1TP1+P2TP2Z(S). Hence, T=T12+T21Z(S). That is

    T=Θ(D11+D12)Θ(D11)Θ(D12)Z(S).

    In a similar way, it can be shown for i=2 and j=1.

    (2) By using the same technique as in (1), one can easily show that

    Θ(Dii+Dji)Θ(Dii)Θ(Dji)Z(S).

    Lemma 3.3. For any Dij,EijSij(1ij2), we have

    Θ(Dij+Eij)=Θ(Dij)+Θ(Eij).

    Proof. Firstly, we show the above result is true for i=1 and j=2.

    Since (D12+P1)(P2+E12)P1P1=0 for any D12,E12S12, we have

    Θ(D12+E12)=Θ(Pn(D12+P1,P2+E12,P1,,P1))=Pn(Θ(D12)+Θ(P1),P2+E12,P1,,P1)+Pn(D12+P1,Θ(P2)+Θ(E12),P1,,P1)+Pn(D12+P1,P2+E12,Θ(P1),,P1)+Pn(D12+P1,P2+E12,P1,,Θ(P1))=Θ(Pn(D12,P2,P1,,P1))+Θ(Pn(P1,P2,P1,,P1))+Θ(Pn(D12,E12,P1,,P1))+Θ(Pn(P1,E12,P1,,P1))=Θ(D12)+Θ(E12).

    Secondly, it is easy to follow the same pattern to see that the result is also true for i=2 and j=1, that is

    Θ(D21+E21)=Θ(D21)+Θ(E21).

    Lemma 3.4. P1Θ(Pi)P1+P2Θ(Pi)P2Z(S),i=1,2.

    Proof. Let D12S12. Since D12P1P1=0, by Lemma 3.3, we have

    (1)n+1Θ(D12)=Θ((1)n+1D12)=Θ(Pn(D12,P1,,P1))=Pn(Θ(D12),P1,,P1)+nk=2Pn(D12,P1,,kthΘ(P1),,P1)=(1)n+1P1Θ(D12)P2+P2Θ(D12)P1+(1)n+1P1Θ(P1)D12(1)n+1D12Θ(P1)P2.

    By pre-multiplying by P1 and post-multiplying by P2 on both sides, we obtain

    P1Θ(P1)P1D12=D12P2Θ(P1)P2.

    By Lemma 2.1, we have P1Θ(P1)P1+P2Θ(P1)P2Z(S). Similarly, P1Θ(P2)P1+P2Θ(P2)P2Z(S).

    Now, M=P1Θ(P1)P2P2Θ(P1)P1. Define a map Ω:SS by Ω(D)=Θ(D)[D,M] for all DS.

    Lemma 3.5. Ω has the following properties:

    (1) Ω also satisfies

    Ω(Pn(D1,D2,D3,,Dn))=ni=1Pn(D1,,Di1,Ω(Di),Di+1,,Dn), (3.1)

    for any D1,D2,D3,,DnS with D1D2Dn=0.

    (2) Ω(P1)Z(S).

    (3) Ω(P2)Z(S).

    Proof. (1) Since Θ satisfies the condition (3.1), it is easy to see that Ω also satisfies the condition (3.1) with D1D2Dn=0.

    (2) By using Peirce-decomposition:

    Θ(P1)=P1Θ(P1)P1+P1Θ(P1)P2+P2Θ(P1)P1+P2Θ(P1)P2.

    Now,

    Ω(P1)=Θ(P1)P1Θ(P1)P2P2Θ(P1)P1=P1Θ(P1)P1+P1Θ(P1)P2+P2Θ(P1)P1+P2Θ(P1)P2P1Θ(P1)P2P2Θ(P1)P1=P1Θ(P1)P1+P2Θ(P1)P2.

    Therefore, by using Lemma 3.4, we obtain Ω(P1)Z(S).

    (3) Since P2P1P1Pn=0 and Ω(P1)Z(S), then

    0=Ω(Pn(P2,P1,,P1))=Pn(Ω(P2),P1,,P1)=(1)n+1P1Ω(P2)P2+P2Ω(P2)P1.

    By using pre-and-post multiplication by P1 in the above, we obtain P1Ω(P2)P2=0. Similarly, P2Ω(P2)P1=0. Now, from the definition of Ω, we have

    Ω(P2)=Θ(P1)+P2Θ(P1)P1+P1Θ(P1)P2.

    By using pre-and-post multiplication by P1 in the above, we obtain P1Ω(P2)P1=P1Θ(P2)P1. Similarly, by using pre-and-post multiplication by P2 in the above equation, we have P2Ω(P2)P2=P2Θ(P2)P2. By Peirce-decomposition and using Lemma 3.4, we obtain

    Ω(P2)=P1Ω(P2)P1+P2Ω(P2)P2=P1Θ(P2)P1+P2Θ(P2)P2Z(S).

    This completes the proof.

    Lemma 3.6. Ω(Sij)Sij(1ij2).

    Proof. It is sufficient to prove for i=1 and j=2 first. For other values, the proof will follow a similar fashion. We have D12P1P1P2P2=0. Also, by using Lemma 3.5, we have

    Ω(D12)=Ω(Pn(D12,P1P1,P2,,P2))=Pn(Ω(D12),P1,P1,P2,,P2)=P1Ω(D12)P2+(1)n+1P2Ω(D12)P1.

    By pre-and-post multiplication by P1 in the above equation, we obtain P1Ω(D12)P1=0. Similarly, P2Ω(D12)P2=0.

    Now, if n is even, then Ω(D12)=P1Ω(D12)P2P2Ω(D12)P1. By multiplying P2 from left and P1 from right, we obtain P2Ω(D12)P1=0. Also, by multiplying P1 from left and right, we obtain P1Ω(D12)P1=0. Similarly, P2Ω(D12)P2=0. Hence, Ω(D12)S12. Now, we assume that n is odd. Since D12E12F12P2P2=0 for any D12,E12,F12S12, we have

    0=Ω(Pn(D12,E12,F21,P2,,P2))=Pn(Ω(D12),E12,F21,P2,,P2)+Pn(D12,Ω(E12),F21,P2,,P2)=Pn1([Ω(D12),E12],F21,P2,,P2)+Pn1([D12,Ω(E12)],F21,P2,,P2)=Pn1([Ω(D12),E12],F21,P2,,P2+[D12,Ω(E12)],F21,P2,,P2)=Pn1(l,F21,P2,,P2)=Pn2(l,F21,P2,,P2)=[l,F21],

    and

    0=Ω(Pn(D12,E12,F12,P1,,P1))=Pn(Ω(D12),E12,F12,P1,,P1)+Pn(D12,Ω(E12),F12,P1,,P1)=Pn1([Ω(D12),E12],F12,P1,,P1)+Pn1([D12,Ω(E12)],F12,P1,,P1)=Pn1([Ω(D12),E12],F12,P1,,P1+[D12,Ω(E12)],F12,P1,,P1)=Pn1(l,F12,P1,,P1)=Pn2(l,F12,P1,,P1)=[l,F12],

    where l=[Ω(D12),E12]+[D12Ω(E12)]S11+S22. Now, [l,F21]=0. That means lF21F21l=0. Thus, P2lP2F21=F21P1lP1=0 for any F21S12. Hence, by Lemma 2.1, P1lP1+P2lP2Z(S). Now,

    l=[Ω(D12),E12]+[D12,Ω(E12)]=[Ω(D12),E12]Pn(D12,P1,,P1,Ω(E12))=[Ω(D12),E12]Ω(Pn(D12,P1,,P1,E12))+Pn(Ω(D12),P1,,P1,E12)=[Ω(D12),E12]+[P2Ω(D12)P1,E12].

    Thus, [2P2Ω(D12)P1,E12]=lZ(S). That is, [P2Ω(D12)P1,E12]=lZ(S). Hence, P2Ω(D12)P1E12=0 for any E12S12. By using primeness of S, we get P2Ω(D12)P1=0. Hence, Ω(S12)S12.

    Lemma 3.7. For any DiiSii for i=1,2, there is always a map ηi:SiiZ(S) so that Ω(Dii)fi(Dii)Sii.

    Proof. Since D11P2P2P2=0 and using Lemma 3.4, we obtain

    0=Ω(Pn(D11,P2,,P2))=Pn(Ω(D11),P2,,P2)=P1Ω(D11)P2+(1)n1P2Ω(D11)P1.

    Multiplying P1 from left, we obtain P1Ω(D11)P2=0. Similarly, multiplying P2 from left, P2Ω(D11)P1=0. Hence, Ω(D11)S11+S22. Similarly, Ω(D22)S11+S22.

    Since D11E22X12P2P2=0 and for any E22S22,X12S12, we have

    0=Ω(Pn(D11,E22,X12,P1,,P1))=Pn(Ω(D11),E22,X12,P1,,P1)+Pn(D11,Ω(E22),X12,P1,,P1)=Pn1([Ω(D11),E22],X12,P1,,P1)+Pn1([D11,Ω(E22)],X12,P1,,P1)=Pn1([Ω(D11),E22],X12,P1,,P1+[D11,Ω(E22)],X12,P1,,P1)=Pn1(m,X12,P1,,P1)=Pn2(m,X12,P1,,P1)=[m,X12],

    and

    0=Ω(Pn(D11,E22,X21,P2,,P2))=Pn(Ω(D11),E22,X21,P2,,P2)+Pn(D11,Ω(E22),X21,P2,,P2)=Pn1([Ω(D11),E22],X21,P2,,P2)+Pn1([D11,Ω(E22)],X21,P2,,P2)=Pn1([Ω(D11),E22],X21,P2,,P2+[D11,Ω(E22)],X12,P2,,P2)=Pn1(m,X21,P2,,P2)=Pn2(m,X21,P2,,P2)=[m,X21],

    where m=[Ω(D11),E22]+[D11,Ω(E22)]S11+S22. Now, [m,X12]=[m,X21]=0 and using Lemma 2.1, we have P1mP1+P2mP2Z(S). Therefore, m=[Ω(D11),E22]+[D11,Ω(E22)]Z(S). Multiplying both sides by P2 yields [P2Ω(D11)P2,E22]Z(S)P2. By the Kleinecke-Shirokov theorem, we obtain

    [P2Ω(D11)P2,E22]=0,

    for any E22Z(S22). That means P2Ω(D11)P2Z(S22). Therefore, P2Ω(D11)P2=z for some zZ(S22). Multiplying P2 from both sides, we get P2Ω(D11)P2=zP2. Now, define a map η1:S11Z(S) such that η1(D11)P2=P2Ω(D11)P2. Hence,

    Ω(D11)η1(D11)=P1Ω(D11)P1+P2Ω(D22)P2η1(D11)=P1Ω(D11)P1+η1(D11)P2η1(D11)=P1Ω(D11)P1η1(D11)P1.

    Therefore, P1Ω(D11)P1η1(D11)P1S11. Hence, Ω(D11)η1(D11)S11. Similarly, we can show the result for i=2.

    For any D=D11+D12+D21+D22S, define a mappings ψ:SS and τ:SZ(S) satisfying ψ(D)=2i,j=1ϕ(Dij)f1(D11)f2(D22) and τ(D)=Ω(D)ψ(D) for any DS. It is easy to verify that ψ has the following properties:

    Lemma 3.8. For any DijSij, we have

    (1) ψ(Dij)=Ω(Dij)Sij,1ij2.

    (2) ψ(Dii)Sii,i=1,2.

    (3) ψ(D11+D12+D21+D22)=ψ(D11)+ψ(D12)+ψ(D21)+ψ(D22).

    (4) ψ is an additive map on Sij,1ij2.

    Lemma 3.9. For DijSij,(1ij2), we have

    (1) ψ(DiiDij)=ψ(Dii)Dij+Diiψ(Dij).

    (2) ψ(DijDjj)=ψ(Dij)Djj+Dijψ(Djj).

    Proof. (1) Since DiiDijPiPi=0,(ij), we have

    ψ(DiiDij)=ϕ(DiiDij)=ϕ(Pn(Dij,Dii,Pi,Pi,,Pi))=Pn(ϕ(Dij),Dii,Pi,,Pi)+Pn(Dij,ϕ(Dii),Pi,,Pi)=Pn(ψ(Dij),Dii,Pi,,Pi)+Pn(Dij,ψ(Dii),Pi,,Pi)=Diiψ(Dij)+ψ(Dii)Dij.

    (2) By using the same approach as in (1), one can conclude that

    ψ(DijDjj)=ψ(Dij)Djj+Dijψ(Djj).

    Lemma 3.10. ψ(DiiEii)=Diiψ(Eii)+ψ(Dii)Eii for any Dii,EiiSii.

    Proof. For any XijSij and using Lemma 3.9, we have

    DiiEiiψ(Xij)+ψ(DiiEii)Xij=ψ(DiiEiiXij)=Diiψ(EiiXij)+ψ(Dii)EiiXij=DiiEiiψ(Xij)+Diiψ(Eii)Xij+ψ(Dii)EiiXij.

    Therefore, (ψ(DiiEii)Diiψ(Eii)ψ(Dii)Eii)Xij=0. By using primeness of S, we get ψ(DiiEii)Diiψ(Eii)ψ(Dii)Eii)=0. Hence, ψ(DiiEii)=Diiψ(Eii)+ψ(Dii)Eii.

    Lemma 3.11. ψ is additive.

    Proof. By using Lemma 3.8, we can see thet ψ is additive on Sij. For any D11,E11S11 and F12S12, we have

    ψ((D11+E11)F12)=ψ(D11F12)+ψ(E11F12)=ψ(D11)F12+D11ψ(F12)+ψ(E11)D12+E11ψ(F12).

    Alternatively, we can write

    ψ((D11+E11)F12)=ψ(D11+E11)F12+(D11+E11)ψ(F12).

    From the last two expressions, we obtain

    (ψ(D11+E11)ψ(D11)ψ(E11))F12=0.

    By using primeness of S, we obtain

    ψ(D11+E11)=ψ(D11)+ψ(E11).

    In the similar way

    ψ(D22+E22)=ψ(D22)+ψ(E22).

    Thus, for any D=D11+D12+D21+D22 and E=E11+E12+E21+E22, we have

    ψ(D+E)=ψ(D11+D12+D21+D22+E11+E12+E21+E22)=ψ(D11+E11)+ψ(D12+E12)+ψ(D21+E21)+ψ(D22+E22)=ψ(D11+D12+D21+D22)+ψ(E11+E12+E21+E22)=ψ(D)+ψ(E).

    This completes the proof.

    Lemma 3.12. For any DijSij with EjiSji,(1ij2,) the following holds true:

    ψ(DijEji)=ψ(Dij)Eji+Dijψ(Eji).

    Proof. Since D21E12X12(P1)(P1)=0, we have

    Ω(Pn(D21,E12,X12,(P1),,(P1)))=Ω(D12E21X12X12D12E12)=Ω(Pn(D21,E12,X12,(P1),,(P1))=Ω(E12D21X12)Ω(X12D21E12)=ψ(E12D21X12)ψ(X12D21E12)=ψ(E12D21)X12E12D21ψ(X12)ψ(X12)D21E12X12ψ(D21E12).

    On the other hand, we have

    Ω(Pn(D21,E12,X12,(P1),,(P1)))=Pn(Ω(D21),E12,X12,(P1),,(P1))+Pn(D21,Ω(E12),X12,(P1),,(P1))+Pn(D21,E12,Ω(X12),(P1),,(P1))=Pn(ψ(D21),E12,X12,(P1),,(P1))+Pn(D21,ψ(E12),X12,(P1),,(P1))+Pn(D21,E12,ψ(X12),(P1),,(P1))=E12ψ(D21)X12X12Ψ(D21)E12ψ(E12)D21X12X12D21ψ(E12)E12D21ψ(X12)ψ(X12)D21E12.

    From the above two equations, we obtain

    (ψ(E12D21)+E12ψ(D21)+ψ(E12)D21)X12=X12(ψ(D21E12)+D21ψ(E12)+ψ(D21)E12). (3.2)

    Also, since E12D21X21(P2)(P2)=0, we have

    Ω(Pn(E12,D21,X21,(P2),,(P2))=Ω(D21E12X21X21E12D21)=Ω(D21E12X21)Ω(X12E12D21)=ψ(D21E12X21)ψ(X12E12D21)=ψ(D21E12)X21D21E12ψ(X21)ψ(X21)E12D21X21ψ(E12D21).

    On the other hand, we have

    Ω(Pn(E12,D21,X21,(P2),,(P2)))=Pn(Ω(E12),D21,X21,(P2),,(P2))+Pn(E12,Ω(D21),X21,(P2),,(P2))+Pn(E12,D21,Ω(X21),(P2),,(P2))=Pn(ψ(E12),D21,X21,(P2)(P2))+Pn(E12,ψ(D21),X21,(P2),,(P2))+Pn(E12,D21,ψ(X21),(P2),,(P2))=D21ψ(E12)X21X21Ψ(E12)D21ψ(D21)E12X21X21E12ψ(D21)D21E12ψ(X21)ψ(X21)E12D21.

    By comparing the above two equations, we obtain

    (ψ(D21E12)+D21ψ(E12)+ψ(D21)E12)X21=X21(ψ(E12D21)E12ψ(D21)ψ(E12)D21). (3.3)

    By using Eqs (3.2) and (3.3), we obtain

    ψ(D12E21)D12ψ(E21)ψ(D12)E21Z(S).

    Assume that ψ(D12E21)D12ψ(E21)ψ(D12)E21=α(D12,E21) for any α(D12,E21)Z(S11). Now

    α(X11D12,E21)=ψ(X11D12E21)X11D12ψ(E21)ψ(X11D12)E21=ψ(X11)D12E21+X11ψ(D12E21)X11D12ψ(E21)ψ(X11)D12E21X11ψ(D12)E21=X11(ψ(D12E21)ψ(D12)E21D12ψ(E21)).

    Also, S11α(D12,E21) is a central ideal in S11. As S11 contains no nonzero central ideal. Therefore, α(D12,E21)=0. Hence,

    ψ(D12E21)=D12ψ(E21)+ψ(D12)E21.

    By using the same approach, one can also prove the result for i=2,j=1.

    Proof of Theorem 3.1. It follows by Lemmas 3.9–3.12 that ψ is an additive derivation. For DS, we have

    Θ(D)=Ω(D)+[D,M]=ψ(D)+τ(D)+[D,M]=d(D)+τ(D),

    where M=P1Θ(P1)P2P2Θ(P1)P1 and d(D) is a derivation. It only remains to prove τ vanishes at (n1)th commutator, i.e., we show that τ(Pn(D1,D2,,Dn))=0 for all D1,D2,,DnS. By using Lemma 3.8, we obtain

    τ(Pn(D1,D2,,Dn))=Ω(Pn(D1,D2,,Dn))ψ(Pn(D1,D2,,Dn))=ni=1Pn(D1,,Di1,Ω(Di),Di+1,,Dn)ni=1Pn(D1,,Di1,Ψ(Di),Di+1,,Dn)=ni=1Pn(D1,,Di1,ψ(Di),Di+1,,Dn)ni=1Pn(D1,,Di1,Ψ(Di),Di+1,,Dn)=0.

    This completes the proof of Theorem 3.1 here.

    All authors are contributed equally.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The first author gratefully acknowledges the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through project number: RG24-S053.

    The authors declare no conflict of interest.



    [1] M. Ashraf, B. Wani, F. Wei, Multiplicative -Lie triple higher derivations of standard operator algebras, Quaest. Math., 42 (2019), 857–884. http://dx.doi.org/10.2989/16073606.2018.1502213 doi: 10.2989/16073606.2018.1502213
    [2] M. Ashraf, A. Jabeen, Characterizations of additive ζ-Lie derivations on unital algebras, Ukr. Math. J., 73 (2021), 532–546. http://dx.doi.org/10.1007/s11253-021-01941-y doi: 10.1007/s11253-021-01941-y
    [3] K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hungar., 167 (2022), 287–294. http://dx.doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0
    [4] P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. http://dx.doi.org/10.1016/j.laa.2011.02.048 doi: 10.1016/j.laa.2011.02.048
    [5] P. Ji, W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear A., 61 (2013), 417–428. http://dx.doi.org/10.1080/03081087.2012.689982 doi: 10.1080/03081087.2012.689982
    [6] L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc., 52 (2015), 581–591. http://dx.doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
    [7] F. Lu, W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl., 432 (2010), 89–99. http://dx.doi.org/10.1016/j.laa.2009.07.026 doi: 10.1016/j.laa.2009.07.026
    [8] X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequat. Math., 87 (2014), 53–69. http://dx.doi.org/10.1007/s00010-012-0177-3 doi: 10.1007/s00010-012-0177-3
    [9] X. Qi, J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl., 438 (2013), 533–548. http://dx.doi.org/10.1016/j.laa.2012.08.019 doi: 10.1016/j.laa.2012.08.019
    [10] N. Rehman, J. Nisar, M. Nazim, Nonlinear mixed Jordan triple*-derivations on standard operator algebras, Filomat, 37 (2023), 3143–3151. http://dx.doi.org/10.2298/FIL2310143R doi: 10.2298/FIL2310143R
    [11] X. Tang, M. Xiao, P. Wang, Local properties of Virasoro-like algebra, J. Geom. Phys., 186 (2023), 104772. http://dx.doi.org/10.1016/j.geomphys.2023.104772 doi: 10.1016/j.geomphys.2023.104772
    [12] Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. http://dx.doi.org/10.1016/j.laa.2014.06.029 doi: 10.1016/j.laa.2014.06.029
    [13] Y. Wang, Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 2599–2616. http://dx.doi.org/10.1016/j.laa.2012.10.052 doi: 10.1016/j.laa.2012.10.052
    [14] C. Xia, X. Dong, D. Wang, C. Zhang, Local properties of Schrödinger-Virasoro type Lie algebras and a full diamond thin Lie algebra, Commun. Algebra, 52 (2024), 4650-4665. http://dx.doi.org/10.1080/00927872.2024.2356244 doi: 10.1080/00927872.2024.2356244
    [15] X. Zhao, Nonlinear Lie triple derivations by local actions on triangular algebras, J. Algebra Appl., 22 (2023), 2350059. http://dx.doi.org/10.1142/S0219498823500597 doi: 10.1142/S0219498823500597
    [16] X. Zhao, H. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. http://dx.doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4
    [17] Y. Zhong, X. Tang, n-derivations of the extended Schrödinger-Virasoro Lie algebra, Algebr. Colloq., 28 (2021), 105–118. http://dx.doi.org/10.1142/S1005386721000109 doi: 10.1142/S1005386721000109
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(778) PDF downloads(57) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog