On an infinite dimensional complex Hilbert space $ \mathcal{H} $, we consider a standard operator algebra $ \mathcal{S} $ with an identity operator $ I $ that is closed with respect to adjoint operation. $ P_{n}\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \ldots, \mathcal{X}_{n}\right) $ is set of polynomials defined under indeterminates $ \mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n $ by $ n $ with multiplicative Lie products with set of positive integers $ \mathbb{N}. $ It is shown that a map $ \Theta: \mathcal{S} \rightarrow \mathcal{S} $ satisfying
$ \begin{eqnarray*} \Theta\left(P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right)\right) = \sum\limits_{i = 1}^{n} P_{n}\left(\mathcal{D}_{1}, \ldots, \mathcal{D}_{i-1}, \Theta\left(\mathcal{D}_{i}\right), \mathcal{D}_{i+1}, \ldots, \mathcal{D}_{n}\right), \end{eqnarray*} $
for any $ \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n} \in \mathcal{S} $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\ldots \mathcal{D}_{n} = 0 $ can be represented as $ d(x)+\tau(x) $ for every $ x \in \mathcal{S} $, where $ d: \mathcal{S} \rightarrow \mathcal{S} $ is an additive derivation with another map $ \tau: \mathcal{S} \rightarrow \mathcal{Z}(\mathcal{S}) $ that vanishes on each $ (n-1)^{th} $ commutator $ P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right) $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\cdots \mathcal{D}_{n} = $ 0.
Citation: Khalil Hadi Hakami, Junaid Nisar, Kholood Alnefaie, Moin A. Ansari. Characterizing N-type derivations on standard operator algebras by local actions[J]. AIMS Mathematics, 2024, 9(9): 25319-25332. doi: 10.3934/math.20241236
On an infinite dimensional complex Hilbert space $ \mathcal{H} $, we consider a standard operator algebra $ \mathcal{S} $ with an identity operator $ I $ that is closed with respect to adjoint operation. $ P_{n}\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \ldots, \mathcal{X}_{n}\right) $ is set of polynomials defined under indeterminates $ \mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n $ by $ n $ with multiplicative Lie products with set of positive integers $ \mathbb{N}. $ It is shown that a map $ \Theta: \mathcal{S} \rightarrow \mathcal{S} $ satisfying
$ \begin{eqnarray*} \Theta\left(P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right)\right) = \sum\limits_{i = 1}^{n} P_{n}\left(\mathcal{D}_{1}, \ldots, \mathcal{D}_{i-1}, \Theta\left(\mathcal{D}_{i}\right), \mathcal{D}_{i+1}, \ldots, \mathcal{D}_{n}\right), \end{eqnarray*} $
for any $ \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n} \in \mathcal{S} $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\ldots \mathcal{D}_{n} = 0 $ can be represented as $ d(x)+\tau(x) $ for every $ x \in \mathcal{S} $, where $ d: \mathcal{S} \rightarrow \mathcal{S} $ is an additive derivation with another map $ \tau: \mathcal{S} \rightarrow \mathcal{Z}(\mathcal{S}) $ that vanishes on each $ (n-1)^{th} $ commutator $ P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right) $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\cdots \mathcal{D}_{n} = $ 0.
[1] | M. Ashraf, B. Wani, F. Wei, Multiplicative $\ast$-Lie triple higher derivations of standard operator algebras, Quaest. Math., 42 (2019), 857–884. http://dx.doi.org/10.2989/16073606.2018.1502213 doi: 10.2989/16073606.2018.1502213 |
[2] | M. Ashraf, A. Jabeen, Characterizations of additive $\zeta$-Lie derivations on unital algebras, Ukr. Math. J., 73 (2021), 532–546. http://dx.doi.org/10.1007/s11253-021-01941-y doi: 10.1007/s11253-021-01941-y |
[3] | K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hungar., 167 (2022), 287–294. http://dx.doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0 |
[4] | P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. http://dx.doi.org/10.1016/j.laa.2011.02.048 doi: 10.1016/j.laa.2011.02.048 |
[5] | P. Ji, W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear A., 61 (2013), 417–428. http://dx.doi.org/10.1080/03081087.2012.689982 doi: 10.1080/03081087.2012.689982 |
[6] | L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc., 52 (2015), 581–591. http://dx.doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581 |
[7] | F. Lu, W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl., 432 (2010), 89–99. http://dx.doi.org/10.1016/j.laa.2009.07.026 doi: 10.1016/j.laa.2009.07.026 |
[8] | X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequat. Math., 87 (2014), 53–69. http://dx.doi.org/10.1007/s00010-012-0177-3 doi: 10.1007/s00010-012-0177-3 |
[9] | X. Qi, J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl., 438 (2013), 533–548. http://dx.doi.org/10.1016/j.laa.2012.08.019 doi: 10.1016/j.laa.2012.08.019 |
[10] | N. Rehman, J. Nisar, M. Nazim, Nonlinear mixed Jordan triple*-derivations on standard operator algebras, Filomat, 37 (2023), 3143–3151. http://dx.doi.org/10.2298/FIL2310143R doi: 10.2298/FIL2310143R |
[11] | X. Tang, M. Xiao, P. Wang, Local properties of Virasoro-like algebra, J. Geom. Phys., 186 (2023), 104772. http://dx.doi.org/10.1016/j.geomphys.2023.104772 doi: 10.1016/j.geomphys.2023.104772 |
[12] | Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. http://dx.doi.org/10.1016/j.laa.2014.06.029 doi: 10.1016/j.laa.2014.06.029 |
[13] | Y. Wang, Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 2599–2616. http://dx.doi.org/10.1016/j.laa.2012.10.052 doi: 10.1016/j.laa.2012.10.052 |
[14] | C. Xia, X. Dong, D. Wang, C. Zhang, Local properties of Schrödinger-Virasoro type Lie algebras and a full diamond thin Lie algebra, Commun. Algebra, 52 (2024), 4650-4665. http://dx.doi.org/10.1080/00927872.2024.2356244 doi: 10.1080/00927872.2024.2356244 |
[15] | X. Zhao, Nonlinear Lie triple derivations by local actions on triangular algebras, J. Algebra Appl., 22 (2023), 2350059. http://dx.doi.org/10.1142/S0219498823500597 doi: 10.1142/S0219498823500597 |
[16] | X. Zhao, H. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. http://dx.doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4 |
[17] | Y. Zhong, X. Tang, n-derivations of the extended Schrödinger-Virasoro Lie algebra, Algebr. Colloq., 28 (2021), 105–118. http://dx.doi.org/10.1142/S1005386721000109 doi: 10.1142/S1005386721000109 |