Research article

Characterizing N-type derivations on standard operator algebras by local actions

  • Received: 29 June 2024 Revised: 15 August 2024 Accepted: 23 August 2024 Published: 29 August 2024
  • MSC : 16W25, 46K15, 47B47

  • On an infinite dimensional complex Hilbert space $ \mathcal{H} $, we consider a standard operator algebra $ \mathcal{S} $ with an identity operator $ I $ that is closed with respect to adjoint operation. $ P_{n}\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \ldots, \mathcal{X}_{n}\right) $ is set of polynomials defined under indeterminates $ \mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n $ by $ n $ with multiplicative Lie products with set of positive integers $ \mathbb{N}. $ It is shown that a map $ \Theta: \mathcal{S} \rightarrow \mathcal{S} $ satisfying

    $ \begin{eqnarray*} \Theta\left(P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right)\right) = \sum\limits_{i = 1}^{n} P_{n}\left(\mathcal{D}_{1}, \ldots, \mathcal{D}_{i-1}, \Theta\left(\mathcal{D}_{i}\right), \mathcal{D}_{i+1}, \ldots, \mathcal{D}_{n}\right), \end{eqnarray*} $

    for any $ \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n} \in \mathcal{S} $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\ldots \mathcal{D}_{n} = 0 $ can be represented as $ d(x)+\tau(x) $ for every $ x \in \mathcal{S} $, where $ d: \mathcal{S} \rightarrow \mathcal{S} $ is an additive derivation with another map $ \tau: \mathcal{S} \rightarrow \mathcal{Z}(\mathcal{S}) $ that vanishes on each $ (n-1)^{th} $ commutator $ P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right) $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\cdots \mathcal{D}_{n} = $ 0.

    Citation: Khalil Hadi Hakami, Junaid Nisar, Kholood Alnefaie, Moin A. Ansari. Characterizing N-type derivations on standard operator algebras by local actions[J]. AIMS Mathematics, 2024, 9(9): 25319-25332. doi: 10.3934/math.20241236

    Related Papers:

  • On an infinite dimensional complex Hilbert space $ \mathcal{H} $, we consider a standard operator algebra $ \mathcal{S} $ with an identity operator $ I $ that is closed with respect to adjoint operation. $ P_{n}\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \ldots, \mathcal{X}_{n}\right) $ is set of polynomials defined under indeterminates $ \mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n $ by $ n $ with multiplicative Lie products with set of positive integers $ \mathbb{N}. $ It is shown that a map $ \Theta: \mathcal{S} \rightarrow \mathcal{S} $ satisfying

    $ \begin{eqnarray*} \Theta\left(P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right)\right) = \sum\limits_{i = 1}^{n} P_{n}\left(\mathcal{D}_{1}, \ldots, \mathcal{D}_{i-1}, \Theta\left(\mathcal{D}_{i}\right), \mathcal{D}_{i+1}, \ldots, \mathcal{D}_{n}\right), \end{eqnarray*} $

    for any $ \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n} \in \mathcal{S} $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\ldots \mathcal{D}_{n} = 0 $ can be represented as $ d(x)+\tau(x) $ for every $ x \in \mathcal{S} $, where $ d: \mathcal{S} \rightarrow \mathcal{S} $ is an additive derivation with another map $ \tau: \mathcal{S} \rightarrow \mathcal{Z}(\mathcal{S}) $ that vanishes on each $ (n-1)^{th} $ commutator $ P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right) $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\cdots \mathcal{D}_{n} = $ 0.



    加载中


    [1] M. Ashraf, B. Wani, F. Wei, Multiplicative $\ast$-Lie triple higher derivations of standard operator algebras, Quaest. Math., 42 (2019), 857–884. http://dx.doi.org/10.2989/16073606.2018.1502213 doi: 10.2989/16073606.2018.1502213
    [2] M. Ashraf, A. Jabeen, Characterizations of additive $\zeta$-Lie derivations on unital algebras, Ukr. Math. J., 73 (2021), 532–546. http://dx.doi.org/10.1007/s11253-021-01941-y doi: 10.1007/s11253-021-01941-y
    [3] K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hungar., 167 (2022), 287–294. http://dx.doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0
    [4] P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. http://dx.doi.org/10.1016/j.laa.2011.02.048 doi: 10.1016/j.laa.2011.02.048
    [5] P. Ji, W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear A., 61 (2013), 417–428. http://dx.doi.org/10.1080/03081087.2012.689982 doi: 10.1080/03081087.2012.689982
    [6] L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc., 52 (2015), 581–591. http://dx.doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
    [7] F. Lu, W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl., 432 (2010), 89–99. http://dx.doi.org/10.1016/j.laa.2009.07.026 doi: 10.1016/j.laa.2009.07.026
    [8] X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequat. Math., 87 (2014), 53–69. http://dx.doi.org/10.1007/s00010-012-0177-3 doi: 10.1007/s00010-012-0177-3
    [9] X. Qi, J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl., 438 (2013), 533–548. http://dx.doi.org/10.1016/j.laa.2012.08.019 doi: 10.1016/j.laa.2012.08.019
    [10] N. Rehman, J. Nisar, M. Nazim, Nonlinear mixed Jordan triple*-derivations on standard operator algebras, Filomat, 37 (2023), 3143–3151. http://dx.doi.org/10.2298/FIL2310143R doi: 10.2298/FIL2310143R
    [11] X. Tang, M. Xiao, P. Wang, Local properties of Virasoro-like algebra, J. Geom. Phys., 186 (2023), 104772. http://dx.doi.org/10.1016/j.geomphys.2023.104772 doi: 10.1016/j.geomphys.2023.104772
    [12] Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. http://dx.doi.org/10.1016/j.laa.2014.06.029 doi: 10.1016/j.laa.2014.06.029
    [13] Y. Wang, Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 2599–2616. http://dx.doi.org/10.1016/j.laa.2012.10.052 doi: 10.1016/j.laa.2012.10.052
    [14] C. Xia, X. Dong, D. Wang, C. Zhang, Local properties of Schrödinger-Virasoro type Lie algebras and a full diamond thin Lie algebra, Commun. Algebra, 52 (2024), 4650-4665. http://dx.doi.org/10.1080/00927872.2024.2356244 doi: 10.1080/00927872.2024.2356244
    [15] X. Zhao, Nonlinear Lie triple derivations by local actions on triangular algebras, J. Algebra Appl., 22 (2023), 2350059. http://dx.doi.org/10.1142/S0219498823500597 doi: 10.1142/S0219498823500597
    [16] X. Zhao, H. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. http://dx.doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4
    [17] Y. Zhong, X. Tang, n-derivations of the extended Schrödinger-Virasoro Lie algebra, Algebr. Colloq., 28 (2021), 105–118. http://dx.doi.org/10.1142/S1005386721000109 doi: 10.1142/S1005386721000109
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(430) PDF downloads(45) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog