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Abstract: On an infinite dimensional complex Hilbert space H , we consider a standard
operator algebra S with an identity operator I that is closed with respect to adjoint operation.
Pn (X1,X2,X3, . . . ,Xn) is set of polynomials defined under indeterminates X1,X2, · · · ,Xn by n with
multiplicative Lie products with set of positive integers N. It is shown that a map Θ : S → S satisfying

Θ (Pn (D1,D2,D3, . . . ,Dn)) =

n∑
i=1

Pn (D1, . . . ,Di−1,Θ (Di) ,Di+1, . . . ,Dn) ,

for any D1,D2,D3, . . . ,Dn ∈ S with D1D2D3 . . .Dn = 0 can be represented as d(x) + τ(x) for every
x ∈ S, where d : S → S is an additive derivation with another map τ : S → Z(S) that vanishes on
each (n − 1)th commutator Pn (D1,D2,D3, . . . ,Dn) with D1D2D3 · · ·Dn = 0.
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1. Introduction

The set Z(S) is the center over the complex field C of a standard operator algebra S with a linear
mapping d : S → S. Here d is a derivation if the condition d(DE) = d(D)E + Dd(E) is satisfied
by d for all D,E ∈ S. If the requirement for linearity is relaxed to additivity, d is referred to as a
derivation with additivity. The map d : S → S is known as Lie derivation with multiplication if it
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fulfills the condition d([D,E]) = [d(D),E] + [D, d(E)] for all D,E ∈ S, where [D,E] = DE − ED

denotes the Lie bracket. In a similar way, d is called a Lie triple derivation with multiplication if
d([[D,E],F]) = [[d(D),E],F] + [[D, d(E)],F] + [[D,E], d(F)] for all D,E,F ∈ S.

In the last few years, significant attention has been given to some special conditions that change a
linear map into a derivation (class of derivation) including Lie derivation (see [1–5, 8, 10, 11, 15, 16]).
Most of these studies have focused on identifying the specific conditions that allow Lie derivations
or even simple derivations to be fully characterized by their action on certain sub-structures of
these algebras. Numerous works have been published on the investigation of the local actions of
Lie derivations in operator algebras. Lu and Jing [7] demonstrated that if X is a Banach space
with dimension greater than two and L : B(X) → B(X) is a linear map such that L([D,E]) =

[L(D),E] + [D, L(E)] for all D,E ∈ B(X) with DE = 0 (or DE = P, where P is a fixed nontrivial
idempotent), then there exists an operator T ∈ B(X) and a linear map φ : B(X) → CI that vanishes
at all commutators [D,E] with DE = 0 (or DE = P), such that L(D) = TD − DT + φ(D) for all
D ∈ B(X). Similarly, Qi and Hou [9] characterized Lie derivations on any von Neumann algebra S
without central summands of type I1. They showed that if L : S → S is an additive map such that
L([D,E]) = [L(D),E]+[D, L(E)] for all D,E ∈ Swith DE = 0, then there exists an additive derivation
δ : S → S and an additive map φ : S → Z(S) that vanishes at all commutators [D,E] with DE = 0,
such that L = δ + φ. In 2018, Liu [6] investigated the characterization of Lie triple derivations on von
Neumann algebras without central abelian projections. He proved that if a linear map L : S → S
satisfies L([[D,E],F]) = [[L(D),E],F] + [[D, L(E)],F] + [[D,E], L(F)] for all D,E,F ∈ S with
DE = 0 (or DE = P, where P is a fixed non-trivial projection in S), then there exists an additive
derivation d : S → S and an additive map γ : S → Z(S) that vanishes on every second commutator
[[D,E],F] with DE = 0 (or DE = P), such that L(X) = d(X) + γ(X) for all X ∈ S. In recent years,
several researchers have explored Lie n-derivations across various types of algebras (see [12–14, 17]
and related references). However, to date, no research work has been done based on local actions for
derivations of Lie type within operator algebras, indicating a need for further investigation in this area.

Inspired by the aforementioned results, we investigate derivations of Lie type based on algebras like
standard operator algebras. We demonstrate that derivations of Lie type on standard operator algebras
exhibit a general form at zero products.

2. Notation and preliminaries

For a fixed positive integer n, where n ≥ 2, we define polynomials sequence as

P1 (y1) = y1,

P2 (y1, y2) =
[
P1 (y1) , y2

]
=

[
y1, y2

]
,

P3 (y1, y2, y3) =
[
P2 (y1, y2) , y3

]
=

[[
y1, y2

]
, y3

]
,

. . . . . .

Pn (y1, y2, . . . , yn) =
[
Pn−1 (y1, y2, . . . , yn−1) , yn

]
.

The polynomial Pn (y1, y2, . . . , yn) is known as (n − 1)th commutator. A map Θ : S → S that is
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additive is known as Lie n-derivation or n-type derivation if the following is satisfied:

Θ (Pn (y1, y2, . . . , yn)) =

n∑
i=1

Pn (y1, . . . , yi−1,Θ (yi) , yi+1, . . . , yn) ,

for all y1, y2, . . . , yn ∈ S. More generally, by removing the additivity of Θ, we obtain that Θ is a
nonlinear Lie n-derivation. The Lie derivation is a generalization of the Lie 2-derivation. Further, every
Lie triple derivation is a generalization of Lie 3-derivation. A combination of these three derivations
i.e., Lie derivations, Lie triple derivations, and Lie n-derivations are called derivations of Lie type. On
a Hilbert space H over C, the set B(H) represents all algebras with bounded linear operators. The
subalgebra of finite rank operators that is bounded is denoted by F (H). It is important to note that
F (H) is a ∗-closed ideal within B(H). An algebra S ⊆ B(H) is referred to as a standard operator
algebra if F (H) ⊆ S. A projection P is an operator P ∈ B(H) that satisfies the conditions P∗ = P and
P2 = P. An algebra S is called a prime algebras if DSE = 0 gives either D = 0 or E = 0. Interestingly,
all standard operator algebras are prime.

Now, considering a projection P1 ∈ S so that P2 = I − P1. S jk = P jSPk for j = 1 and k = 2. Then
by the Peirce-decomposition of S, we have S = S11 ⊕S12 ⊕S21 ⊕S22 and S ∗jk ∈ Sk j for any S jk ∈ S jk.
The following significant result is used frequently in the main results:

Lemma 2.1. In a Hilbert space H over a complex field C that is closed with respect to adjoint
operation, let S be a standard operator algebra with operator I. Further, let D11 ∈ S11 and D22 ∈

S22. If D11E12 = E12D22 or E21D11 = D22E21 for all E12 ∈ S12,E21 ∈ S21, then D11 + D22 ∈ Z(S).

Proof. Let D11 ∈ S11 and D22 ∈ S22. Assume that D11E12 = E12D22 for all E12 ∈ S12. For any
X11 ∈ S11 and X12 ∈ S12, we get

D11X11X12 = X11X12D22 = X11D11X12.

Since S is prime, we have D11X11 = X11D11.
For any X12 ∈ S12 and X22 ∈ S22, we have

X12X22D22 = D11X12X22 = X12D22X22.

It follows from the primeness of S that X22D22 = D22X22.
For any X12 ∈ S12 and X21 ∈ S21, we obtain

D22X21X12 = X21X12D22 = X21D11X12.

It follows that D22X21 = X21D11.
For any X ∈ S, we have

(D11 + D22)X = (D11 + D22) (X11 + X12 + X21 + X22)

= D11X11 + D11X12 + D22X21 + D22X22

= X11D11 + X12D22 + X21D11 + X22D22

= (X11 + X12 + X21 + X22) (D11 + D22)

= X (D11 + D22) ,

which implies that D11 + D22 ∈ Z(S).
Similarly, we can prove that if E21D11 = D22E21 for all E21 ∈ S21, then D11 + D22 ∈ Z(S). �
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3. Main result

Theorem 3.1. On a Hilbert space H that is infinite-dimensional over a field of complex numbers C
with an identity operator I, let S be a standard operator algebra. If S is closed with respect to adjoint
operation and map Θ : S → S is defined as

Θ (Pn (D1,D2,D3, . . . ,Dn)) =

n∑
i=1

Pn (D1, . . . ,Di−1,Θ (Di) ,Di+1, . . . ,Dn) ,

for any D1,D2,D3, . . . ,Dn ∈ S with D1D2D3 . . .Dn = 0, then Θ(x) = d(x) + τ(x) for every x ∈ S,
where the map d : S → S is an additive derivation and τ : S → Z(S) is a map vanishing on each
(n − 1)th commutator Pn (D1,D2,D3, . . . ,Dn) with D1D2D3 . . .Dn = 0.

Lemma 3.1. We have that Θ(0) = 0.

Proof. Θ(0) = Θ(Pn(0, 0, · · · , 0)) = Pn(Θ(0), 0, · · · , 0) + · · · + Pn(0, 0, · · · ,Θ(0)) = 0. �

Lemma 3.2. For Di j ∈ Si j(1 ≤ i , j ≤ 2), we have

(1) Θ
(
Dii + Di j

)
− Θ (Dii) − Θ

(
Di j

)
∈ Z(S).

(2) Θ
(
Dii + D ji

)
− Θ (Dii) − Θ

(
D ji

)
∈ Z(S).

Proof. (1) Firstly, we show the result holds for i = 1 and j = 2. For that, we consider T =

Θ (D11 + D12) − Θ (D11) − Θ (D12) . Since

P2 (D11 + D12)P1P2 · · · P2 = P2D11P1P2 · · · P2 = P2D12P1P2 · · · P2 = 0,

we obtain

Θ (D12) = Θ (Pn (P2,D11 + D12,P1,P2, . . . ,P2))

= Pn (Θ (P2) ,D11 + D12,P1,P2, . . . ,P2) + Pn (P2,Θ (D11 + D12) ,P1,P2, . . . ,P2)

+Pn (P2,D11 + D12,Θ (P1) ,P2, . . . ,P2) + · · · + Pn(P2,D11 + D12,P1, . . . ,Θ(P2)).

Alternatively, making use of Lemma 3.1, we have

Θ (D12) = Θ (Pn (P2,D11 + D12,P1,P2, . . . ,P2))

= Θ (Pn (P2,D11,P1,P2, . . . ,P2)) + Θ (Pn (P2,D12,P1,P2, . . . ,P2))

= Pn (Θ (P2) ,D11 + D12,P1,P2, . . . ,P2) + Pn (P2,Θ (D11) + Θ (D12) ,P1,P2, . . . ,P2)

+Pn (P2,D11 + D12,Θ (P1) ,P2, . . . ,P2) + · · · + Pn(P2,D11 + D12,P1,P2, . . . ,Θ(P2)).

From the last two expressions, we find Pn (P2,T,P1,P2, . . . ,P2) = 0. This means that P2TP1 =

P1TP2 =0.
For any X12 ∈ S12, we have

X12 (D11 + D12)P1P2 · · · P2 = X12D11P1P2 · · · P2 = X12D12P1P2 · · · P2 = 0.

That means

Θ (D11X12) = Θ (Pn (X12,D11 + D12,P1,P2, . . . ,P2))
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= Pn (Θ (X12) ,D11 + D12,P1,P2, . . . ,P2) + Pn (X12,Θ (D11 + D12) ,P1,P2, . . . ,P2)

+Pn (X12,D11 + D12,Θ (P1) ,P2, . . . ,P2) + · · · + Pn(X12,D11 + D12,P1,P2, . . . ,Θ(P2)).

On the other hand, by using Lemma 3.1, we have

Θ (D11X12) = Θ (Pn (X12,D11,P1,P2, . . . ,P2)) + Θ (Pn (X12,D12,P1,P2, . . . ,P2))

= Pn (Θ (X12) ,D11 + D12,P1,P2, . . . ,P2)

+Pn (X12,Θ (D11) + Θ (D12) ,P1,P2, . . . ,P2)

+Pn (X12,D11 + D12,Θ (P1) ,P2, . . . ,P2)

+ · · · + Pn(X12,D11 + D12,P1,P2, . . . ,Θ(P2)).

Comparing the above two equations, we obtain

Pn (X12,T,P1,P2, . . . ,P2) = 0.

On solving the above equation, we obtain P1TP1X12 = X12P2TP2 for all X12 ∈ S12. Therefore, by using
Lemma 2.1, we get P1TP1 + P2TP2 ∈ Z(S). Hence, T = T12 + T21 ∈ Z(S). That is

T = Θ (D11 + D12) − Θ (D11) − Θ (D12) ∈ Z(S).

In a similar way, it can be shown for i = 2 and j = 1.
(2) By using the same technique as in (1), one can easily show that

Θ
(
Dii + D ji

)
− Θ (Dii) − Θ

(
D ji

)
∈ Z(S).

�

Lemma 3.3. For any Di j,Ei j ∈ Si j(1 ≤ i , j ≤ 2), we have

Θ
(
Di j + Ei j

)
= Θ

(
Di j

)
+ Θ

(
Ei j

)
.

Proof. Firstly, we show the above result is true for i = 1 and j = 2.
Since (D12 + P1) (P2 + E12)P1 · · · P1 = 0 for any D12,E12 ∈ S12, we have

Θ (D12 + E12) = Θ (Pn (D12 + P1,P2 + E12,−P1, . . . ,−P1))

= Pn (Θ (D12) + Θ (P1) ,P2 + E12,P1, . . . ,P1)

+Pn (D12 + P1,Θ (P2) + Θ (E12) ,P1, . . . ,P1)

+Pn (D12 + P1,P2 + E12,Θ (P1) , . . . ,P1)

+Pn(D12 + P1,P2 + E12,P1, . . . ,Θ(P1))
= Θ (Pn (D12,P2,−P1, . . . ,−P1)) + Θ (Pn (−P1,P2,−P1, . . . ,−P1))

+Θ (Pn (D12,E12,−P1, . . . ,−P1)) + Θ (Pn (P1,E12,−P1, . . . ,−P1))

= Θ (D12) + Θ (E12) .

Secondly, it is easy to follow the same pattern to see that the result is also true for i = 2 and j = 1, that
is

Θ (D21 + E21) = Θ (D21) + Θ (E21) .

�
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Lemma 3.4. P1Θ (Pi)P1 + P2Θ (Pi)P2 ∈ Z(S), i = 1, 2.

Proof. Let D12 ∈ S12. Since D12P1 · · · P1 = 0, by Lemma 3.3, we have

(−1)n+1Θ (D12) = Θ
(
(−1)n+1D12

)
= Θ (Pn (D12,P1, . . . ,P1))

= Pn (Θ (D12) ,P1, . . . ,P1) +

n∑
k=2

Pn(D12,P1, . . . ,

k−th︷︸︸︷
Θ (P1), . . . ,P1)

= (−1)n+1P1Θ (D12)P2 + P2Θ (D12)P1 + (−1)n+1P1Θ (P1)D12 − (−1)n+1D12Θ (P1)P2.

By pre-multiplying by P1 and post-multiplying by P2 on both sides, we obtain

P1Θ (P1)P1D12 = D12P2Θ (P1)P2.

By Lemma 2.1, we have P1Θ (P1)P1 + P2Θ (P1)P2 ∈ Z(S). Similarly, P1Θ (P2)P1 + P2Θ (P2)P2 ∈

Z(S). �

Now, M = P1Θ (P1)P2 − P2Θ (P1)P1. Define a map Ω : S → S by Ω(D) = Θ(D) − [D,M] for all
D ∈ S.

Lemma 3.5. Ω has the following properties:

(1) Ω also satisfies

Ω (Pn (D1,D2,D3, . . . ,Dn)) =

n∑
i=1

Pn (D1, . . . ,Di−1,Ω (Di) ,Di+1, . . . ,Dn) , (3.1)

for any D1,D2,D3, . . . ,Dn ∈ S with D1D2 . . .Dn = 0.
(2) Ω(P1) ∈ Z(S).
(3) Ω(P2) ∈ Z(S).

Proof. (1) Since Θ satisfies the condition (3.1), it is easy to see that Ω also satisfies the condition (3.1)
with D1D2 . . .Dn = 0.
(2) By using Peirce-decomposition:

Θ(P1) = P1Θ(P1)P1 + P1Θ(P1)P2 + P2Θ(P1)P1 + P2Θ(P1)P2.

Now,

Ω(P1) = Θ(P1) − P1Θ(P1)P2 − P2Θ(P1)P1

= P1Θ(P1)P1 + P1Θ(P1)P2 + P2Θ(P1)P1 + P2Θ(P1)P2 − P1Θ(P1)P2 − P2Θ(P1)P1

= P1Θ(P1)P1 + P2Θ(P1)P2.

Therefore, by using Lemma 3.4, we obtain Ω(P1) ∈ Z(S).
(3) Since P2P1P1 . . . Pn = 0 and Ω (P1) ∈ Z(S), then

0 = Ω (Pn (P2,P1, . . . ,P1)) = Pn (Ω (P2) ,P1, . . . ,P1) = (−1)n+1P1Ω (P2)P2 + P2Ω (P2)P1.
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By using pre-and-post multiplication by P1 in the above, we obtain P1Ω (P2)P2 = 0. Similarly,
P2Ω (P2)P1 = 0. Now, from the definition of Ω, we have

Ω(P2) = Θ(P1) + P2Θ(P1)P1 + P1Θ(P1)P2.

By using pre-and-post multiplication by P1 in the above, we obtain P1Ω(P2)P1 = P1Θ(P2)P1. Similarly,
by using pre-and-post multiplication by P2 in the above equation, we have P2Ω(P2)P2 = P2Θ(P2)P2. By
Peirce-decomposition and using Lemma 3.4, we obtain

Ω(P2) = P1Ω(P2)P1 + P2Ω(P2)P2 = P1Θ(P2)P1 + P2Θ(P2)P2 ∈ Z(S).

This completes the proof. �

Lemma 3.6. Ω(Si j) ⊆ Si j (1 ≤ i , j ≤ 2).

Proof. It is sufficient to prove for i = 1 and j = 2 first. For other values, the proof will follow a similar
fashion. We have D12P1P1P2 . . . P2 = 0. Also, by using Lemma 3.5, we have

Ω(D12) = Ω(Pn(D12,P1P1,P2, . . . ,P2)) = Pn(Ω(D12),P1,P1,P2, . . . ,P2)
= P1Ω(D12)P2 + (−1)n+1P2Ω(D12)P1.

By pre-and-post multiplication by P1 in the above equation, we obtain P1Ω(D12)P1 = 0. Similarly,
P2Ω(D12)P2 = 0.

Now, if n is even, then Ω(D12) = P1Ω(D12)P2 − P2Ω(D12)P1. By multiplying P2 from left and
P1 from right, we obtain P2Ω(D12)P1 = 0. Also, by multiplying P1 from left and right, we obtain
P1Ω(D12)P1 = 0. Similarly, P2Ω(D12)P2 = 0. Hence, Ω(D12) ∈ S12. Now, we assume that n is odd.
Since D12E12F12P2 . . . P2 = 0 for any D12,E12,F12 ∈ S12, we have

0 = Ω(Pn(D12,E12,F21,P2, . . . ,P2))
= Pn(Ω(D12),E12,F21,P2, . . . ,P2) + Pn(D12,Ω(E12),F21,P2, . . . ,P2)
= Pn−1([Ω(D12),E12],F21,P2, . . . ,P2) + Pn−1([D12,Ω(E12)],F21,P2, . . . ,P2)
= Pn−1([Ω(D12),E12],F21,P2, . . . ,P2 + [D12,Ω(E12)],F21,P2, . . . ,P2)
= Pn−1(l,F21,P2, . . . ,P2)
= Pn−2(l,F21,P2, . . . ,P2)
= [l,F21],

and

0 = Ω(Pn(D12,E12,F12,P1, . . . ,P1))
= Pn(Ω(D12),E12,F12,P1, . . . ,P1) + Pn(D12,Ω(E12),F12,P1, . . . ,P1)
= Pn−1([Ω(D12),E12],F12,P1, . . . ,P1) + Pn−1([D12,Ω(E12)],F12,P1, . . . ,P1)
= Pn−1([Ω(D12),E12],F12,P1, . . . ,P1 + [D12,Ω(E12)],F12,P1, . . . ,P1)
= Pn−1(l,F12,P1, . . . ,P1)
= Pn−2(l,F12,P1, . . . ,P1) = [l,F12],

AIMS Mathematics Volume 9, Issue 9, 25319–25332.



25326

where l = [Ω(D12),E12] + [D12Ω(E12)] ∈ S11 + S22. Now, [l,F21] = 0. That means lF21 − F21l = 0.
Thus, P2lP2F21 = F21P1lP1 = 0 for any F21 ∈ S12. Hence, by Lemma 2.1, P1lP1 + P2lP2 ∈ Z(S). Now,

l = [Ω (D12) ,E12] + [D12,Ω (E12)]
= [Ω (D12) ,E12] − Pn (D12,P1, . . . ,P1,Ω (E12))

= [Ω (D12) ,E12] −Ω (Pn (D12,P1, . . . ,P1,E12)) + Pn (Ω (D12) ,P1, . . . ,P1,E12)

= [Ω (D12) ,E12] + [P2Ω (D12)P1,E12] .

Thus, [2P2Ω (D12)P1,E12] = l ∈ Z(S). That is, [P2Ω (D12)P1,E12] = l ∈ Z(S). Hence,
P2Ω(D12)P1E12 = 0 for any E12 ∈ S12. By using primeness of S, we get P2Ω(D12)P1 = 0. Hence,
Ω(S12) ⊆ S12. �

Lemma 3.7. For any Dii ∈ Sii for i = 1, 2, there is always a map ηi : Sii → Z(S) so that Ω (Dii) −
fi (Dii) ∈ Sii.

Proof. Since D11P2P2 . . . P2 = 0 and using Lemma 3.4, we obtain

0 = Ω (Pn (D11,P2, . . . ,P2)) = Pn (Ω (D11) ,P2, . . . ,P2) = P1Ω(D11)P2 + (−1)n−1P2Ω(D11)P1.

Multiplying P1 from left, we obtain P1Ω(D11)P2 = 0. Similarly, multiplying P2 from left,
P2Ω(D11)P1 = 0. Hence, Ω(D11) ∈ S11 + S22. Similarly, Ω(D22) ∈ S11 + S22.

Since D11E22X12P2 . . . P2 = 0 and for any E22 ∈ S22,X12 ∈ S12, we have

0 = Ω(Pn(D11,E22,X12,P1, . . . ,P1))
= Pn(Ω(D11),E22,X12,P1, . . . ,P1) + Pn(D11,Ω(E22),X12,P1, . . . ,P1)
= Pn−1([Ω(D11),E22],X12,P1, . . . ,P1) + Pn−1([D11,Ω(E22)],X12,P1, . . . ,P1)
= Pn−1([Ω(D11),E22],X12,P1, . . . ,P1 + [D11,Ω(E22)],X12,P1, . . . ,P1)
= Pn−1(m,X12,P1, . . . ,P1)
= Pn−2(m,X12,P1, . . . ,P1)
= [m,X12],

and

0 = Ω(Pn(D11,E22,X21,P2, . . . ,P2))
= Pn(Ω(D11),E22,X21,P2, . . . ,P2) + Pn(D11,Ω(E22),X21,P2, . . . ,P2)
= Pn−1([Ω(D11),E22],X21,P2, . . . ,P2) + Pn−1([D11,Ω(E22)],X21,P2, . . . ,P2)
= Pn−1([Ω(D11),E22],X21,P2, . . . ,P2 + [D11,Ω(E22)],X12,P2, . . . ,P2)
= Pn−1(m,X21,P2, . . . ,P2)
= Pn−2(m,X21,P2, . . . ,P2)
= [m,X21],

where m = [Ω(D11),E22] + [D11,Ω(E22)] ∈ S11 + S22. Now, [m,X12] = [m,X21] = 0 and using
Lemma 2.1, we have P1mP1 + P2mP2 ∈ Z(S). Therefore, m = [Ω(D11),E22] + [D11,Ω(E22)] ∈ Z(S).
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Multiplying both sides by P2 yields [P2Ω(D11)P2,E22] ∈ Z(S)P2. By the Kleinecke-Shirokov theorem,
we obtain

[P2Ω (D11)P2,E22] = 0,

for any E22 ∈ Z(S22). That means P2Ω(D11)P2 ∈ Z(S22). Therefore, P2Ω(D11)P2 = z for some
z ∈ Z(S22). Multiplying P2 from both sides, we get P2Ω(D11)P2 = zP2. Now, define a map η1 : S11 →

Z(S) such that η1(D11)P2 = P2Ω(D11)P2. Hence,

Ω(D11) − η1(D11) = P1Ω(D11)P1 + P2Ω(D22)P2 − η1(D11)
= P1Ω(D11)P1 + η1(D11)P2 − η1(D11)
= P1Ω(D11)P1 − η1(D11)P1.

Therefore, P1Ω(D11)P1 − η1(D11)P1 ∈ S11. Hence, Ω(D11) − η1(D11) ∈ S11. Similarly, we can show
the result for i = 2. �

For any D = D11 + D12 + D21 + D22 ∈ S, define a mappings ψ : S → S and τ : S → Z(S)
satisfying ψ(D) =

∑2
i, j=1 φ

(
Di j

)
− f1 (D11) − f2 (D22) and τ(D) = Ω(D) − ψ(D) for any D ∈ S. It is

easy to verify that ψ has the following properties:

Lemma 3.8. For any Di j ∈ Si j, we have

(1) ψ
(
Di j

)
= Ω

(
Di j

)
∈ Si j, 1 ≤ i , j ≤ 2.

(2) ψ (Dii) ∈ Sii, i = 1, 2.
(3) ψ (D11 + D12 + D21 + D22) = ψ (D11) + ψ (D12) + ψ (D21) + ψ (D22).
(4) ψ is an additive map on Si j, 1 ≤ i , j ≤ 2.

Lemma 3.9. For Di j ∈ Si j, (1 ≤ i , j ≤ 2), we have

(1) ψ
(
DiiDi j

)
= ψ (Dii)Di j + Diiψ

(
Di j

)
.

(2) ψ
(
Di jD j j

)
= ψ

(
Di j

)
D j j + Di jψ

(
D j j

)
.

Proof. (1) Since DiiDi jPi . . . Pi = 0, (i , j), we have

ψ
(
DiiDi j

)
= φ

(
DiiDi j

)
= φ

(
Pn

(
Di j,Dii,Pi,Pi, . . . ,Pi

))
= Pn

(
φ
(
Di j

)
,Dii,Pi, . . . ,Pi

)
+ Pn

(
Di j, φ (Dii) ,Pi, . . . ,Pi

)
= Pn

(
ψ

(
Di j

)
,Dii,Pi, . . . ,Pi

)
+ Pn

(
Di j, ψ (Dii) ,Pi, . . . ,Pi

)
= Diiψ

(
Di j

)
+ ψ (Dii)Di j.

(2) By using the same approach as in (1), one can conclude that

ψ
(
Di jD j j

)
= ψ

(
Di j

)
D j j + Di jψ

(
D j j

)
.

�
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Lemma 3.10. ψ (DiiEii) = Diiψ (Eii) + ψ (Dii)Eii for any Dii,Eii ∈ Sii.

Proof. For any Xi j ∈ Si j and using Lemma 3.9, we have

DiiEiiψ
(
Xi j

)
+ ψ (DiiEii)Xi j = ψ

(
DiiEiiXi j

)
= Diiψ

(
EiiXi j

)
+ ψ (Dii)EiiXi j

= DiiEiiψ
(
Xi j

)
+ Diiψ(Eii)Xi j + ψ (Dii)EiiXi j.

Therefore, (ψ (DiiEii) − Diiψ(Eii) − ψ (Dii)Eii)Xi j = 0. By using primeness of S, we get ψ (DiiEii) −
Diiψ(Eii) − ψ (Dii)Eii) = 0. Hence, ψ (DiiEii) = Diiψ(Eii) + ψ (Dii)Eii. �

Lemma 3.11. ψ is additive.

Proof. By using Lemma 3.8, we can see thet ψ is additive on Si j. For any D11,E11 ∈ S11 and F12 ∈ S12,
we have

ψ ((D11 + E11)F12) = ψ (D11F12) + ψ (E11F12) = ψ (D11)F12 + D11ψ (F12) + ψ (E11)D12 + E11ψ (F12) .

Alternatively, we can write

ψ ((D11 + E11)F12) = ψ (D11 + E11)F12 + (D11 + E11)ψ (F12) .

From the last two expressions, we obtain

(ψ (D11 + E11) − ψ (D11) − ψ (E11))F12 = 0.

By using primeness of S, we obtain

ψ(D11 + E11) = ψ(D11) + ψ(E11).

In the similar way

ψ(D22 + E22) = ψ(D22) + ψ(E22).

Thus, for any D = D11 + D12 + D21 + D22 and E = E11 + E12 + E21 + E22, we have

ψ(D + E) = ψ(D11 + D12 + D21 + D22 + E11 + E12 + E21 + E22)
= ψ(D11 + E11) + ψ(D12 + E12) + ψ(D21 + E21) + ψ(D22 + E22)
= ψ(D11 + D12 + D21 + D22) + ψ(E11 + E12 + E21 + E22)
= ψ(D) + ψ(E).

This completes the proof. �

Lemma 3.12. For any Di j ∈ Si j with E ji ∈ S ji, (1 ≤ i , j ≤ 2, ) the following holds true:

ψ
(
Di jE ji

)
= ψ

(
Di j

)
E ji + Di jψ

(
E ji

)
.
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Proof. Since D21E12X12(−P1) . . . (−P1) = 0, we have

Ω(Pn(D21,E12,X12, (−P1), . . . , (−P1)))
= Ω(−D12E21X12 − X12D12E12)
= Ω(Pn(D21,E12,X12, (−P1), . . . , (−P1))
= Ω(−E12D21X12) −Ω(X12D21E12)
= −ψ(E12D21X12) − ψ(X12D21E12)
= −ψ(E12D21)X12 − E12D21ψ(X12) − ψ(X12)D21E12 − X12ψ(D21E12).

On the other hand, we have

Ω(Pn(D21,E12,X12, (−P1), . . . , (−P1)))
= Pn(Ω(D21),E12,X12, (−P1), . . . , (−P1))

+Pn(D21,Ω(E12),X12, (−P1), . . . , (−P1))
+Pn(D21,E12,Ω(X12), (−P1), . . . , (−P1))

= Pn(ψ(D21),E12,X12, (−P1), . . . , (−P1))
+Pn(D21, ψ(E12),X12, (−P1), . . . , (−P1))
+Pn(D21,E12, ψ(X12), (−P1), . . . , (−P1))

= −E12ψ(D21)X12 − X12Ψ(D21)E12

−ψ(E12)D21X12 − X12D21ψ(E12)
−E12D21ψ(X12) − ψ(X12)D21E12.

From the above two equations, we obtain

(ψ(E12D21) + E12ψ(D21) + ψ(E12)D21)X12 = X12(ψ(D21E12) + D21ψ(E12) + ψ(D21)E12). (3.2)

Also, since E12D21X21(−P2) . . . (−P2) = 0, we have

Ω(Pn(E12,D21,X21, (−P2), . . . , (−P2))
= Ω(−D21E12X21 − X21E12D21)
= Ω(−D21E12X21) −Ω(X12E12D21)
= −ψ(D21E12X21) − ψ(X12E12D21)
= −ψ(D21E12)X21 −D21E12ψ(X21) − ψ(X21)E12D21 − X21ψ(E12D21).

On the other hand, we have

Ω(Pn(E12,D21,X21, (−P2), . . . , (−P2)))
= Pn(Ω(E12),D21,X21, (−P2), . . . , (−P2))

+Pn(E12,Ω(D21),X21, (−P2), . . . , (−P2))
+Pn(E12,D21,Ω(X21), (−P2), . . . , (−P2))

= Pn(ψ(E12),D21,X21, (−P2) . . . (−P2))
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+Pn(E12, ψ(D21),X21, (−P2), . . . , (−P2))
+Pn(E12,D21, ψ(X21), (−P2), . . . , (−P2))

= −D21ψ(E12)X21 − X21Ψ(E12)D21

−ψ(D21)E12X21 − X21E12ψ(D21)
−D21E12ψ(X21) − ψ(X21)E12D21.

By comparing the above two equations, we obtain

(−ψ(D21E12) + D21ψ(E12) + ψ(D21)E12)X21 = X21(ψ(E12D21) − E12ψ(D21) − ψ(E12)D21). (3.3)

By using Eqs (3.2) and (3.3), we obtain

ψ(D12E21) −D12ψ(E21) − ψ(D12)E21 ∈ Z(S).

Assume that ψ(D12E21) −D12ψ(E21) − ψ(D12)E21 = α(D12,E21) for any α(D12,E21) ∈ Z(S11). Now

α(X11D12,E21) = ψ(X11D12E21) − X11D12ψ(E21) − ψ(X11D12)E21

= ψ(X11)D12E21 + X11ψ(D12E21) − X11D12ψ(E21)
−ψ(X11)D12E21 − X11ψ(D12)E21

= X11(ψ(D12E21) − ψ(D12)E21 −D12ψ(E21)).

Also, S11α(D12,E21) is a central ideal in S11. As S11 contains no nonzero central ideal. Therefore,
α(D12,E21) = 0. Hence,

ψ(D12E21) = D12ψ(E21) + ψ(D12)E21.

By using the same approach, one can also prove the result for i = 2, j = 1. �

Proof of Theorem 3.1. It follows by Lemmas 3.9–3.12 that ψ is an additive derivation. For D ∈ S, we
have

Θ(D) = Ω(D) + [D,M] = ψ(D) + τ(D) + [D,M] = d(D) + τ(D),

where M = P1Θ (P1)P2 − P2Θ (P1)P1 and d(D) is a derivation. It only remains to prove τ vanishes at
(n − 1)th commutator, i.e., we show that τ(Pn(D1,D2, . . . ,Dn)) = 0 for all D1,D2, . . . ,Dn ∈ S. By
using Lemma 3.8, we obtain

τ(Pn(D1,D2, . . . ,Dn))
= Ω(Pn(D1,D2, . . . ,Dn)) − ψ(Pn(D1,D2, . . . ,Dn))

=

n∑
i=1

Pn (D1, . . . ,Di−1,Ω (Di) ,Di+1, . . . ,Dn) −
n∑

i=1

Pn (D1, . . . ,Di−1,Ψ (Di) ,Di+1, . . . ,Dn)

=

n∑
i=1

Pn (D1, . . . ,Di−1, ψ (Di) ,Di+1, . . . ,Dn) −
n∑

i=1

Pn (D1, . . . ,Di−1,Ψ (Di) ,Di+1, . . . ,Dn)

= 0.

This completes the proof of Theorem 3.1 here. �
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