
The global climate has undergone great changes in recent decades, which has a significant impact on the vegetation system, especially in arid and semi-arid areas. Based on a dynamic model, this paper studied the response of vegetation pattern to climate change in Qinghai Lake, a typical semi-arid region. The conditions for Turing instability of the equilibrium were obtained by mathematical analysis. The numerical experiments showed the influence of different climitic factors (carbon dioxide concentrations [CO2], temperature and precipitation) on vegetation pattern. The results showed that the robustness of the vegetation system was enhanced as precipitation or [CO2] increased. Furthermore, we presented evolution of vegetation system under different climate scenarios to forecast the future growth of vegetation. We compared the various climate scenarios with representative concentration pathways (RCP2.6, RCP4.5, RCP8.5). The results revealed that RCP2.6 scenario was a desired climate scenario for Qinghai Lake. Our study also highlighted the measures to avoid desertification by the method of optimal control. We expect that this study will provide theoretical basis for vegetation protection.
Citation: Juan Liang, Huilian Ma, Huanqing Yang, Zunguang Guo. Response of vegetation pattern to climate change based on dynamical model: Case of Qinghai Lake, China[J]. AIMS Mathematics, 2024, 9(1): 2500-2517. doi: 10.3934/math.2024123
[1] | Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423 |
[2] | William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo . On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008 |
[3] | Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramŕez . A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators. AIMS Mathematics, 2024, 9(6): 16297-16312. doi: 10.3934/math.2024789 |
[4] | Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez . Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840 |
[5] | Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788 |
[6] | Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226 |
[7] | Awatif Muflih Alqahtani, Shahid Ahmad Wani, William Ramírez . Exploring differential equations and fundamental properties of Generalized Hermite-Frobenius-Genocchi polynomials. AIMS Mathematics, 2025, 10(2): 2668-2683. doi: 10.3934/math.2025125 |
[8] | Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim . Probabilistic type 2 Bernoulli and Euler polynomials. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696 |
[9] | Jung Yoog Kang, Cheon Seoung Ryoo . Exploring variable-sensitive q-difference equations for q-SINE Euler polynomials and q-COSINE-Euler polynomials. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812 |
[10] | Rabab Alyusof, Mdi Begum Jeelani . Some families of differential equations associated with the Gould-Hopper-Frobenius-Genocchi polynomials. AIMS Mathematics, 2022, 7(3): 4851-4860. doi: 10.3934/math.2022270 |
The global climate has undergone great changes in recent decades, which has a significant impact on the vegetation system, especially in arid and semi-arid areas. Based on a dynamic model, this paper studied the response of vegetation pattern to climate change in Qinghai Lake, a typical semi-arid region. The conditions for Turing instability of the equilibrium were obtained by mathematical analysis. The numerical experiments showed the influence of different climitic factors (carbon dioxide concentrations [CO2], temperature and precipitation) on vegetation pattern. The results showed that the robustness of the vegetation system was enhanced as precipitation or [CO2] increased. Furthermore, we presented evolution of vegetation system under different climate scenarios to forecast the future growth of vegetation. We compared the various climate scenarios with representative concentration pathways (RCP2.6, RCP4.5, RCP8.5). The results revealed that RCP2.6 scenario was a desired climate scenario for Qinghai Lake. Our study also highlighted the measures to avoid desertification by the method of optimal control. We expect that this study will provide theoretical basis for vegetation protection.
For κ∈N0,u∈C, with u≠1, the Frobenius–Euler polynomials H(κ)r(x;u) of order κ, are defined by the generating function as follows (by (see e.g., [4,14] and the references therein):
(1−uez−u)κexz=∞∑r=0H(κ)r(x;u)zrr!,|z|<|log(u)|. |
When κ=1, H(1)r(x;u):=Hr(x;u) is called the r-th Frobenius–Euler polynomials. In the special case where κ=1 and u=−1, Hr(x;−1):=Er(x) denotes Euler polynomials (see [17] and the references therein).
A remarkable amount of research has been done on polynomial families and their various extensions (see, for example, [6,8,18,21,22]). The introduction of new generalizations has been accompanied by the establishment of several fundamental properties, recurrence formulas, differential equations, and relationships between these polynomials and other families of numbers and polynomials.
The polynomials FEr[m−1,κ](x;u;γ) represent an intriguing blend of two classes of special functions: the hypergeometric Euler polynomials and the Frobenius–Euler polynomials. The notable presence of these polynomial families across diverse fields, including physical mathematics, information theory, combinatorics, approximation theory, number theory, numerical analysis, and partial differential equations, is well-documented and widely recognized. The significance of investigating the properties of the polynomials FEr[m−1,κ](x;u;γ) lies in their fundamental role in mathematical analysis, number theory, and applied sciences. These polynomials generalize various well-known polynomial families, providing deeper insights into their structural properties, recurrence relations, and differential equations. Here are some key aspects of their significance:
Unification and generalization. The study connects the generalized Apostol-type Frobenius–Euler polynomials with well-established families, such as the Stirling numbers, Apostol–Bernoulli, Apostol–Euler, Apostol–Genocchi polynomials, and classical polynomials like Fubini, Bernstein, and Hermite polynomials. This broader framework allows for new interpretations and extensions of known results.
Structural properties and recurrence relations. Establishing recurrence relations and differential equations associated with these polynomials is crucial for their computational efficiency and theoretical applications. These relations provide a foundation for deriving explicit formulas and generating functions, which are instrumental in various mathematical fields.
Connection with other special functions and polynomials. The exploration of connection formulas highlights the interplay between different polynomial families. Such connections often lead to new combinatorial identities, algebraic properties, and functional equations, which can be applied in diverse mathematical and engineering problems.
Zero distribution and graphical applications. The graphical representation and analysis of the zeros of these polynomials offer insights into their asymptotic behavior and structural patterns. Understanding the distribution of zeros is crucial in approximation theory, spectral analysis, and numerical methods.
Applications in mathematical and applied fields. The study of these polynomials can have implications in combinatorial mathematics, quantum physics, and numerical analysis. Their recurrence relations and differential properties may lead to new results in solving differential equations, signal processing, and optimization problems.
Thus, the investigation of these polynomials enriches the theory of special functions, providing new tools and results that contribute to both theoretical mathematics and practical applications.
The objective of this study is to investigate a number of properties of the polynomials FEr[m−1,κ](x;u;γ), including their connection formulas and the distribution of their zeros. The organization of this paper is as follows: In Section 2, we provide definitions and review previous results concerning Stirling numbers of the second kind, as well as generalized Apostol–Bernoulli, Apostol–Euler, Apostol–Genocchi polynomials of level m, and the Fubini, Bernstein, and Hermite polynomials. Section 3 delves into several properties of the generalized Apostol-type Frobenius–Euler polynomials, their recurrence relations, and differential equations. Section 4 presents various formulas establishing connections with other families of numbers and polynomials. Finally, Section 5 presents the graphical application for the polynomials so that the zeros of the function and how the nets are formed for different n can be studied.
Throughout this paper, adherence is observed to the following standard conventions: The set of natural numbers is denoted by N=1,2,3,… The set of non-negative integers is denoted by N0=0,1,2,… represents the set of non-negative integers; Z refers to the set of integers; R denotes the set of real numbers, and C stands for the set of complex numbers. When referring to the complex logarithm, we adopt the principal branch, and for expressions of the form w=zκ, we denote the single branch of the multi-valued function w=zκ such that 1κ=1.
The Stirling numbers S(r,s) of the second kind are defined by (see [19, p. 78]):
(ez−1)ss!=∞∑r=sS(r,s)zrr!,zr=r∑s=0S(r,s)z(z−1)⋯(z−s+1), | (2.1) |
so that
S(r,1)=S(r,r)=1,S(r,r−1)=(r2). |
On the other hand, Açíkgöz et al. [2, Eq (2.12)] defined the generalized (p,q)–Stirling numbers S[m−1]p,q(r;k;γ) of the second kind by means of the generating function
(γezp,q−∑m−1h=0zh[h]p,q!)υ[υ]p,q!=∞∑r=0S[m−1]p,q(r;υ;γ)zr[r]p,q!, |
when q⟶p=1, we obtain
(γez−∑m−1h=0zhh!)υυ!=∞∑r=0S[m−1](r;υ;γ)zrr!. | (2.2) |
Note that, when m=γ=1, the above expression reduces to Eq (2.1).
The generating function of the two-variable Fubini polynomials is given by (see [13]):
exz1−y(ez−1)=∞∑r=0Fr(x;y)zrr!. |
Note that Fr(0;y):=Fr(y) and Fr(0;1):=Fr.
The Bernstein polynomials Bs,r(x), of degree r, are defined by employing the following generating function (see [1,3]):
(zx)ss!e(1−x)z=∞∑r=sBs,r(x)zrr!,s∈N0, | (2.3) |
where
Bs,r(x)=(rs)xs(1−x)r−s. |
For mathematical convention, we usually set Bs,r(x)=0 if s>r.
The generating function of the ordinary Hermite polynomials is defined by (see [10]):
e2xz−z2=∞∑r=0Hr(x)zrr!, |
so that
Hr(x)=r![r2]∑s=0(−1)s(2x)r−2s(r−2s)!s!, |
where [r2] is the truncated part of r2.
Let γ∈C,κ∈N0, a,c∈R+ the generalized Apostol–Euler E[m−1,κ]r(x;c,a;γ) polynomials of order κ, are defined respectively (cf. [5,7,15]):
∞∑r=0E[m−1,κ]r(x;c,a;γ)zrr!=(2mγcz+∑m−1h=0(zlna)hh!)κcxz. | (2.4) |
When c=a=e, we arrive at the following:
E[m−1,κ]r(x;e,e;γ):=E[m−1,κ]r(x;γ). |
Recently, Quintana et al. [9] introduced some properties and recurrence formula of generalized Euler polynomials E[m−1]r(x) of level m. Also, they provided the following expression:
ez+m−1∑h=0zhh!=∞∑n=0(1+ar,m)zrr!, |
where
ar,m={1,if 0≤r<m,0,if r≥m. |
Motivated by these papers, we define the generalized Apostol-type Frobenius–Euler polynomials of order κ and level m.
Definition 3.1. For a fixed m∈N, κ,r∈N0, γ∈C,u∈C∖{1}, the generalized Apostol-type Forbenius–Euler polynomials of order κ and level m are defined by the following generating function, in a suitable neighborhood of z=0:
((1−u)mγez−um−1∑l=0zll!)κexz=∞∑r=0FEr[m−1,κ](x;u;γ)zrr!. | (3.1) |
Upon setting x=0 in (3.1), we have
FEr[m−1,κ](0;u;γ):=FEr[m−1,κ](u;γ), |
called the generalized Apostol-type Frobenius–Euler numbers of order κ and level m.
Taking u=−1 in (3.1), we obtain the generalized Apostol–Euler polynomials E[m−1,κ]r(x;c,a;γ); when c=a=e. Compare [15, p. 55],
FEr[m−1,κ](x;−1;γ)=E[m−1,κ]r(x;e,e;γ):=E[m−1,κ]r(x;γ). |
According to Definition 3.1, we remark that
FEr[m−1,1](x;u;γ):=FEr[m−1](x;u;γ),FEr[0,κ](x;u;γ):=FEr(κ)(x;u;γ):=H(κ)r(x;u;γ),FEr[0,1](x;u;γ):=FEr(x;u;γ):=Hr(x;u;γ). |
For example, the first four generalized Apostol-type Frobenius–Euler polynomials of order κ and level m=3 are:
FE0[2,κ](x;u;γ)=(1−u)3κ(γ−u)κ,FE1[2,κ](x;u;γ)=(x−κ)(1−u)3κ(γ−u)κ,FE2[2,κ](x;u;γ)=(x−κ)2(1−u)3κ(γ−u)κ,FE3[2,κ](x;u;γ)=[(uκ3−γκ3−uκ)+(3κ2γ−3κ2u)x+(3κu−3κγ)x2+(γ−u)x3](1−u)3κ(γ−u)κ+1. |
Upon setting κ=γ=1 and u=−1 above, we obtain the first four generalized Euler polynomials of level m=3 (see [9, p. 47]).
Performing some manipulations on the generating function (3.1), we have
((1−u)mγez−um−1∑l=0zll!)κexz=((1−u)m2m(−u))κ(2m(−γu)ez+m−1∑l=0zll!)κexz, |
and thus,
FEr[m−1,κ](x;u;γ)=((1−u)m2m(−u))κE[m−1,κ]r(x,−γu). |
The proposition 3.1 provides some properties of the generalized Apostol-type Frobenius–Euler polynomials FEr[m−1,κ](x;u;γ) without proofs since they can easily be proved through Definition 3.1.
Proposition 3.1. For a fixed m∈N, let {FEr[m−1,κ](x;u;γ)}∞r=0 be the sequence of the generalized Apostol-type Frobenius–Euler polynomials, of order κ and level m. Then the following identities hold true:
(1) Special value. For every r∈N0
FEr[m−1,0](x;u;γ)=xr. | (3.2) |
(2) Summation formula. For every r∈N0
FEr[m−1,κ](x;u;γ)=r∑s=0(rs)FEr−s[m−1,κ](u;γ)xk. |
(3) Differential relation. For a fixed m∈N, κ,γ∈C and r,j∈N0 with 0≤j≤r, we have
DxFEr+1[m−1,κ](x;u;γ)=(r+1)FEr[m−1,κ](x;u;γ), |
D(j)xFEr[m−1,κ](x;u;γ)=r!(r−j)!FEr−j[m−1,κ](x;u;γ). | (3.3) |
(4) Integral formula. For a fixed m∈N, κ,γ∈C, we have
∫x1x0FEr[m−1,κ](x;u;γ)dx=FEr+1[m−1,κ](x1;u;γ)−FEr+1[m−1,κ](x0;u;γ)(r+1). |
(5) Addition theorems.
FEr[m−1,κ](x+y;u;γ)=r∑s=0(rs)FEr−s[m−1,κ](x;u;γ)ys, | (3.4) |
FEr[m−1,κ](x+y;u;γ)=r∑s=0(rs)FEs[m−1,κ](u;γ)(x+y)r−s. |
Setting y=1 in (3.4), we have
FEr[m−1,κ](x+1;u;γ)=r∑s=0(rs)FEr−s[m−1,κ](x;u;γ). |
(6) Addition theorems of the argument.
FEr[m−1,κ±β](x+y;u;γ)=r∑s=0(rs)FEr−s[m−1,κ](x;u;γ)FEs[m−1,±β](y;u;γ). |
(7) We have
E[m−1]r(x;γ)=2mγm−1(γ+1)mFEr[m−1](x;−γ−1;1). |
Proposition 3.2. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following inversion formula:
xr=1(1−u)mr∑s=0(rs)(γ−uas,m)FEr−s[m−1](x;u;γ), | (3.5) |
where
as,m={1,if0≤s<m,0,ifs≥m. |
Proof. Setting κ=1 in (3.1), we have
(1−u)mexz=(γez−um−1∑l=0zll!)(∞∑r=0FEr[m−1](x;u;γ)zrr!)=(∞∑r=0(γ−uar,m)zrr!)(∞∑r=0FEr[m−1](x;u;γ)zrr!), |
therefore,
(1−u)m∞∑r=0xrzrr!=∞∑r=0r∑s=0(rs)(γ−uas,m)FEr−s[m−1](x;u;γ)zrr!. |
By comparing the coefficients of zrr! on both sides, we obtain the result.
Proposition 3.3. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following relations:
γFEr[m−1,κ](x+1;u;γ)−umin(r,m−1)∑s=0(rs)FEr−s[m−1,κ](x;u;γ)=(1−u)mFEr[m−1,κ−1](x;u;γ), | (3.6) |
γFEr[m−1,κ](x;u;γ)−umin(r,m−1)∑s=0(rs)FEr−s[m−1,κ](x−1;u;γ)=(1−u)mFEr[m−1,κ−1](x−1;u;γ). | (3.7) |
Upon setting κ=1, in (3.6), we give the following corollary.
Corollary 3.1.
xr=1(1−u)m[γr∑s=0(rs)FEk[m−1](x;u;γ)−umin(r,m−1)∑s=0(rs)FEr−s[m−1](x;u;γ)]. |
Proof. (3.6). We have
∞∑r=0(γFEr[m−1,κ](x+1;u;γ)−umin(r,m−1)∑s=0(rs)FEr−s[m−1,κ](x;u;γ))zrr!=γ∞∑r=0FEr[m−1,κ](x+1;u;γ)zrr!−u∞∑r=0min(r,m−1)∑s=0(rs)FEr−s[m−1,κ](x;u;γ)zrr!=γ∞∑r=0FEr[m−1,κ](x+1;u;γ)zrr!−um−1∑l=0zll!∞∑r=0FEr[m−1,κ](x;u;γ)zrr!. |
Now, using (3.1), we obtain
γ∞∑r=0FEr[m−1,κ](x+1;u;γ)zrr!−um−1∑l=0zll!∞∑r=0FEr[m−1,κ](x;u;γ)zrr!=γ((1−u)mγez−um−1∑l=0zll!)κe(x+1)z−um−1∑l=0zll!((1−u)mγez−um−1∑l=0zll!)κexz=((1−u)mγez−um−1∑l=0zll!)κexz(γez−um−1∑l=0zll!)=(1−u)m((1−u)mγez−um−1∑l=0zll!)κ−1exz, |
thus
(1−u)m((1−u)mγez−um−1∑l=0zll!)κ−1exz=(1−u)m∞∑r=0FEr[m−1,κ−1](x;u;γ)zrr!. |
Comparing the coefficients of zrr!, we obtain (3.6).
Proof. For the proof of (3.7), a similar scheme to the previous one is used.
Theorem 3.1. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following relation, with u≠1:
γFEr[m−1,κ](x+1;u;γ)−uFEr[m−1,κ](x;u;γ)(1−u)=r∑s=0(rs)FEk[m−1,κ](x;u;γ)FEr−s(−1)(u;γ). |
Proof.
∞∑r=0(γFEr[m−1,κ](x+1;u;γ)−uFEr[m−1,κ](x;u;γ))zrr!=γez∞∑r=0FEr[m−1,κ](x;u;γ)zrr!−u∞∑r=0FEr[m−1,κ](x;u;γ)zrr!=∞∑r=0FEr[m−1,κ](x;u;γ)zrr!(γez−u)=(1−u)∞∑r=0FEr[m−1,κ](x;u;γ)zrr!∞∑r=0FEr[0,−1](u;γ)zrr!. |
Applying the Cauchy product in the above equation and comparing the coefficients of zrr! on both sides, we obtain the proof.
Theorem 3.2. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following identity:
γFEr[m−1](x+1;u;γ)−umin(r,m−1)∑s=0(rs)FEr−s[m−1](x;u;γ)=r∑s=0(rs)(γ−uas,m)×FEr−s[m−1](x;u;γ), |
where
as,m={1,if 0≤s<m,0,if s≥m. |
Proof. To prove Theorem 3.2, it is enough to use Definition 3.1 and perform the necessary mathematical calculations, which lead directly to the desired result.
Theorem 3.3. The following implicit summation formula for the generalized Apostol-type Frobenius–Euler polynomials holds true:
FEs+l[m−1,κ](w+y;u;γ)=s,l∑r,n=0(sr)(ln)(w−x)r+nFEs+l−r−n[m−1,κ](x+y;u;γ). | (3.8) |
Proof. From (3.1), we have
((1−u)mγez−um−1∑l=0zll!)κe(x+y)z=∞∑r=0FEr[m−1,κ](x+y;u;γ)zrr!, |
substituting z by z+a in the above equation, we obtain
((1−u)mγe(z+a)−um−1∑l=0(z+a)ll!)κex(z+a)ey(z+a)=∞∑r=0FEr[m−1,κ](x+y;u;γ)(z+a)rr!. |
Now, using the following formula [20, p. 52]:
∞∑N=0f(N)(x+y)NN!=∞∑s,lf(s+l)xsyls!l!, | (3.9) |
we obtain
((1−u)mγe(z+a)−um−1∑l=0(z+a)ll!)κey(z+a)=e−x(z+a)∞∑s,l=0FEs+l[m−1,κ](x+y;u;γ)zsals!l!. |
Replacing x by w in the above equation and equating the resultant equation to the above equation, we obtain
e(w−x)(z+a)∞∑s,l=0FEs+l[m−1,κ](x+y;u;γ)zsals!l!=∞∑s,l=0FEs+l[m−1,κ](w+y;u;γ)zsals!l!,∞∑N=0(w−x)N(z+a)NN!∞∑s,l=0FEs+l[m−1,κ](x+y;u;γ)zsals!l!=∞∑s,l=0FEs+l[m−1,κ](w+y;u;γ)zsals!l!. | (3.10) |
Recalling (3.9), the left-hand side of (3.10) becomes
∞∑N=0(w−x)N(z+a)NN!∞∑s,l=0FEs+l[m−1,κ](x+y;u;γ)zsals!l!=∞∑r,n=0(w−x)r+nzranr!n!∞∑s,l=0FEs+l[m−1,κ](x+y;u;γ)zsals!l!=∞∑s,l=0s,l∑r,n=0(w−x)r+nr!n!FEs−r+l−n[m−1,κ](x+y;u;γ)zsal(s−r)!(l−n)!=∞∑s,l=0s,l∑r,n=0(sr)(ln)(w−x)r+nFEs+l−r−n[m−1,κ](x+y;u;γ)zsals!l!. |
Comparing coefficients, we get the assertion (3.8).
Theorem 3.4. The following relation for the generalized Apostol-type Frobenius–Euler polynomials holds true:
(2u−1)r∑j=0min(j,m−1)∑s=0(rj)(js)FEr−j[m−1](u;γ)FEj−s[m−1](x;1−u;γ)=umFEr[m−1](x;u;γ)−(1−u)mFEr[m−1](x,1−u;γ). | (3.11) |
Proof. We set
(2u−1)(1−u)mumexz∑m−1l=0zll!(γez−u∑m−1l=0zll!)(γez−(1−u)∑m−1l=0zll!)=(1−u)mumexz(γez−u∑m−1l=0zll!)−(1−u)mumexz(γez−(1−u)∑m−1l=0zll!). | (3.12) |
On the left-hand side of (3.12), we deduce
(2u−1)(1−u)mumexz∑m−1l=0zll!(γez−u∑m−1l=0zll!)(γez−(1−u)∑m−1l=0zll!)=(2u−1)(1−u)m∑m−1l=0zll!(γez−u∑m−1l=0zll!)(1−(1−u))mexz(γez−(1−u)∑m−1l=0zll!)=(2u−1)∞∑r=0r∑j=0(rj)FEr−j[m−1](u;γ)min(j,m−1)∑s=0(js)FEj−s[m−1](x;1−u;γ)zrr!. |
On the right-hand side of (3.12), we obtain
(1−u)mumexz(γez−u∑m−1l=0zll!)−(1−u)mumexz(γez−(1−u)∑m−1l=0zll!)=um∞∑r=0FEr[m−1](x;u;γ)zrr!−(1−u)m∞∑r=0FEr[m−1](x;1−u;γ)zrr!=∞∑r=0(umFEr[m−1](x;u;γ)−(1−u)mFEr[m−1](x;1−u;γ))zrr!. |
Comparing coefficients yields (3.11).
Theorem 3.5. For the generalized Apostol-type Frobenius–Euler polynomials, we have the following recurrence relation:
FEr+1[m−1,κ](x;u;γ)=(x−κ)FEr[m−1,κ](x;u;γ)−uκr!(1−u)m(m−1)!(r+1−m)!×FEr+1−m[m−1,κ+1](x;u;γ). | (3.13) |
Upon setting m=γ=1 and u=−1 in (3.13), we obtain:
E(κ)r+1(x)=(x−κ)E(κ)r(x)+κ2E(κ+1)r(x), |
where E(κ)r+1(x), is the Euler polynomial of order κ and degree r+1 (see [11, p. 3258]).
Proof. Let us consider the following generating function
G[m−1,κ](x;z;u;γ)=((1−u)mγez−u∑m−1h=0zhh!)κexz. |
Then, the differentiation of both sides of the above equation
∂∂zG[m−1,κ](x;z;u;γ)=κ((1−u)mγez−u∑m−1k=0zhh!)κ−1[−(1−u)m(γez−u∑m−2k=0zhh!)(γez−u∑m−1h=0zhh!)2]exz+x((1−u)mγez−u∑m−1h=0zhh!)κexz=(x−κ)G[m−1,κ](x;z;u;γ)−uκzmG[m−1,κ](x;z;u;γ)G[m−1](0;z;u;γ)(1−u)m(m−1)!z, |
and consequently
(1−u)m(m−1)!z∂∂zG[m−1,κ](x;z;u;γ)=(1−u)m(m−1)!z(x−κ)G[m−1,κ](x;z;u;γ)−uκzmG[m−1,κ](x;z;u;γ)G[m−1](0;z;u;γ). | (3.14) |
Now, differentiating with respect to z on the right-hand side of (3.1) and using (3.14), we obtain
(1−u)m(m−1)!z∂∂zG[m−1,κ](x;z;u;γ)=(1−u)m(m−1)!∞∑r=0rFEr[m−1,κ](x;u;γ)zrr!. | (3.15) |
On the other hand, we have
(1−u)m(m−1)!z(x−κ)G[m−1,κ](x;z;u;γ)=(1−u)m(m−1)!(x−κ)×∞∑r=0rFEr−1[m−1,κ](x;u;γ)zrr! | (3.16) |
and
uκzmG[m−1,κ](x;z;u;γ)G[m−1](0;z;u;γ)=uκ∞∑r=mr!(r−m)!r−m∑s=0(r−ms)FEr−m−s[m−1](u;γ)FEs[m−1,κ](x;u;γ)zrr!. | (3.17) |
Substitution of (3.15)–(3.17) into (3.14) and equating coefficients of power series on both sides, the proof is complete.
Theorem 3.6. For the generalized Apostol-type Frobenius–Euler polynomials, we have the following differential equation:
[(x−κ)Dx−uκ(1−u)m(m−1)!r+1−m∑s=0FEr+1−m−s[m−1](u;γ)(r+1−m−s)!Dr−s+1x−r]×FEr[m−1,κ](x;u;γ)=0. | (3.18) |
Proof. Applying the factorization method (see [12,16]) and using (3.3), we can rewrite (3.13) as follows:
FEr+1[m−1,κ](x;u;γ)=[(x−κ)−uκ(1−u)m(m−1)!r+1−m∑s=0FEr+1−m−s[m−1](u;γ)(r+1−m−s)!Dn−kx]×FEr[m−1,κ](x;u;γ). | (3.19) |
Therefore, the operator
L+r,m=[(x−κ)−uκ(1−u)m(m−1)!r+1−m∑s=0FEr+1−m−s[m−1](u;γ)(r+1−m−s)!Dr−sx], |
where
Dr−sx:=dr−sdxr−s. |
Now, applying the operator L−r+1:=1r+1Dx on both sides of (3.19), we have
(L−r+1L+r,m)FEr[m−1,κ](x;u;γ)=FEr[m−1,κ](x;u;γ). |
Finally, after some rearrangements of terms, we achieve the desired result.
In this section, we present some formulas connecting the generalized Apostol-type Frobenius–Euler polynomials with generalized Stirling numbers of the second kind, the two-variable Fubini polynomials, Bernstein polynomials, and Hermite polynomials.
Theorem 4.1. Let m∈N, υ,j∈N0. The following relations are demonstrated between the generalized Frobenius with Euler polynomials of the Apostol type and the generalized Stirling numbers of the second kind:
xn=υ!(u(1−u)m)υr∑j=0(rj)FEj[m−1,υ](x;u;γ)S[m−1](r−j,υ,γu), | (4.1) |
FEr[m−1,κ−υ](x;u;γ)=υ!(u(1−u)m)υr∑j=0(rj)FEj[m−1,κ](x;u;γ)S[m−1](r−j,υ,γu). | (4.2) |
Proof. (4.1). Indeed,
((1−u)mγez−um−1∑l=0zll!)υexz=∞∑r=0FEr[m−1,υ](x;u;γ)zrr!, |
exz=∞∑r=0FEr[m−1,υ](x;u;γ)zrr!(γez−um−1∑l=0zll!)υ(υ!υ!(1−u)mυ)=υ!∞∑r=0FEr[m−1,υ](x;u;γ)zrr!(γuez−m−1∑l=0zll!)υυ!(u(1−u)m)υ. |
Now, using (2.2), we have
∞∑r=0xrzrr!=υ!(u(1−u)m)υ∞∑r=0FEr[m−1,υ](x;u;γ)zrr!∞∑r=0S[m−1](r;υ;γu)zrr!=υ!(u(1−u)m)υ∞∑r=0r∑j=0(rj)FEj[m−1,υ](x;u;γ)S[m−1](r−j;υ;γu)zrr!. |
Finally, comparing the coefficients, we obtain the assertion (4.1).
Corollary 4.1. We have
FEr[m−1,−υ](x;u;γ)=υ!(u(1−u)m)υr∑j=0(rj)S[m−1](r−j,υ,γu)xj. |
Proof. If we set κ=0 in (4.2) and use Eq (3.2), we complete the proof of the corollary.
Proposition 4.1. Let m∈N and r∈N0. The following relationships have been established between the generalized Apostol-type Frobenius–Euler polynomials and the two-variable Fubini polynomials, the Bernstein polynomials, the Stirling polynomials of the second kind of level m, and the Hermite polynomials:
FEr[m−1,κ](x;u;γ)=r∑s=0(rs)FEr−s[m−1,κ](u;γ)[(1+w)Fs(x,w)−wFs(x+1,w)],Bs,r(x)=xsr−s∑n=0(r−sn)(rs)FEr−s−n[m−1,−υ](u;γ)FEn[m−1,υ](1−x;u;γ),Br,s(x)=xsυ!(u(1−u)m)υr−s∑j=0(r−sj)(rs)FEr−s−j[m−1,κ](1−x;u;γ)S[m−1](j;υ,γu),FEr[m−1,κ](x;u;γ)=[r2]∑s=0r−2s∑j=0(r−2sj)(r2s)(2s)!s!FEj[m−1,κ](u;γ)Hr−2s−j(x2). |
This section presents an application due to the zero distributions of this new class of generalized Apostol-type Frobenius–Euler polynomials.
To study the zero distributions using (3.1) and Mathematica Wolfram, we show the zero patterns. We show plots of zero distributions; to plot these, we give values to the coefficients of the Apostol-type Frobenius–Euler polynomials {m→3,u→2,κ→2,γ→4}, and the equation used is:
exz(4ez−2(1+z+z22))2. | (5.1) |
We give values for n (10, 20, 30, 50), and we have the plots.
In Figure 1 the plots are organized as 1(a) black dots for 10 points, in 1(b) blue dots for 20 points, in 1(c) red dots for 30 points, and 1(d) green dots for 50 points, the shape of these plots seems like a fish. At the same time, as we increase the dots, we can see a more defined shape, and in the plot 1(d), here we see two dots around (-10, -20) and (-10, 20).
Another interesting application is the induced mesh of generalized Apostol-type Frobenius–Euler polynomials for different numbers of n (3.1) FEr[m−1,κ]=0.
In Figure 2, we show four graphs representing the mesh distribution by z-coefficient equal to 10, 20, 30 and 50, respectively. As we increase the z-value, we notice that it forms a cone shaped. In Figure 2(a), there are black dots for 10 points, and in Figure 2(d) green dots for 50 points, we see a more defined mesh shape.
Then, based on the Apostol-type Frobenius–Euler polynomials. We computed an approximate solution that satisfies them, FEr[m−1,κ] for n=2,3,...,10. The results are presented in Table 1.
n | x |
1 | 0.817219 |
2 | 0.820808 - 0.817211 i, 0.820808 + 0.817211 i |
3 | 0.585556 - 1.48212 i, 0.585556 + 1.48212 i, 1.31145 |
4 | 0.239933 - 2.06742 i, 0.239933 + 2.06742 i, 1.42216 - 0.730256 i, 1.42216 + 0.730256 i |
5 | -0.181558 - 2.59823 i, -0.181558 + 2.59823 i, 1.3582 - 1.38743 i, 1.3582 + 1.38743 i, 1.79663 |
6 | -0.762338 - 3.3425 i, -0.762338 + 3.3425 i, -0.567434, 1.92081 - 2.62112 i, |
1.92081 + 2.62112 i, 3.28321 | |
7 | -1.27326 - 3.64882 i, -1.27326 + 3.64882 i, -0.567429, 1.26675 - 3.3269 i, |
1.26675 + 3.3269 i, 3.28321 + 1.43895 i, 3.29972 + 1.43895 i | |
8 | -1.73694 - 4.00473 i, -1.73694 + 4.00473 i, -0.567428, 0.608126 - 3.82671 i, |
0.608126 + 3.82671 i, 2.90345 + -2.584355 i, 2.90345 + 2.58435 i, 3.91179 | |
9 | -2.23827 - 4.43454 i, -2.23827 + 4.43454 i, -0.567428, -0.0245166 - 4.13057 i, |
-0.0245166 + 4.13057 i, 2.34366 + -3.41153 i, 2.34366 + 3.41153 i, | |
3.99888 - 1.34432 i, 3.99888 + 1.34432 i | |
10 | -2.70965 - 5.20815 i, -2.70965 + 5.20815 i, 0.117982 - 3.44461 i, |
0.117982 + 3.44461 i, 2.47995 + -1.59536 i, 2.47995 + 1.59536 i, | |
4.37324, 4.94372, 5.45324 -1.86857 i, 5.45324 + 1.86857 i |
This paper introduces a novel category of generalized Apostol-type Frobenius with Euler polynomials and investigates their intricate mathematical properties in detail using generating function techniques. A significant contribution of this study is the establishment of their associated differential equation through the factorization method, complemented by the formulation of a recurrence relation for these polynomials. Furthermore, the study derives several correlation formulas that establish a connection between these generalized polynomials and classical special functions, including the Bernstein, Fubini, and Hermite polynomials.
Moreover, graphical representations are provided by analysing the behavior of polynomial zeros and visualising their networks for specific values of n. These graphs offer insights into the structure and behavior of the polynomials and demonstrate their practical utility in modeling and numerical computations.
The results presented in this paper establish a solid foundation for future explorations. In the field of approximation theory, these generalized polynomials have the potential to enhance the efficacy of techniques such as spectral methods, orthogonal expansions, and the approximation of complex functions. Similarly, their associations with special polynomials demonstrate fascinating avenues for the advancement of number theory, particularly concerning modular forms, integer sequences, and combinatorial identities. Finally, the factorization and recurrence approaches adopted here could inspire new developments in classical analysis and symbolic computation, rendering these polynomials a promising tool for further interdisciplinary research.
Letelier Castilla: Conceptualization, Data curation, Investigation, Resources, Validation, Writing original draft; William Ramírez: Conceptualization, Investigation, Methodology, Project administration, Software, Supervision, Writing original draft; Clemente Cesarano: Conceptualization, Data curation, Formal analysis, Funding, Supervision; Shahid Ahmad Wani: Conceptualization, Investigation, Project administration, Supervision, Writing the final version; Maria-Fernanda Heredia-Moyano: Conceptualization, Investigation, Methodology, Project administration, Software, Supervision. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Prof. Clemente Cesarano is the Guest Editor of Special Issue "Special functions and related applications" for AIMS Mathematics. Prof. Clemente Cesarano was not involved in the editorial review and the decision to publish this article.
The authors declare no competing interests.
[1] |
Z. Wu, N. E. Huang, J. M. Wallace, B. V. Smoliak, X. Chen, On the time-varying trend in global-mean surface temperature, Clim. Dynam., 37 (2011), 759–773. https://doi.org/10.1007/s00382-011-1128-8 doi: 10.1007/s00382-011-1128-8
![]() |
[2] |
J. Huang, X. Guan, F. Ji, Enhanced cold-season warming in semi-arid regions, Atmos. Chem. Phys., 12 (2012), 5391–5398. https://doi.org/10.5194/acp-12-5391-2012 doi: 10.5194/acp-12-5391-2012
![]() |
[3] |
A. Dai, Drought under global warming: A review, WIREs. Clim. Change, 2 (2011), 45–65. https://doi.org/10.1002/wcc.81 doi: 10.1002/wcc.81
![]() |
[4] | J. Hansen, R. Ruedy, M. Sato, K. Lo, Global surface temperature change, Rev. Geophys., 48 (2010). https://doi.org/10.1029/2010RG000345 |
[5] |
Z. Li, J. Gao, L. Wen, C. Zou, C. Feng, D. Li, et al., Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China, Sci. Rep., 9 (2019), 7469. https://doi.org/10.1038/s41598-019-43904-1 doi: 10.1038/s41598-019-43904-1
![]() |
[6] |
J. Gao, H. Ouyang, G. Lei, X. Xu, M. Zhang, Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigo alpine wetland, Qinghai-Tibet Plateau, Chinese Geogr. Sci., 21 (2011), 27–35. https://doi.org/10.1007/s11769-011-0439-3 doi: 10.1007/s11769-011-0439-3
![]() |
[7] |
C. Mu, T. Zhang, Q. Zhao, H. Su, S. Wang, B. Cao, et al., Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau, Agr. Forest Meteorol., 247 (2017), 252–259. https://doi.org/10.1016/j.agrformet.2017.08.009 doi: 10.1016/j.agrformet.2017.08.009
![]() |
[8] |
F. Peng, Q. G. You, M. H. Xu, X. H. Zhou, T. Wang, G. Guo, et al., Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau, Eur. J. Soil Sci., 66 (2015), 145–154. https://doi.org/10.1111/ejss.12187 doi: 10.1111/ejss.12187
![]() |
[9] |
Z. X. Xu, T. L. Gong, J. Y. Li, Decadal trend of climate in the Tibetan Plateaui-regional temperature and precipitation, Hydrol. Process., 22 (2008), 3056–3065. https://doi.org/10.1002/hyp.6892 doi: 10.1002/hyp.6892
![]() |
[10] |
G. Zhang, T. Yao, H. Xie, K. Yang, L. Zhu, C. K. Shum, et al., Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, Earth Sci. Rev., 208 (2020), 103269. https://doi.org/10.1016/j.earscirev.2020.103269 doi: 10.1016/j.earscirev.2020.103269
![]() |
[11] |
J. Wang, Q. Wu, Impact of experimental warming on soil temperature and moisture of the shallow active layer of wet meadows on the Qinghai-Tibet Plateau, Cold Reg. Sci. Technol., 90-91 (2013), 1–8. https://doi.org/10.1016/j.coldregions.2013.03.005 doi: 10.1016/j.coldregions.2013.03.005
![]() |
[12] |
W. Wan, L. Zhao, H. Xie, B. Liu, H. Li, Y. Cui, et al., Lake surface water temperature change over the Tibetan plateau from 2001 to 2015: A sensitive indicator of the warming climate, Geophys. Res. Lett., 45 (2018), 11177–11186. https://doi.org/10.1029/2018GL078601 doi: 10.1029/2018GL078601
![]() |
[13] |
G. Wang, Y. Li, Q. Wu, Y. Wang, Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau, Sci. China Ser. D, 49 (2006), 1156–1169. https://doi.org/10.1007/s11430-006-1156-0 doi: 10.1007/s11430-006-1156-0
![]() |
[14] |
X. Wu, L. Zhao, M. Chen, H. Fang, G. Yue, J. Chen, et al., Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the Central Western Qinghai-Tibet Plateau, China, Permafrost Periglac. Process., 23 (2012), 162–169. https://doi.org/10.1002/ppp.1740 doi: 10.1002/ppp.1740
![]() |
[15] |
X. Wu, H. Fang, Y. Zhao, J. M. Smoak, W. Li, W. Shi, et al., A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau, J. Geophys. Rese. Biogeo., 122 (2017), 1705–1717. https://doi.org/10.1002/2016JG003641 doi: 10.1002/2016JG003641
![]() |
[16] | S. Cao, G. Cao, Q. Feng, G. Han, Y. Lin, J. Yuan, et al., Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake, Environ. Earth Sci. 76 (2017), 210. https://doi.org/10.1007/s12665-017-6529-5 |
[17] |
X. Li, W. Liu, L. Xu, Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai-Tibet Plateau): Implications for lake evolution in arid areas, Chem. Geol., 300 (2012), 88–96. https://doi.org/10.1016/j.chemgeo.2012.01.010 doi: 10.1016/j.chemgeo.2012.01.010
![]() |
[18] |
H. Ao, C. Wu, X. Xiong, L. Jing, X. Huang, K. Zhang, et al., Water and sediment quality in Qinghai Lake, China: A revisit after half a century, Environ. Monit. Assess., 186 (2014), 2121–2133. https://doi.org/10.1007/s10661-013-3522-7 doi: 10.1007/s10661-013-3522-7
![]() |
[19] |
L. Tang, X. Duan, F. Kong, F. Zhang, Y. Zheng, Z. Li, et al., Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s, Sci. Rep., 8 (2018), 7331. https://doi.org/10.1038/s41598-018-25683-3 doi: 10.1038/s41598-018-25683-3
![]() |
[20] |
B. Chang, K. N. He, R. J. Li, Z. P. Sheng, H. Wang, Linkage of climatic factors and human activities with water level fluctuations in Qinghai Lake in the northeastern Tibetan Plateau, China, Water, 9 (2017), 552. https://doi.org/10.3390/w9070552 doi: 10.3390/w9070552
![]() |
[21] |
C. Fan, C. Song, W. Li, K. Liu, J. Cheng, C. Fu, et al., What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century?, J. Hydrol., 593 (2021), 125921. https://doi.org/10.1016/j.jhydrol.2020.125921 doi: 10.1016/j.jhydrol.2020.125921
![]() |
[22] | H. Dong, Y. Song, M. Zhang, Hydrological trend of Qinghai Lake over the last 60 years: Driven by climate variations or human activities? J. Water Climate Change, 10 (2019), 524–534. https://doi.org/10.2166/wcc.2018.033 |
[23] |
W. Zhang, S. Wang, B. Zhang, F. Zhang, Q. Shen, Y. Wu, et al., Analysis of the water color transitional change in Qinghai Lake during the past 35 years observed from Landsat and MODIS, J. Hydrol. Reg. Stud., 42 (2022), 101154. https://doi.org/10.1016/j.ejrh.2022.101154 doi: 10.1016/j.ejrh.2022.101154
![]() |
[24] |
T. Che, X. Li, R. Jin, Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data, Chin. Sci. Bull., 54 (2009), 2294–2299. https://doi.org/10.1007/s11434-009-0044-3 doi: 10.1007/s11434-009-0044-3
![]() |
[25] |
L. Feng, J. Liu, T. A. Ali, J. S. Li, J. Li, S. Kuang, Impacts of the decreased freeze-up period on primary production in Qinghai Lake, Int. J. Appl. Earth Obs., 83 (2019), 101915. https://doi.org/10.1016/j.jag.2019.101915 doi: 10.1016/j.jag.2019.101915
![]() |
[26] |
Z. Jin, C. F. You, Y. Wang, Y. Shi, Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau, Quatern. Int., 218 (2010), 151–156. https://doi.org/10.1016/j.quaint.2009.11.024 doi: 10.1016/j.quaint.2009.11.024
![]() |
[27] |
N. Zhang, X. Cao, Q. Xu, X. Huang, U. Herzschuh, Z. Shen, et al., Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation, CATENA, 210 (2022), 105892. https://doi.org/10.1016/j.catena.2021.105892 doi: 10.1016/j.catena.2021.105892
![]() |
[28] |
X. Wang, T. Liang, H Xie, X. Huang, H. Lin, Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin, J. Appl. Remote Sens., 10 (2016), 036017. https://doi.org/10.1117/1.JRS.10.036017 doi: 10.1117/1.JRS.10.036017
![]() |
[29] |
H. Zhang, L. Tian, E. Hasi, D. Zhang, W. Wu, Vegetation-soil dynamics in an alpine desert ecosystem of the Qinghai Lake watershed, northeastern Qinghai-Tibet Plateau, Front. Environ. Sci., 11 (2023), 1119605. https://doi.org/10.3389/fenvs.2023.1119605 doi: 10.3389/fenvs.2023.1119605
![]() |
[30] |
Y. Cai, J. Zhang, N. Yang, C. Zhang, C. Zhao, H. Long, Human impacts on vegetation exceeded the hydroclimate control 2 ka ago in the Qinghai Lake basin revealed by n-alkanes of loess, Palaeogeogr. Palaeocl., 607 (2022), 111269. https://doi.org/10.1016/j.palaeo.2022.111269 doi: 10.1016/j.palaeo.2022.111269
![]() |
[31] |
Z. Chen, J. Liu, L. Li, Y. P. Wu, G. Feng, Z. Qian, et al., Effects of climate change on vegetation patterns in Hulun Buir Grassland, Phys. A, 597 (2022), 127275. https://doi.org/10.1016/j.physa.2022.127275 doi: 10.1016/j.physa.2022.127275
![]() |
[32] |
G. Q. Sun, C. H. Wang, L. L. Chang, Y. P. Wu, L. Li, Z. Jin, Effects of feedback regulation on vegetation patterns in semi-arid environments, Appl. Math. Model., 61 (2018), 200–215. https://doi.org/10.1016/j.apm.2018.04.010 doi: 10.1016/j.apm.2018.04.010
![]() |
[33] |
J. Liang, C. liu, G. Q. Sun, L. li, L. Zhang, M. Hou, et al., Nonlocal interactions between vegetation induce spatial patterning, Appl. Math. Comput., 428 (2022), 127061. https://doi.org/10.1016/j.amc.2022.127061 doi: 10.1016/j.amc.2022.127061
![]() |
[34] |
Q. Xue, G. Q. Sun, C. Liu, Z. G. Guo, Z. Jin, Y. P. Wu, et al., Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment, Nonlinear Dyn., 99 (2020), 3407–3420. https://doi.org/10.1007/s11071-020-05486-w doi: 10.1007/s11071-020-05486-w
![]() |
[35] |
M. R. Aguiar, O. E. Sala, M. R. Aguiar, O. E. Sala, Patch structure, dynamics and implications for the functioning of arid ecosystems, Trends Ecol. Evol., 14 (1999), 273–277. https://doi.org/10.1016/S0169-5347(99)01612-2 doi: 10.1016/S0169-5347(99)01612-2
![]() |
[36] |
C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826–1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826
![]() |
[37] |
S. Keˊfi, M. Rietkerk, G. G. Katul, Vegetation pattern shift as a result of rising atmospheric CO_2 in arid ecosystems, Theor. Popul. Biol., 74 (2008), 332–344. https://doi.org/10.1016/j.tpb.2008.09.004 doi: 10.1016/j.tpb.2008.09.004
![]() |
[38] |
X. Tang, Y. Song, T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 86 (2016), 73–89. https://doi.org/10.1007/s11071-016-2873-3 doi: 10.1007/s11071-016-2873-3
![]() |
[39] |
W. Zuo, Y. Song, Stability and bifurcation analysis of a reaction-diffusion equation with distributed delay, Nonlinear Dyn., 79 (2015), 437–454. https://doi.org/10.1007/s11071-014-1677-6 doi: 10.1007/s11071-014-1677-6
![]() |
[40] |
M. R. Garvie, C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim., 46 (2007), 775–791. https://doi.org/10.1137/050645415 doi: 10.1137/050645415
![]() |
[41] |
S. Lee, G. Chowell, Exploring optimal control strategies in seasonally varying flu-like epidemics, J. Theor. Biol., 412 (2017), 36–47. https://doi.org/10.1016/j.jtbi.2016.09.023 doi: 10.1016/j.jtbi.2016.09.023
![]() |
[42] |
L. Chang, S. Gao, Z. Wang, Optimal control of pattern formations for an SIR reaction-diffusion epidemic model, J. Theor. Biol., 536 (2022), 111003. https://doi.org/10.1016/j.jtbi.2022.111003 doi: 10.1016/j.jtbi.2022.111003
![]() |
[43] |
L. Chang, W. Gong, Z. Jin, G. Q. Sun, Sparse optimal control of pattern formations for an SIR reaction-diffusion epidemic model, SIAM J. Appl. Math., 82 (2022), 1764–1790. https://doi.org/10.1137/22M1472127 doi: 10.1137/22M1472127
![]() |
[44] |
W. Choi, E. Shim, Optimal strategies for social distancing and testing to control COVID-19, J. Theor. Biol., 512 (2021), 110568. https://doi.org/10.1016/j.jtbi.2020.110568 doi: 10.1016/j.jtbi.2020.110568
![]() |
[45] |
S. Kim, J. Lee, E. Jung, Mathematical model of transmission dynamics and optimal control strategies for 2009 A/H1N1 influenza in the Republic of Korea, J. Theor. Biol., 412 (2017), 74–85. https://doi.org/10.1016/j.jtbi.2016.09.025 doi: 10.1016/j.jtbi.2016.09.025
![]() |
[46] |
K. E. Taylor, R. J. Stouffer, G. A. Meehl, An overview of CMIP5 and the experiment design, Bull. Amer. Meteorol. Soc., 93 (2012), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 doi: 10.1175/BAMS-D-11-00094.1
![]() |
[47] |
K. Calvin, B. Bond-Lamberty, L. Clarke, J. Edmonds, J. Eom, C. Hartin, et al., The SSP4: A world of deepening inequality, Global Environ. Chang, 42 (2017), 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010 doi: 10.1016/j.gloenvcha.2016.06.010
![]() |
[48] |
T. Zhao, L. Chen, Z. Ma, Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models, Chin. Sci. Bull., 59 (2014), 412–429. https://doi.org/10.1007/s11434-013-0003-x doi: 10.1007/s11434-013-0003-x
![]() |
[49] |
J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101. https://doi.org/10.1103/PhysRevLett.87.198101 doi: 10.1103/PhysRevLett.87.198101
![]() |
n | x |
1 | 0.817219 |
2 | 0.820808 - 0.817211 i, 0.820808 + 0.817211 i |
3 | 0.585556 - 1.48212 i, 0.585556 + 1.48212 i, 1.31145 |
4 | 0.239933 - 2.06742 i, 0.239933 + 2.06742 i, 1.42216 - 0.730256 i, 1.42216 + 0.730256 i |
5 | -0.181558 - 2.59823 i, -0.181558 + 2.59823 i, 1.3582 - 1.38743 i, 1.3582 + 1.38743 i, 1.79663 |
6 | -0.762338 - 3.3425 i, -0.762338 + 3.3425 i, -0.567434, 1.92081 - 2.62112 i, |
1.92081 + 2.62112 i, 3.28321 | |
7 | -1.27326 - 3.64882 i, -1.27326 + 3.64882 i, -0.567429, 1.26675 - 3.3269 i, |
1.26675 + 3.3269 i, 3.28321 + 1.43895 i, 3.29972 + 1.43895 i | |
8 | -1.73694 - 4.00473 i, -1.73694 + 4.00473 i, -0.567428, 0.608126 - 3.82671 i, |
0.608126 + 3.82671 i, 2.90345 + -2.584355 i, 2.90345 + 2.58435 i, 3.91179 | |
9 | -2.23827 - 4.43454 i, -2.23827 + 4.43454 i, -0.567428, -0.0245166 - 4.13057 i, |
-0.0245166 + 4.13057 i, 2.34366 + -3.41153 i, 2.34366 + 3.41153 i, | |
3.99888 - 1.34432 i, 3.99888 + 1.34432 i | |
10 | -2.70965 - 5.20815 i, -2.70965 + 5.20815 i, 0.117982 - 3.44461 i, |
0.117982 + 3.44461 i, 2.47995 + -1.59536 i, 2.47995 + 1.59536 i, | |
4.37324, 4.94372, 5.45324 -1.86857 i, 5.45324 + 1.86857 i |
n | x |
1 | 0.817219 |
2 | 0.820808 - 0.817211 i, 0.820808 + 0.817211 i |
3 | 0.585556 - 1.48212 i, 0.585556 + 1.48212 i, 1.31145 |
4 | 0.239933 - 2.06742 i, 0.239933 + 2.06742 i, 1.42216 - 0.730256 i, 1.42216 + 0.730256 i |
5 | -0.181558 - 2.59823 i, -0.181558 + 2.59823 i, 1.3582 - 1.38743 i, 1.3582 + 1.38743 i, 1.79663 |
6 | -0.762338 - 3.3425 i, -0.762338 + 3.3425 i, -0.567434, 1.92081 - 2.62112 i, |
1.92081 + 2.62112 i, 3.28321 | |
7 | -1.27326 - 3.64882 i, -1.27326 + 3.64882 i, -0.567429, 1.26675 - 3.3269 i, |
1.26675 + 3.3269 i, 3.28321 + 1.43895 i, 3.29972 + 1.43895 i | |
8 | -1.73694 - 4.00473 i, -1.73694 + 4.00473 i, -0.567428, 0.608126 - 3.82671 i, |
0.608126 + 3.82671 i, 2.90345 + -2.584355 i, 2.90345 + 2.58435 i, 3.91179 | |
9 | -2.23827 - 4.43454 i, -2.23827 + 4.43454 i, -0.567428, -0.0245166 - 4.13057 i, |
-0.0245166 + 4.13057 i, 2.34366 + -3.41153 i, 2.34366 + 3.41153 i, | |
3.99888 - 1.34432 i, 3.99888 + 1.34432 i | |
10 | -2.70965 - 5.20815 i, -2.70965 + 5.20815 i, 0.117982 - 3.44461 i, |
0.117982 + 3.44461 i, 2.47995 + -1.59536 i, 2.47995 + 1.59536 i, | |
4.37324, 4.94372, 5.45324 -1.86857 i, 5.45324 + 1.86857 i |