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Abstract: The global climate has undergone great changes in recent decades, which has a significant
impact on the vegetation system, especially in arid and semi-arid areas. Based on a dynamic model,
this paper studied the response of vegetation pattern to climate change in Qinghai Lake, a typical semi-
arid region. The conditions for Turing instability of the equilibrium were obtained by mathematical
analysis. The numerical experiments showed the influence of different climitic factors (carbon dioxide
concentrations [CO2], temperature and precipitation) on vegetation pattern. The results showed that the
robustness of the vegetation system was enhanced as precipitation or [CO2] increased. Furthermore, we
presented evolution of vegetation system under different climate scenarios to forecast the future growth
of vegetation. We compared the various climate scenarios with representative concentration pathways
(RCP2.6, RCP4.5, RCP8.5). The results revealed that RCP2.6 scenario was a desired climate scenario
for Qinghai Lake. Our study also highlighted the measures to avoid desertification by the method of
optimal control. We expect that this study will provide theoretical basis for vegetation protection.
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1. Introduction

Modern climate change is a world problem that is paid general attention to by all of mankind.
Global climatic variability not only affects the living environment of human beings, but also affects
the world economic development and social progress. Over the past 100 years, the global climate
has been facing a dramatic change distinguished by temperature increasing [1–4], which was related
to both natural factors and human activities. The global surface temperature between 2011 and 2020
was 1.1(◦C) greater than that between 1850 and 1900. From 1975 to 2014, CO2 concentrations [CO2]
increased from 280 ppm to 387ppm [5]. Observational data from China indicates that the increase rate
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of the annual average temperature in China was much faster than the world during the last 50 years,
especially the Tibetan Plateau [6, 7].

The Qinghai-Tibetan Plateau (QTP) has become one of the most typical areas affected by climate
change [8]. That is because the QTP is the highest altitude region in the middle latitudes of the world,
and the high latitudes and high elevations are more susceptible to global warming. In recent decades,
the QTP has undergone rapid warming, and the warming rate is almost twice that of the world [9]. The
precipitation has increased over the decades, which contributes to the rising of water levels and lakes
expanding [10]. The climate change of the QTP has a great impact on the adjacent areas and serves
as an indicator of global climate change [11]. The researches on climate change in the (QTP) have
achieved abundant results [12–15].

Qinghai Lake, which is the biggest salt lake in China, is located in the northeast edge of the QTP
at an altitude of about 3,200m, with longitude from 99◦36′E to 100◦47′E and latitude from 36◦32′N
to 37◦15′N [16], as shown in Figure 1. Qinghai Lake is a natural barrier for controlling the eastward
spread of desertification in the western region, while it lies in a monsoon transitional zone, and it is a
famous tourism resort in China [17]. The average depth of the lake is 21 meters and the maximum depth
exceeds 29 meters [18]. In the past 50 years, the average temperature in Qinghai Lake area increased
by 0.319(◦C) every 10 years [19]. It is a typical semi-arid region, Its heterogeneous environments are
vulnerable to global climate variability and the ecosystem is fragile [20].

Figure 1. The location of Qinghai Lake.

In recent decades, Qinghai Lake has attracted increased attention [21–26]. Additionally, there have
been some studies on the vegetation of Qinghai Lake. Zhang et al. studied vegetation change in the
Qinghai Lake watershed by conducting pollen-based vegetation reconstruction at an archaeological
site [27]. Wang et al. studied the relationship between grassland vegetation and climatic parameters
in Qinghai Lake. The result showed that the main reason for the improvement of vegetation cover in
the Qinghai Lake basin was the increase of precipitation [28]. The plant community characteristics
of different sand-forming communities in the largest desert area on the East Coast of Qinghai Lake
were studied and the results showed that species diversity of plant community and herb coverage were
positively correlated with dune stability [29]. Cai et al. studied the effects of human activities and
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climate change on vegetation in Qinghai Lake basin [30]. We can see that most of the current researches
on vegetation of the Qinghai Lake are based on observation data and statistical methods, paying little
attention to spatial distribution and the growth of vegetation based on pattern dynamics. The evolution
law of vegetation pattern can be qualitatively analyzed based on dynamic equation [31–35]. Therefore,
in this paper, we present a reaction-diffusion equation and apply the pattern dynamics theory to reveal
characteristics of temporal and spatial distribution of vegetation.

The study aims to address the question as follows: (1) How to establish a suitable vegetation-
cilimitic dynamics model? (2) How do different climitic factors affect the growth of vegetation? (3)
How will the vegetation pattern transform under different climate scenarios? (4) What are the measures
to prevent desertification? In this study, the conditions of steady-state bifurcation are obtained via
theoretical analysis. Moreover optimal control theory provides a framework for avoiding desertification
of the ecosystem. Finally, we employ numerical simulations to verify the response of the vegetation
system to climate change that aim to try to avoid desertification and enhance the robustness of the
ecosystem.

2. The model

2.1. Model derivation

Water is an essential condition for maintaining the normal physiological function of vegetation.
Water resource for vegetation growth mainly comes from precipitation. When rain falls to the ground,
some water seeps into the soil and is absorbed by vegetation, then some forms surface runoff. Taken
together, Klausmeier established a vegetation-water model in 1999 [36]:∂N

∂t = RJWN2 − MN + DN∆N,
∂W
∂t = A − LW − RWN2 + V ∂W

∂X ,
(2.1)

where N and W represent the biomass of vegetation and water, respectively. A is the precipitation, the
evaporation rate of water is L, vegetation takes up water at rate RWN2, J is the rate of conversion of
biomass per unit of water consumption, the natural mortality rate of vegetation is M, DN is the diffusion
coefficient of vegetation and water flows downhill at speed V .

It is worth mentioning that the shading effect of vegetation can reduce the evaporation rate of water.
Here, we mainly consider the growth of vegetation on flat ground. At the same time, the carbon
gain generated by photosynthesis promotes plant growth and the carbon loss generated by respiration
consumes vegetation biomass. Most of the water absorbed by vegetation is lost to the atmosphere in
the form of water vapor through transpiration. The major factors affecting these three physiological
processes are [CO2] and temperature. Therefore, based on model (2.1) and the above facts, the dynamic
model of vegetation and water is established as follows:∂N

∂t = Cg − RespN + DN∆N,
∂W
∂t = A − (1 − ρN)W − Er + DW∆W,

(2.2)

where ρ is the reduced evaporation rate of vegetation due to shading. DW is the diffusion coefficient
of water. The amount of vegetation growth Cg due to photosynthesis can be given by the following
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expression [37]:

Cg = Ca(1 −
Ci

Ca
)C1Rgco2WN2,

where Ca is environmental CO2 concentration, C1 is the photosynthetic conversion coefficient of plant
biomass and Ci is the available CO2 concentration between canopy cells. The rate of vegetation loss
due to respiration Resp can be approximated by a Michaelis M10 function [37]:

Resp = BRM
T−10

10
10 ,

where BR describes the basic respiration per unit biomass.
Er stands for transpiration of vegetation, which can describe the difference between saturation

specific humidity, and actual specific humidity and the expression for Er is as follows [37]:

Er ≈ gcanopy(q∗ − qa), (2.3)

where gcanopy is for canopy water transfer, which is related to water absorbed by vegetation, and q is
the dimensionless specific humidity. Based on the above analysis, let

gcanopy = gH2ORWN2 = γgCO2RWN2,

where gH2O is the maximum conductivity to H2O and CO2, respectively and γ is the conversion
coefficient of diffusivity difference between CO2 and H2O.

In (2.3), specific humidity is defined as follows: q =
ρv

ρd
, where ρv(kgm−3) and ρd(kgm−3) represent

the density of water vapor and dry air, respectively. According to Dalton’s law, there are

ρd =
P − s
RdTa

, ρv =
0.622s
RdTa

,

where P is atmospheric pressure, s is the pressure of steam, Rd is a constant and Ta is the absolute
temperature. We assume that p is large enough and has q∗ = 0.622s∗

P . According to the above analysis,
Er can be obtained:

Er = Rγgco2WN2 0.622
P

s∗(1 −
s
s∗

).

According to the Clausius-Clapeyron function, the saturated vapor pressure is determined:

s∗(T ) = 0.611exp(
17.502T

T + 240.97
).

Let relative humidity be Rh =
s

s∗
and one has

Er = Rγgco2WN2 0.622
P

s∗(1 − Rh)).

Based on the above analysis, we obtained a bivariate dynamics model to study the vegetation growth
in Qinghai Lake: 

∂N
∂t

= JRgco2WN2 − RespN + DN∆N in U = Ω × (0,T ),
∂W
∂t

= A − (1 − ρN)W − Rγgco2qWN2 + DW∆W in U,
(2.4)

with J = Ca(1 − Ci
Ca

)C1 and q = 0.622
P e∗(1 − Rh)). See appendix A for explanations of parameters in the

model (2.4).
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2.2. Stability analysis

In this subsection, we shall demonstrate the occurrence of the Turing pattern by stability analysis
for system (2.4). The steady states of (2.4) are

E0 = (0, A),

E1 = (
ARgco2 J + Respρ +

√
Φ

2γqRespRgco2

,
ARJgco2 + Respρ −

√
Φ

2gco2RJL
),

E2 = (
ARgco2 J + Respρ −

√
Φ

2γqRespRgco2

,
ARJgco2 + Respρ +

√
Φ

2gco2RJL
),

where Φ = (ARJgco2 + ρResp)2 − 4Rγgco2qR2
esp, E1 and E2 only exist if Φ > 0. E0 is the bare ground

equilibrium.
In what follows, the stability of the steady states will be discussed. We assume the condition Φ > 0

holds so that E1 and E2 are biologically meaningful.
Let

F(N,W) = JRgco2WN2 − RespN,G(N,W) = A − LW − Rγqgco2WN2.

The linearization of (2.4) at E∗ is (
∂N
∂t
∂W
∂t

)
= D∆

(
N
W

)
+ M

(
N
W

)
(2.5)

with

D∆ =

(
DN∆ 0

0 DW∆

)
,M =

(
a11 a12

a21 a22

)
,

where
a11 = 2gco2 JRN∗W∗ − Resp, a12 = gco2 JRN∗2,

a21 = −2gco2γqRN∗W∗, a22 = −gco2γqRN∗2 − L.

Consider the spatially heterogeneous perturbations [38, 39]:(
N
W

)
=

(
N∗
W∗

)
+

(
c1

c2

)
eλt+iκx + c.c + O(ε2),

where κ is a wave-number and λ reprsents a growth rate of perturbation in t. Substituting the above
formula into (2.5), the characteristic equation is given:

detM =

∣∣∣∣∣∣ a11 − DNκ
2 − λ a12

a21 a22 − DWκ
2 − λ

∣∣∣∣∣∣ = 0. (2.6)

It follows from (2.6) that the characteristic equation of (2.5) is:

λ2 + β1(κ)λ + β2(κ) = 0,

where
β1(κ) = a11 + a22 − (DN + DW)κ2,

β2(κ) = DN DWκ
4 − (a11DW + a22DN)κ2 + a11a22 − a12a21.

In accordance with the above derivation, our result reads as follows.
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Theorem 2.1. Suppose that Φ > 0, then the bare-soli steady state E0 is always stable and the positive
steady state E2 is unstable.

Proof. The characteristic equation corresponding to the bare-soli steady state E0 is

λ2 + β1(κ)λ + β2(κ) = 0,

where
β1(κ) = (DN + DW)κ2 + Resp + 1,

β2(κ) = (DNκ
2 + Resp)(DWκ

2 + 1).

It is easy to see that β1(κ) > 0 and β2(κ) > 0 (κ = 0, 1, 2...). Therefore, E0 is always stable. Analogously,
the characteristic equation is as follows for E2:

λ2 + β1(κ)λ + β2(κ) = 0,

where

β1(κ) = (DN + DW)κ2 +
A2J2RgCO2 − 2R3

espqγ + AJRespρ − AJ
√

Φ

2R2
espqγ

,

β2(κ) =DN DWκ
4 +

(A2J2RDNgCO2 − 2R3
espDWqγ + AJRespDNρ − AJDN

√
Φ)κ2

2R2
espqγ

+
1

2RespRgCO2qγ
(Φ − AJRespgCO2

√
Φ − Respρ

√
Φ).

It is easily seen that β2(κ) < 0 when κ = 0, then the positive steady state E2 is unstable. �

In what follows we shall analyze the dynamic behavior of E1. First, the characteristic equation is
given:

λ2 + β1(κ)λ + β2(κ) = 0,

where

β1(κ) = (DN + DW)κ2 +
A2J2RgCO2 − 2R3

espqγ + AJRespρ + AJ
√

Φ

2R2
espqγ

,

β2(κ) =DN DWκ
4 +

(A2J2RDNgCO2 − 2R3
espDWqγ + AJRespDNρ + AJDN

√
Φ)κ2

2R2
espqγ

+
1

2RespRgCO2qγ
(Φ + AJRespgCO2

√
Φ + Respρ

√
Φ).

It is easy to check that β2(0) > 0 when κ = 0. Based on the above discussion, the result reads as
follows.

Theorem 2.2. Suppose that Φ > 0 holds. If DN = DW = 0, then E2 is stable for β1(0) > 0 and unstable
for β1(0) < 0.

On the basis of the Turing theory, we can conclude that system (2.4) induces Turing pattern under
the two conditions: First, E2 is stable without diffusion; Second, E2 is unstable in the presence of
diffusion. As a result, Turing instability occurs only provided that β1(0) > 0 and β1(κ) < 0 for some
κ ∈ N+.

AIMS Mathematics Volume 9, Issue 1, 2500–2517.



2506

3. The optimal control problem

Based on the condition for Turing instability deduced in part two, the vegetation patterns with
different structures can be presented by numerical experiments. With the increase of precipitation A,
vegetation patterns change from spot structure to stripe structure (shown in Figure 2), which implies
that the robustness of the ecological system is enhanced. Therefore, we can prevent the degradation
of the vegetation ecosystem by controlling pattern formations. Here, we aim to get the stripe structure
under the case of low precipitation. The optimal control problem provides a powerful tool to realize
the aim. We regard the artificial planting rate r(x, t) as a control parameter and rewrite system (2.4) as
follows: 

∂N
∂t

= JRgco2WN2 − RespN + rN + DN∆N in U,
∂W
∂t

= A − (1 − ρN)W − Rγgco2qWN2 + DW∆W in U.
(3.1)

The set of admissible controls for r(x, t) is [40]:

Λad = {r ∈ L∞(U)|r1 < r(x, t) < r2 a.e. in U}.

The objective functional expresses a trade-off between the desired precision and a cost of
achieving such precision. Specifically, optimal control aims to lower costs (artificial planting amount)
while making the uncontrolled pattern (N(x,T ),W(x,T )) approach the target pattern (NT (x),WT (x)).
Consider the following optimal control problem:

min
r∈Λad

J[N,W] =
b1

2

∫
Ω

[N(x,T )−NT (x)]2dx+
b2

2

∫
Ω

[W(x,T )−WT (x)]2dx+
c
2

∫ T

0

∫
Ω

r2(x, t)dxdt, (3.2)

subject to 

∂N
∂t

= DN∆N + f1(n,w, r) in U,
∂W
∂t

= DW∆W + f2(n,w, r) in U,
∂N
∂n

= 0,
∂W
∂n

= 0 on U = ∂Ω × (0,T ),

N(x, 0) = N0(x),W(x, 0) = W0(x) in U,

(3.3)

where

f1(n,w, r) = JRgco2WN2 − RespN + r,

f2(n,w, r) = A − LW − Rγgco2qWN2.

J is the objective functional, NT (x) and WT (x) are the objective patterns and N(x, t) and W(x, t) are
state variables. r(x.t) is the control variable and b1, b2, c are the constant.

Next, we discuss the expression of an optimal solution.
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Constructing Lagrange functional [41–45]:

L[N,W, r, v1, v2] =J[N,W, r] +

∫ T

0

∫
Ω

[−
∂N
∂t

+ DN4N + f1(N,W, r)]v1dxdt

+

∫ T

0

∫
Ω

[−
∂W
∂t

+ DW4W + f2(N,W, r)]v2dxdt

+

∫ T

0

∫
∂Ω

(−DN
∂N
∂n

)v1dsdt +

∫ T

0

∫
∂Ω

(−DW
∂W
∂n

)v2dsdt

=J[N,W] +

∫ T

0

∫
Ω

∂v1

∂t
Ndxdt +

∫
Ω

[N(x, 0)v1(x, 0) − N(x,T )v1(x,T )]dx

+

∫ T

0

∫
Ω

DN4v1Ndxdt −
∫ T

0

∫
∂Ω

∂v1

∂n
Ndsdt +

∫ T

0

∫
Ω

f1(N,W, r)v1dxdt

+

∫ T

0

∫
Ω

∂v2

∂t
Wdxdt +

∫
Ω

[W(x, 0)v2(x, 0) −W(x,T )v2(x,T )]dx

+

∫ T

0

∫
Ω

DW4v2Wdxdt −
∫ T

0

∫
∂Ω

∂v2

∂n
Wdsdt +

∫ T

0

∫
Ω

f2(N,W, r)v2dxdt.

Here, the local optimal solution of the optimal control problem is (N∗,W∗, r∗), for any small enough
and smooth function N(x, t) with N(x, t) = 0. By calculation, one has the directional derivative of the
Lagrange functional at (N∗,W∗, r∗, v1, v2), which satisfies the following equation:

0 =LN[N∗,W∗, r∗, v1, v2]

=b1

∫
Ω

[N∗(x,T ) − NT (x)]N(x,T )dx

+

∫ T

0

∫
Ω

∂v1

∂t
Ndxdt −

∫
Ω

v1(x,T )N(x,T )dx

+

∫ T

0

∫
Ω

DN∆v1Ndxdt −
∫ T

0

∫
Ω

∂v1

∂n
Ndsdt +

∫ T

0

∫
Ω

f1,N(N∗,W∗, r∗)v1Ndxdt

+

∫ T

0

∫
Ω

f2,N(N∗,W∗, r∗)v2Ndxdt.

It follows from the arbitrariness of N(x, t) that v1 satisfies


−
∂v1

∂t
= DN∆v1 + f1,N(N∗,W∗, r∗)v1 + f2,N(N∗,W∗, r∗)v2,

∂v1

∂n
= 0,

v1(x,T ) = b1[N∗(x,T ) − NT (x)].

(3.4)

AIMS Mathematics Volume 9, Issue 1, 2500–2517.



2508

Analogously, one has

0 =LW[N∗,W∗, r∗, v1, v2]

=b2

∫
Ω

[W∗(x,T ) −WT (x)]W(x,T )dx

+

∫ T

0

∫
Ω

∂v2

∂t
Wdxdt −

∫
Ω

v2(x,T )W(x,T )dx

+

∫ T

0

∫
Ω

DW∆v2Wdxdt −
∫ T

0

∫
Ω

∂v2

∂n
Wdsdt +

∫ T

0

∫
Ω

f1,W(N∗,W∗, r∗)v1Wdxdt

+

∫ T

0

∫
Ω

f2,W(N∗,W∗, r∗)v2Wdxdt,

and 
−
∂v2

∂t
= DW∆v2 + f1,W(N∗,W∗, r∗)v1 + f2,W(N∗,W∗, r∗)v2,

∂v2

∂n
= 0,

v2(x,T ) = b2[W∗(x,T ) −WT (x)].

(3.5)

Substituting f1,N , f1,W , f2,N and f2,W into Eqs (3.4) and (3.5), the adjoint equation of (v1, v2) is:

−
∂v1

∂t
= DN∆v1 + 2W∗N∗Rgco2(Jv1 − rv2) − Respv1,

−
∂v2

∂t
= DW∆v2 + N∗2Rgco2(Jv1 − rv2) − Lv2,

∂v1

∂n
= 0,

∂v2

∂n
= 0,

v1(x,T ) = b1[N∗(x,T ) − NT (x)],
v2(x,T ) = b2[W∗(x,T ) −WT (x)].

(3.6)

Note that the allowed control set is a closed convex set. It is clear that the directional derivative of
the Lagrange functional at (N∗,W∗, r∗, v1, v2) along r − r∗ satisfies:

0 ≤Lr[N∗,W∗, r∗, v1, v2]

=c
∫ T

0

∫
Ω

r∗(r − r∗)dxdt +

∫ T

0

∫
Ω

f1,r(N∗,W∗, r∗)(r − r∗)v1dxdt

+

∫ T

0

∫
Ω

f2,r(N∗,W∗, r∗)(r − r∗)v2dxdt.

Since r is arbitrary, we substitute f1,r and f2,r into the above inequality, then the following variational
inequality can be obtained: ∫ T

0

∫
Ω

(cr∗ + N∗v1)(r − r∗)dxdt ≥ 0. (3.7)

AIMS Mathematics Volume 9, Issue 1, 2500–2517.



2509

By the variational inequality (3.7), it follows that

r∗ = P[r1,r2][−
1
c

N∗v1],

where we define the projection P as

P[r1,r2](r) = max[r1,min[r, r2]].

4. The simulation results

4.1. Response of vegetation pattern to different climatic factors

In this section, we apply the biologically realistic parameters to perform the numerical simulations
and research the response of vegetation pattern to climate change, which is based on the climatic
data from 1969–2019 of Qinghai Lake. The average values of the climatic factors (precipitation,
temperature and [CO2]) are obtained and they are 1.05(mm/d), 0.9879(◦C) and 396(ppm), respectively.
The other parameters are fixed: BR = 1,Rh = 0.4, gco2 = 10 ∗ 10−3,M10 = 1.6,R = 2.6 ∗ 10−2, γ =

2.5 ∗ 103,C1 = 12, Ci
Ca

= 0.6, ρ = 0.24,DN = 0.1,DW = 100 .

Figures 2 and 3, respectively, show the effects of precipitation and [CO2] on vegetation pattern. We
can observe that the vegetation patterns change from spot structure to stripe structure as increase of
precipitation or [CO2]. The highest density decreases gradually, the lowest density increases gradually
and the distribution of vegetation is more uniform. Figure 4 illustrates the variation of vegetation
patterns in regard to temperature. With increase of temperature, the transition of vegetation pattern
experiences stripe and spot. In contrast with the first two meteorological factors, the highest density
increases and the lowest density decreases and the distribution is more uneven, which is not conducive
to the robustness of ecosystem. The three climatic factors have different effects on the mean density
of vegetation. More precisely, the mean vegetation density is positively associated with rainfall and
[CO2], which is in contrast to temperature. This is visualized in Figure 5.

(a) (b) (c)
Figure 2. Evolution of vegetation pattern in regard to precipitation with parameters
[CO2]=396, T=0.9879. (a) A=0.8; (b) A=1.15; (c) A=1.4. As the increase of A, the
robustness of the vegetation system is enhanced.
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(a) (b) (c)
Figure 3. Evolution of vegetation pattern in regard to [CO2] with parameters A=1.05,
T=0.9879. (a) [CO2]=370; (b) [CO2]=400; (c) [CO2]=440. The increase of [CO2] improves
the robustness of the vegetation system.

(a) (b) (c)
Figure 4. Evolution of vegetation pattern in regard to T with parameters A=1.05,
[CO2]=396. (a) T=0.9; (b) T=1.05; (c) T=1.2. The increase of T accelerates degradation
of the vegetation system.
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Figure 5. The effects of different climitic factors on mean vegetation density.

4.2. Prediction of vegetation pattern under different climate scenarios

In this section, we devote to forecast the future vegetation growth in Qinghai Lake area under three
different climate scenarios. The three climate scenarios are simulated data selected from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) which has three representative concentration paths
(RCP2.6, RCP4.5 and RCP8.5) [46–48]; see Table 1 for an introduction of CMIP5.
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Table 1. The interpretation of different climate scenarios in CMIP5.

Scenario Interpretation [CO2] in 2100yr
RCP2.6 low radiative forcing scenario 440
RCP4.5 middle radiative forcing scenario 610
RCP8.5 high scenario with radiative forcing 1170

We adopt linear regression analysis to statistical temperature, [CO2] and rainfall data under three
different scenarios to obtain climate change trends. The results are visualized in Table 2. Temperature
and [CO2] increase under the three climate scenarios, and rainfall increases in RCP4.5 and RCP8.5. To
predict the future evolution of vegetation pattern in regard to different climate scenarios, Figure 6 shows
the variation of vegetation pattern. We can observe that vegetation pattern transitions with the increase
of time in RCP2.6: Stripes → gap → uniform, which indicates that the robustness of the vegetation
system is increasing. This is reasonable to infer that the increased robustness of the vegetation system
is due to the increase of precipitation and [CO2]. Compared with RCP2.6, the spatial distribution
structure changes from stripe to spot in RCP4.5 and RCP8.5, which implies that the ecosystem may
undergo degradation, which can finally lead to desertification.

Table 2. The change rate of three climitic factors in different scenarios.

Scenario A(mm/d) T(◦C ) [CO2](ppm)
RCP2.6 0.002 0.0089 0.42
RCP4.5 -0.170 0.0273 2.10
RCP8.5 -0.471 0.0576 7.70

(a)

(b)

(c)
Figure 6. Evolution of vegetation pattern in regard to different times in different scenarios.
(a) RCP2.6; (b) RCP4.5; (c) RCP8.5. From left to right, the corresponding time t (year) are
t=2030, 2050, 2080 and 2100.
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4.3. The optimal control

In order to increase the resilience of degraded ecosystem and avoid the occurrence of desertification,
we offer the optimal conservation strategy−human activity (e.g. artificial planting). As illustrated in
Figure 2, the transformation from stripe pattern to spot pattern occurs with decreasing precipitation,
and spot structure can serve as an early warning signal of the catastrophic shift [49]. Moreover, the
precipitation has a significant impact on the spatial distribution structure of vegetation. Choose a
pattern structure corresponding to A = 1.3 as the target pattern, which represents a robust ecological
structure. In Figure 7, the snapshots of the optimal control r(x, t) and the associated state variable
N(x, t) at rainfall A = 0.8 and 1.15 are presented, respectively. Consequently, artificial planting is an
effective way to transform the vegetation pattern into an ideal state.

(a) target

(b) A = 0.8 A = 1.15

Figure 7. (a) The target pattern when A = 1.3. (b) The optimal control r (top) and the
controlled solution N (bottom) when A = 0.8 and A = 1.15, respectively.

5. Conclusions and discussion

For the last few decades, global climate has been facing a great change. The vegetation system
exhibits a sensitive response to climate change, especially in arid and semi-arid regions. In this
paper, we chose Qinghai Lake as the study area, which is a typical semi-arid area, and studied the
response of vegetaion pattern to climate change. We developed a vegetation-water system (2.4) with
climatic factors by the zero-flux Neumann conditions and investigated the dynamical behavior. First,
we showd the stability of the constant equilibria for (2.4) without diffusion. Moreover, we analyzed the
spatiotemporal dynamics at the constant equilibria with diffusion. The conditions for Turing instability
of the positive constant equilibrium were obtained in the framework of Turing principle.

Our findings in numerical results revealed that the variation of data for climatic factors had a major
impact on vegetation pattern. As precipitation or [CO2] increased, the robustness of the vegetation
system was enhanced and the mean density increased. Unlike the first two climatic factors, rising
temperatures not only lead to the emergence of spot pattern, but also reduced the mean density of
vegetation and accelerated the degradation of the vegetation system. Furthermore, in order to forecast
the future vegetation growth in Qinghai Lake, we presented evolution of the vegetation system under
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different climate scenarios. The results showed that the vegetation system collapses to desertification
state in the future in RCP4.5 and RCP8.5 scenarios. This results from the synergy of precipitation,
temperature and [CO2]. Compared to RCP4.5 and RCP8.5, due to the dual effects of the increase of
precipitation and [CO2], RCP2.6 is a desired climate scenario for Qinghai Lake.

A direction for further study is how to timely avoid desertification. Owing to the method of optimal
control, we can induce phase transitions between different vegetation pattern through human activities,
such as artificial planting. More precisely, any presented pattern structure (e.g. spot pattern, strip
pattern, and gap pattern) can be transformed into a desired pattern (see the Figure 7). As a result,
artificial planting contributes to guarding against desertification of vegetation systems, even in low-
rainfall regions. The result certifies the effectiveness of the optimal-control method in respect of
prevention and control desertification.

This study highlighted the response of vegetation to climate change (precipitation, temperature
and [CO2] from modeling point of view. It is necessary to take other climatic factors into account,
for instance, light, evaporation and humidity. Based on the seasonality of climate change, another
aspect for future work would be to consider the nonautonomous systems; that is, all climatic factors
considered in the model are coupled as a function of time. Furthermore, previous work has revealed that
spot structure can provide early warning signal for catastrophic shift [49], which is from a qualitative
point of view. From the quantitative perspectives, we expect to propose a quantifiable indicator for
desertification evaluation, and this is also one of the key points for future research.
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Appendix A. Model notation and interpretation

Parameter Interpretation Unit
gco2 Maximal leaf conductance to CO2 mod m−2d−1

γ Conversion coefficient from maximal leaf mm m−2mol−1

conductance to water vapor to maximal
leaf conductance CO2

Ca Ambient CO2 concentration mol mol−1

Ci Intercellular CO2 concentration mol mol−1

C1 Coefficient of conversion of photosynthesis (mol) into biomass (g) g mol−1

BR Respiration per unit of biomass d−1

s∗(T ) Saturated vapor pressure kPa
s(T ) Vapor pressure at T kPa
Rh Relative humidity e(T )

e∗(T ) -
R The water uptake by roots mm/d
P The ground pressure kPa
ρ Reduced evaporation rate of vegetation due to shading -
T Temperature ◦C
A Rainfall (mmd)−1

t time d
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