Research article

An efficient variant of the greedy block Kaczmarz algorithm for solving large linear systems

  • Received: 06 November 2023 Revised: 11 December 2023 Accepted: 19 December 2023 Published: 25 December 2023
  • MSC : 65F10, 65F20, 15A06

  • By exploiting the concept of row partitioning, we propose an efficient variant of the greedy block Kaczmarz algorithm for solving consistent large linear systems. The number of blocks is determined a priori through numerical experiments. The new algorithm works with a reduced linear system, which dramatically diminishes the computational overhead per iteration. The theoretical result validates that this method converges to the unique least-norm solution of the linear system. The effectiveness of the proposed algorithm is also justified by comparing it with some block Kaczmarz algorithms in extensive numerical experiments.

    Citation: Ke Zhang, Hong-Yan Yin, Xiang-Long Jiang. An efficient variant of the greedy block Kaczmarz algorithm for solving large linear systems[J]. AIMS Mathematics, 2024, 9(1): 2473-2499. doi: 10.3934/math.2024122

    Related Papers:

  • By exploiting the concept of row partitioning, we propose an efficient variant of the greedy block Kaczmarz algorithm for solving consistent large linear systems. The number of blocks is determined a priori through numerical experiments. The new algorithm works with a reduced linear system, which dramatically diminishes the computational overhead per iteration. The theoretical result validates that this method converges to the unique least-norm solution of the linear system. The effectiveness of the proposed algorithm is also justified by comparing it with some block Kaczmarz algorithms in extensive numerical experiments.



    加载中


    [1] A. Agaskar, C. Wang, Y. M. Lu, Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities, 2014 IEEE Global Conference on Signal and Information Processing (Global-SIP), 389–393. https://doi.org/10.1109/GlobalSIP.2014.7032145
    [2] Z. Z. Bai, X. G. Liu, On the Meany inequality with applications to convergence analysis of several row-action iteration methods, Numer. Math., 124 (2013), 215–236. https://doi.org/10.1007/s00211-012-0512-6 doi: 10.1007/s00211-012-0512-6
    [3] Z. Z. Bai, L. Wang, On convergence rates of Kaczmarz-type methods with different selection rules of working rows, Appl. Numer. Math., 186 (2023), 289–319. https://doi.org/10.1016/j.apnum.2023.01.013 doi: 10.1016/j.apnum.2023.01.013
    [4] Z. Z. Bai, W. T. Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra Appl., 553 (2018), 252–269. https://doi.org/10.1016/j.laa.2018.05.009 doi: 10.1016/j.laa.2018.05.009
    [5] Z. Z. Bai, W. T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 40 (2018), A592–A606. https://doi.org/10.1137/17M1137747 doi: 10.1137/17M1137747
    [6] Z. Z. Bai, W. T. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl. Math. Lett., 83 (2018), 21–26. https://doi.org/10.1016/j.aml.2018.03.008 doi: 10.1016/j.aml.2018.03.008
    [7] Z. Z. Bai, W. T. Wu, Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory, Jpn. J. Ind. Appl. Math., 40 (2023), 1421–1443. https://doi.org/10.1007/s13160-023-00586-7 doi: 10.1007/s13160-023-00586-7
    [8] E. Bodewig, Bericht über die verschiedenen Methoden zur Lösung eines System linearer Gleichungen mit reellen Koeffizienten, Cons. Naz. Ric., 324 (1948), 441–452.
    [9] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [10] J. Q. Chen, Z. D. Huang, On a fast deterministic block Kaczmarz method for solving large-scale linear systems, Numer. Algorithms, 89 (2022), 1007–1029. https://doi.org/10.1007/s11075-021-01143-4 doi: 10.1007/s11075-021-01143-4
    [11] T. A. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM T. Math. Software, 38 (2011), 1–25. https://doi.org/10.1145/2049662.2049663 doi: 10.1145/2049662.2049663
    [12] K. Du, W. T. Si, X. H. Sun, Randomized extended average block Kaczmarz for solving least squares, SIAM J. Sci. Comput., 42 (2020), A3541–A3559. https://doi.org/10.1137/20M1312629 doi: 10.1137/20M1312629
    [13] Y. C. Eldar, D. Needell, Acceleration of randomized Kaczmarz methods via the Johnson-Lindenstrauss lemma, Numer. Algorithms, 58 (2011), 163–177. https://doi.org/10.1007/s11075-011-9451-z doi: 10.1007/s11075-011-9451-z
    [14] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math., 35 (1980), 1–12. https://doi.org/10.1007/BF01396365 doi: 10.1007/BF01396365
    [15] G. E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer. Math. Soc., 59 (1953), 299–329.
    [16] R. Gordon, R. Bender, G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and $X$-ray photography, J. Theoret. Biol., 29 (1970), 471–481. https://doi.org/10.1016/0022-5193(70)90109-8 doi: 10.1016/0022-5193(70)90109-8
    [17] R. M. Gower, D. Molitor, J. Moorman, D. Needell, On adaptive sketch-and-project for solving linear systems, SIAM J. Matrix Anal. A., 42 (2021), 954–989. https://doi.org/10.1137/19M1285846 doi: 10.1137/19M1285846
    [18] R. M. Gower, P. Richtárik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal. A., 36 (2015), 1660–1690. https://doi.org/10.1137/15M1025487 doi: 10.1137/15M1025487
    [19] M. Griebel, P. Oswald, Greedy and randomized versions of the multiplicative Schwarz method, Linear Algebra Appl., 437 (2012), 1596–1610. https://doi.org/10.1016/j.laa.2012.04.052 doi: 10.1016/j.laa.2012.04.052
    [20] G. T. Herman, Fundamentals of computerized tomography: Image reconstruction from projections, 2 Eds., Springer, Dordrecht, 2009. https://doi.org/10.1007/978-1-84628-723-7
    [21] X. L. Jiang, K. Zhang, J. F. Yin, Randomized block Kaczmarz methods with $k$-means clustering for solving large linear systems, J. Comput. Appl. Math., 403 (2022), 113828. https://doi.org/10.1016/j.cam.2021.113828 doi: 10.1016/j.cam.2021.113828
    [22] S. Kaczmarz, Angenäherte Auflösung von systemen linearer gleichungen, Bull. Int. Acad. Pol. Sci. Lett. A, 35 (1937), 355–357.
    [23] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson et al., The SuiteSparse matrix collection website interface, J. Open Source Softw., 4 (2019), 1244–1248. https://doi.org/10.21105/joss.01244 doi: 10.21105/joss.01244
    [24] Y. Liu, C. Q. Gu, On greedy randomized block Kaczmarz method for consistent linear systems, Linear Algebra Appl., 616 (2021), 178–200. https://doi.org/10.1016/j.laa.2021.01.024 doi: 10.1016/j.laa.2021.01.024
    [25] C. Q. Miao, W. T. Wu, On greedy randomized average block Kaczmarz method for solving large linear systems, J. Comput. Appl. Math., 413 (2022), 114372. https://doi.org/10.1016/j.cam.2022.114372 doi: 10.1016/j.cam.2022.114372
    [26] I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. A., 40 (2019), 1425–1452. https://doi.org/10.1137/19M1251643 doi: 10.1137/19M1251643
    [27] D. Needell, J. A. Tropp, Paved with good intentions: Analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 441 (2014), 199–221. https://doi.org/10.1016/j.laa.2012.12.022 doi: 10.1016/j.laa.2012.12.022
    [28] Y. Q. Niu, B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale linear systems, Appl. Math. Lett., 104 (2020), 106294. https://doi.org/10.1016/j.aml.2020.106294 doi: 10.1016/j.aml.2020.106294
    [29] T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4 doi: 10.1007/s00041-008-9030-4
    [30] C. Tompkins, Projection methods in calculation of some linear problems, Bull. Amer. Math. Soc., 55 (1949), 520.
    [31] L. Wen, F. Yin, Y. M. Liao, G. X. Huang, A greedy average block Kaczmarz method for the large scaled consistent system of linear equations, AIMS Math., 7 (2022), 6792–6806. https://doi.org/10.3934/math.2022378 doi: 10.3934/math.2022378
    [32] G. Wu, Q. Chang, Semi-randomized block Kaczmarz methods with simple random sampling for large-scale linear systems, arXiv: 2212.08797, 2023. https://doi.org/10.48550/arXiv.2212.08797
    [33] A. Q. Xiao, J. F. Yin, N. Zheng, On fast greedy block Kaczmarz methods for solving large consistent linear systems, Comput. Appl. Math., 42 (2023), 119. https://doi.org/10.1007/s40314-023-02232-x doi: 10.1007/s40314-023-02232-x
    [34] F. Yin, B. Y. Zhang, G. X. Huang, A partially block randomized extended Kaczmarz method for solving large overdetermined inconsistent linear systems, AIMS Math., 8 (2023), 18512–18527. https://doi.org/10.3934/math.2023941 doi: 10.3934/math.2023941
    [35] K. Zhang, F. T. Li, X. L. Jiang, Multi-step greedy Kaczmarz algorithms with simple random sampling for solving large linear systems, Comput. Appl. Math., 41 (2022), 332. https://doi.org/10.1007/s40314-022-02044-5 doi: 10.1007/s40314-022-02044-5
    [36] Y. Zhang, H. Li, Block sampling Kaczmarz-Motzkin methods for consistent linear systems, Calcolo, 58 (2021), 39. https://doi.org/10.1007/s10092-021-00429-2 doi: 10.1007/s10092-021-00429-2
    [37] Y. Zhang, H. Li, Randomized block subsampling Kaczmarz-Motzkin method, Linear Algebra Appl., 667 (2023), 133–150. https://doi.org/10.1016/j.laa.2023.03.003 doi: 10.1016/j.laa.2023.03.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(847) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog