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1. Introduction

A mainstay of scientific computing is solving large linear systems of the form

Ax = b, (1.1)

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn.
In what follows, we assume that the linear system is consistent and consider only the least-norm

solution x∗. For linear systems of extremely large size, iterative methods are often the only option.
These methods date back to the early 19th century that were initiated by the work of Gauss. An
explosion of activities has been sparked ever since due to demands from the engineering and scientific
fields. Among those candidates, the Kaczmarz algorithm proposed in 1937 by Stefan Kaczmarz is one
that is still very appealing nowadays [22]. Based on the BLAS level-1 subroutines, it has successfully
found its way into a variety of applications in image reconstruction [16], computed tomography [20]
and signal processing [9], to mention a few. In its simplest form, the classical Kaczmarz algorithm is
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given as

xk+1 = xk +
b(ik) − A(ik)xk

‖A(ik)‖22

(A(ik))T , (1.2)

where A(i) denotes the ith row of the matrix A, b(i) represents the ith entry of the vector b and (A(i))T

stands for the transpose of A(i). At each iteration, the current iterate xk is projected onto the hyperplane
A(ik)x = b(ik), where the working row in (1.2) is selected cyclically by applying ik = (k mod m) + 1.

The philosophy behind the classical Kaczmarz algorithm is to apply sequences of orthogonal
projections onto hyperplanes. Its convergence is warranted. However, it is not easy to analyze
the convergence rate. For more than a decade, the classical Kaczmarz algorithm was in oblivion.
Fortunately, it resurged sporadically in the works of [8,15,30]. In 1970, it was rediscovered in the field
of electron microscopy and X-ray photography, termed the algebraic reconstruction technique [16]. A
breakthrough in the research of Kaczmarz-type algorithms is the randomized Kaczmarz algorithm,
which adopts a non-uniform selection rule by picking the working row with probability that is
proportional to the norm of the rows [29]. Agaskar et al. [1] propose a complete characterization
of the randomized Kaczmarz algorithm, which includes an exact formula for the mean squared error
and the annealed error exponent portraying its decay rate. Several approaches for determining working
rows have been proposed ever since; for instance, Bai and Wu propose a greedy randomized Kaczmarz
(GRK) method which selects the working row by applying the residual rule [5,6]. Gower et al. analyze
adaptive sampling rules in the sketch-and-project setting, with an emphasis on the distance rule [17].
Griebel and Oswald investigate the maximal residual rule that greedily chooses the subspace with the
largest residual norm for the next update [19]. Eldar and Needell consider a Johnson-Lindenstrauss-
type projection when implementing the maximal distance rule for solving linear systems [13]. More
about the selection rules for working rows and convergence analysis can be found in [3,4,7,31,34] and
the references therein.

While the selection rules for working rows are of great importance in the implementation of the
Kaczmarz-type algorithms, the idea of exploiting blocks also matters. To put it simply, the block
Kaczmarz method is an iterative scheme for solving linear systems. At each iteration step, the
block Kaczmarz algorithm projects the current iterate onto the solution space of a subset of the
constraints [27]. In [14], the coefficient matrix is partitioned by blocks of rows whose generalized
inverse is then applied in Jacobi or successive overrelaxation iterative schemes. Needell and Tropp [27]
put forward a block Kaczmarz algorithm that uses a randomized control scheme to choose the subset
per iteration. It lays the path for the research of “row paving” and is the first block Kaczmarz
method with an expected linear rate of convergence that is expressed in the geometric properties
of the matrix and its submatrices. By using the block Meany inequality, Bai and Liu [2] improve
some existing results and develop new convergence theorem for row-action iterative schemes like
the block Kaczmarz and the Householder-Bauer methods for solving large linear systems and least-
squares problems. Necoara presents a group of randomized block Kaczmarz algorithms that involve a
subset of the constraints and extrapolated step sizes [26]. Niu and Zheng investigate a block Kaczmarz
algorithm which incorporates the greedy row-selection rule [28]. To capture large block entries of
the residual vector, Liu and Gu propose a greedy randomized block Kaczmarz algorithm for solving
consistent linear systems [24]. Inspired by the work of [5], Miao and Wu present a greedy randomized
average block Kaczmarz method for solving linear systems [25]. Motivated by the Gaussian Kaczmarz
method [18] and the greedy rule for selecting working rows in [5, 6], Chen and Huang consider a
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fast deterministic block Kaczmarz method [10]. Based on the Kaczmarz-Motzkin method, Zhang
and Li develop several efficient block Kaczmarz-Motzkin variants by exploiting different sampling
strategies [36, 37]. Recently, the block Kaczmarz-type algorithms have been generalized to solve least
squares problems and linear systems with multiple right-hand sides; for instance, Du et al. [12] present
a randomized extended average block Kaczmarz algorithm that is suitable for solving least squares
problems. Wu and Chang propose semi-randomized block Kaczmarz methods with simple random
sampling for linear systems with multiple right-hand sides [32].

In this work, we propose an efficient variant of the greedy block Kaczmarz (VGBK) algorithm
for solving consistent linear systems in the form of (1.1). It proceeds with a partition of rows which
can dramatically reduce the computational complexity per iteration. Numerical experiments show that
the new algorithm is competitive with some existing block Kaczmarz-type methods. Throughout this
work, we denote by ‖A‖F the matrix Frobenius norm and ‖ · ‖2 the 2-norm of a matrix or vector if there
is no ambiguity. The notion A† defines the Moore-Penrose pseudoinverse. The symbol (·)T stands for
the transpose of a matrix or vector. The smallest nonzero singular value and its largest peer of a matrix
are represented by σmin(·) and σmax(·), respectively. Unless otherwise stated, matrices are denoted by
capital letters, while vectors are usually represented by lowercase ones; capital letters with superscripts
are occasionally used to indicate a vector, e.g., A(ik) for the ikth row of a matrix A. Scalars are usually
signified by Greek letters, except those, such as m, n, i, j, k, s and p, which are used for indexing. The
set {1, . . . ,m} is abbreviated as [m]. An empty set is denoted by ∅. An index set is usually indicated by
a calligraphic capital letter like I, whose cardinality reads as |I|.

This work is organized as follows. In Section 2, we review three related GBK-type algorithms.
In Section 3, we first make clear the motivation for this paper, and then we develop a new GBK
algorithm with analysis that includes the convergence rate and complexity. In Section 4, we present
some numerical experiments to justify the effectiveness of the proposed algorithm. In Section 5, some
conclusions and the future work are given.

2. The greedy block Kaczmarz algorithm and its efficient variants

In this section, we recapitulate the GBK algorithm [28], the fast deterministic block Kaczmarz
(FDBK) algorithm [10] and the fast greedy block Kaczmarz (FGBK) algorithm [33]. These three
algorithms facilitate the delineation of our new algorithm in Section 3.

2.1. The greedy block Kaczmarz algorithm

In the classical Kaczmarz algorithm, the current iterate xk is projected onto a single hyperplane.
In its block counterpart, however, the current iterate xk is projected onto a combination of several
hyperplanes, i.e.,

xk+1 = xk + A†
IG

k
(bIG

k
− AIG

k
xk), (2.1)

where IG
k is a set that consists of the indexed rows [14, 27]. In general, the block Kaczmarz

algorithms take advantage of the BLAS level-2 operations and benefit more from exploiting multiple
rows simultaneously.

In [28], the block technique is integrated with the idea of maximal distance, which yields the GBK
algorithm. In that setting, an index set IG

k is determined once the squared distance of the current iterate
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to the hyperplane A(ik)xk = b(ik) exceeds εk which is a parameter varying from zero to the maximal
squared distance. In what follows, we do not elaborate on the algorithmic implementation, but refer to
Algorithm 1 for details.

Algorithm 1 The GBK algorithm
Input: A, b, x0, l and α ∈ (0, 1]
Output: xl+1

1: for k = 0, 1, . . . , l do
2: Compute

εk = α · max
1≤i≤m

{
|b(i) − A(i)xk|

2

‖A(i)‖22

}
.

3: Determine the index set of positive integers

IG
k =

{
ik

∣∣∣∣ |b(ik) − A(ik)xk|
2 ≥ εk‖A(ik)‖22

}
.

4: Set xk+1 = xk + A†
IG

k
(bIG

k
− AIG

k
xk).

5: end for

The convergence result of the GBK algorithm is detailed in the following theorem.

Theorem 1. For the consistent linear system (1.1), the iterative sequence of {xk}
∞
k=0, as generated by

Algorithm 1, converges to the unique least-norm solution x∗ = A†b. For k ≥ 0, the norm of error
satisfies

‖xk+1 − x∗‖22 ≤
(
1 − βk ·

σ2
min(A)

‖A‖2F

)
‖xk − x∗‖22,

where α ∈ (0, 1], βk =
α‖A‖2F‖AIG

k
‖2F

σ2
max(AIG

k
)(‖A‖2F − ‖AIG

k−1
‖2F)

with β0 =
α‖AIG

0
‖2F

σ2
max(AIG

0
)

and σmin(·) and σmax(·) denote

the smallest nonzero and largest singular values of a matrix, respectively.

2.2. A fast deterministic block Kaczmarz algorithm

Another way to implement the block Kaczmarz algorithm is to make use of the Gaussian Kaczmarz
method [18, p. 1677] defined by

xk+1 = xk +
gT (b − Axk)
‖AT g‖22

AT g,

where g ∈ Rm is a random Gaussian vector with a zero mean and the covariance matrix being the
identity matrix.

Motivated by the Gaussian Kaczmarz method and the greedy rule for selecting working rows
in [5, 6], Chen and Huang propose the FDBK algorithm [10]. When updating the iteration, recall
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from Algorithm 1 that one needs to compute the Moore-Penrose pseudoinverse of sub-matrices of
A. In FDBK, however, one only needs to compute a linear combination of submatrices of AT . The
algorithmic implementation of FDBK is presented in Algorithm 2; see [10, Algorithm 1] for more
detail.

Algorithm 2 The FDBK algorithm
Input: A, b, x0 and l
Output: xl+1

1: for k = 0, 1, . . . , l do
2: Compute

εk =
1
2

 1
‖b − Axk‖

2
2

· max
1≤i≤m


∣∣∣b(i) − A(i)xk

∣∣∣2
‖A(i)‖22

 +
1
‖A‖2F

 ,
where A(i) draws the ith row of A and b(i) the ith entry of b.

3: Determine the index set of positive integers

IFD
k =

{
ik

∣∣∣∣|b(ik) − A(ik)xk|
2 ≥ εk‖b − Axk‖

2
2‖A

(ik)‖22

}
.

4: Compute ck =
∑

ik∈IFD
k

(
b(ik) − A(ik)xk

)
eik , where eik is the ikth canonical basis vector in Rm.

5: Set

xk+1 = xk +
cT

k (b − Axk)

‖AT ck‖
2
2

AT ck.

6: end for

The convergence result of the FDBK algorithm is wrapped up in Theorem 2.

Theorem 2. Suppose that the linear system (1.1) is consistent and there is no row with entries all zero
in A. For any initial guess x0 in the column space of AT , the iterative sequence of {xk}

∞
k=0, as generated

by Algorithm 2, converges to the unique least-norm solution x∗ = A†b, with the error satisfying

‖xk+1 − x∗‖22 ≤

1 − γk ·
‖AIFD

k
‖2F

σ2
max(AIFD

k
)
·
σ2

min(A)

‖A‖2F

 ‖xk − x∗‖22, k ≥ 0,

where

γk =
1
2

(
‖A‖2F

θk‖Aξk‖
2
F + (1 − θk)‖AIFD

k
‖2F

+ 1) ≥ 1, k ≥ 0,

with

ξk =

{
i
∣∣∣∣b(i) − A(i)xk , 0, i ∈ [m]

}
, k ≥ 0,
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and

θk =



max
i∈ξk\I

FD
k

{
|b(i) − A(i)xk|

2

‖A(i)‖22

}
max
1≤i≤m

{
|b(i) − A(i)xk|

2

‖A(i)‖22

} < 1, if IFD
k , [m] and ξk , I

FD
k , k ≥ 0,

1, otherwise.

2.3. The fast greedy block Kaczmarz algorithm

As explained in the previous two subsections, the GBK algorithm captures hyperplanes onto which
the current iterate is projected with relatively large distance, while the FDBK algorithm follows a
Gaussian Kaczmarz practice that makes use of all rows of A and b simultaneously.

In order to speed up the convergence of the GBK and FDBK algorithms, Xiao et al. [33] propose
an FGBK algorithm that exploits the advantages of the GBK and FDBK algorithms. In particular,
a parameter p is introduced to allow for more flexibility in implementing the algorithm. More
algorithmic details can be found in Algorithm 3.

Algorithm 3 The FGBK algorithm
Input: A, b, x0, α ∈ (0, 1], p ∈ [1,+∞)

1: for all k = 0, 1, 2, . . . do
2: Compute

εk = α · max
1≤i≤m

{
|b(i) − A(i)xk|

p

‖A(i)‖
p
p

}
.

3: Determine the index set of positive integers

IFG
k =

{
i
∣∣∣∣ |b(i) − A(i)xk|

p ≥ εk‖A(i)‖p
p

}
.

4: Compute ck =
∑

i∈IFG
k

(
b(i) − A(i)xk

)
ei.

5: Set

xk+1 = xk +
cT

k (b − Axk)

‖AT ck‖
2
2

AT ck.

6: end for

The convergence result of the FGBK algorithm is characterized by the following theorem [33].

Theorem 3. Suppose that the linear system (1.1) is consistent. For any initial guess x0 in the column
space of AT , the iterative sequence {xk}

∞
k=0, as generated by Algorithm 3, converges to the unique

minimum norm solution x∗ = A†b, with the error satisfying

‖xk+1 − x∗‖22 ≤ (1 − βk(α, p)σ2
min(A))‖xk − x∗‖22, k ≥ 0,

AIMS Mathematics Volume 9, Issue 1, 2473–2499.



2479

where βk(α, p) =
α

2
p∑

i∈[m]\IFG
k−1

‖A(i)‖2p
·

∑
i∈IFG

k

‖A(i)‖2p

σ2
max(AIFG

k
)
, α ∈ (0, 1] and p ∈ [1,+∞).

Remark 1. We are in a position to give some remarks on the origins of the above-mentioned block
Kaczmarz-type algorithms. In [5], Bai and Wu propose a novel GRK algorithm that outperforms the
prototypical randomized Kaczmarz algorithm in many scenarios. The GRK algorithm exploits the
greedy selection strategy prioritizing large entries of the residual vector with higher probabilities.
As shown in Algorithms 1–3, the GBK, FDBK and FGBK algorithms fall into the category of block
Kaczmarz-type algorithms. In fact, they can be regarded as extensions of the GRK algorithm with
some effective modifications. For instance, the GBK algorithm combines the maximum-distance rule
and a modified index set originating from the GRK algorithm. Following the line of the GRK algorithm,
the FDBK algorithm employs the same index set as in GRK and incorporates the idea of Gaussian-
Kaczmarz iteration.

3. An efficient variant of the greedy block Kaczmarz algorithm

In this section, we first clarify the initial rationale for developing the new algorithm, and then
we give an in-depth analysis of the algorithmic implementation as well as the theoretical results.
In Section 2, recall that two existing algorithms, i.e., GBK and FDBK, offer two different ways
to incorporate the block techniques; the GBK algorithm takes advantage of rows selected from the
index set, while the FDBK algorithm avoids the computation of the Moore-Penrose pseudoinverse and
updates the current iterate in a manner analogous to that of the Gaussian Kaczmarz method. In the
actual computations, however, both algorithms require one to find the maximum squared distance
to m hyperplanes; see Step 2 in Algorithms 1 and 2. It may pose a challenge to the numerical
performance when the size of A is huge. Now we switch tacks. Intuitively, it would be desirable
to seek the maximum distance to merely a small fraction of the hyperplanes since the computational
cost of working out the maximum distance shall be reduced. Therefore, it is interesting to investigate
the case in which these desirable attributes are merged. Motivated by this intuition, we construct an
efficient variant of the greedy block Kaczmarz (VGBK) algorithm for solving large linear system (1.1).
A complete coverage of its algorithmic implementation is displayed in Algorithm 4.

Now, let us present the details of the VGBK algorithm. To reduce the computational complexity
in computing the maximum distance, a user-prescribed row partition of the set [m] is imposed at the
outset, namely,

∪s
j=1τ j = [m], and τi ∩ τ j = ∅ for i , j,

where τ j ⊂ [m] is a subset comprising the row indices of the jth partition for j = 1, . . . , s. As for the
choices of partition before the iteration (Step 1 in Algorithm 4), several candidates are available; see,
for instance, [21, 27, 35]. In the numerical experiments, we adopt a simple approach by partitioning
[m] with τT

j = [j : s : m], where the MATLAB colon operator “:” is used to create a vector with evenly
spaced increments for j = 1, . . . , s. It should be stressed that this practice is not necessarily the optimal
one, but it turns out to be quite successful as compared with other block Kaczmarz algorithms; see the
numerical examples in Section 4. The following toy example gives the reader a sense of the appearance
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of the partitioning. Assume that m = 11 and s = 3. It follows from the above discussion that

τ1 = {1, 4, 7, 10}, τ2 = {2, 5, 8, 11}, τ3 = {3, 6, 9}.

The corresponding partitions of A and b can thus be given; for example, if A ∈ R11×5, then Aτ3 ∈ R
3×5,

assembled by A(3, :), A(6, :) and A(9, :), is the third submatrix (block) from the partition.
After the partition, we have at hand s submatrices Aτ1 , . . . , Aτs that mimic the coefficient matrix A.

Assume that there are no rows with entries all zero in A and, thus, ‖Aτ j‖2 , 0 for j = 1, . . . , s. We
select cyclically the index for the working submatrix Aτ jk

and vector bτ jk
with jk = (k mod s) + 1. It

turns out that the maximum squared distance

max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22


is now unraveled from a subset τ jk instead of [m]. Then, a set Ik is used to collect the indices ik’s of
rows when

|b(ik)
τ jk
− A(ik)

τ jk
xk|

2

‖A(ik)
τ jk
‖22

≥ α ·max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22


for α ∈ (0, 1]. It is easy to verify that Ik is a subset of τ jk and is non-empty. Inspired by the Gaussian
Kaczmarz method, we update the iterate xk+1 by

xk+1 = xk +
cT

k (bτ jk
− Aτ jk

xk)

‖AT
τ jk

ck‖
2
2

AT
τ jk

ck,

where ck =
∑

ik∈Ik

(
b(ik)
τ jk
− A(ik)

τ jk
xk

)
eik , with eik being the ith canonical basis vector in R|τ jk |.

Remark 2. We are ready to give some remarks. As introduced in Section 2, the novelty of the related
FGBK algorithm lies in the choice of exponent p, a parameter encountered in εk and the index set. At
each iteration, however, the FGBK algorithm requires one to compute the pth power of the maximum
distance to m hyperplanes, which may be increasingly time-consuming as the size of A increases; see
Algorithm 3 for more details. Such difficulty is circumvented in our VGBK algorithm since one only
needs to figure out the maximum distance from a much smaller subset τ jk per iteration. Numerical
experiments in Section 4 also corroborate that the VGBK algorithm improves upon the FGBK method
in terms of CPU time.
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Algorithm 4 A VGBK algorithm
Input: A, b, x0, α ∈ (0, 1], l and the number of blocks s
Output: xl+1

1: Partition before iteration:
Assume that τ1, . . . , τs is a user-prescribed partition of [m], i.e., ∪s

j=1τ j = [m] and τi ∩ τ j = ∅ for
i , j, where τ j ⊂ [m] is a subset comprising the row indices of the jth block for j = 1, . . . , s.

2: for k = 0, 1, . . . , l do
3: Compute the index for the working block with jk = (k mod s) + 1.
4: Compute

εk = α ·max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

 ,
where Aτ jk

∈ R|τ jk |×n and bτ jk
∈ R|τ jk | denote the submatrix and subvector with rows indexed in

the set τ jk , respectively.
5: Determine the index set of positive integers

Ik =

{
ik

∣∣∣∣ |b(ik)
τ jk
− A(ik)

τ jk
xk|

2 ≥ εk‖A(ik)
τ jk
‖22

}
.

6: Compute ck =
∑

ik∈Ik

(
b(ik)
τ jk
− A(ik)

τ jk
xk

)
eik ∈ R

|τ jk |, where eik is the ikth canonical basis vector in R|τ jk |.

7: Set

xk+1 = xk +
cT

k (bτ jk
− Aτ jk

xk)

‖AT
τ jk

ck‖
2
2

AT
τ jk

ck.

8: end for

The theorem below establishes the convergence result of the VGBK algorithm.

Theorem 4. For the consistent linear system (1.1), assume that there are no zero rows in A. Then, the
iterative sequence {xk}

∞
k=0, as generated by Algorithm 4, converges to the unique least-norm solution

x∗ = A†b in expectation for any initial guess x0 that is in the column space of AT . Moreover, the norm
of error satisfies

‖xk+1 − x∗‖22 ≤ (1 − αωk ·
σ2

min(Aτ jk
)

σ2
max(AIk)

·
‖AIk‖

2
F

‖Aτ jk
‖2F

)‖xk − x∗‖22, (3.1)

where τ jk is the partition block chosen at the kth iteration, Ik is the index set defined in Algorithm 4,
α ∈ (0, 1] and ωk ∈ (0, 1] for k = 0, 1, . . . .

Proof. The proof is partly inspired by [10, Theorem 3.1]. It follows from Steps 6 and 7 of Algorithm 4
that

xk+1 = xk +
cT

k (bτ jk
− Aτ jk

xk)

‖AT
τ jk

ck‖
2
2

AT
τ jk

ck, (3.2)

where ck =
∑

ik∈Ik

(
b(ik) − A(ik)xk

)
ei ∈ R

|τ jk |. Subtracting x∗ from both sides of (3.2) yields
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xk+1 − x∗ = xk − x∗ +
cT

k (bτ jk
− Aτ jk

xk)

‖AT
τ jk

ck‖
2
2

AT
τ jk

ck = (I − Pk)(xk − x∗), (3.3)

where Pk =
AT
τ jk

ckcT
k Aτ jk

‖AT
τ jk

ck‖
2
2

∈ Rn×n is an orthogonal projection matrix, namely, PT
k = Pk and P2

k = Pk.

From (3.2) and (3.3), we have

(xk+1 − x∗)T (xk+1 − xk) = (xk − x∗)T · (I − Pk)T ·
cT

k (bτ jk
− Aτ jk

xk)

‖AT
τ jk

ck‖
2
2

AT
τ jk

ck

= −(xk − x∗)T · (I − Pk)T · Pk(xk − x∗)
= −(xk − x∗)T · (Pk − P2

k) · (xk − x∗)
= 0,

which implies that xk+1 − x∗ is orthogonal to xk+1 − xk.
Computing the squared 2-norm of xk+1 − x∗ in (3.3), together with the use of the Pythagorean

theorem, renders

‖xk+1 − x∗‖22 = ‖(I − Pk)(xk − x∗)‖22
= ‖xk − x∗‖22 − ‖Pk(xk − x∗)‖22

= ‖xk − x∗‖22 − ‖
AT
τ jk

ckcT
k Aτ jk

‖AT
τ jk

ck‖
2
2

(xk − x∗)‖22

= ‖xk − x∗‖22 −
|cT

k (bτ jk
− Aτ jk

xk)|2

‖AT
τ jk

ck‖
2
2

. (3.4)

Let |Ik| be the number of elements in the index set Ik and Ek ∈ R
|τ jk |×|Ik | be a matrix consisting of the

canonical basis vectors eik ∈ R
|τ jk | for ik ∈ Ik. Therefore, we get

ĉk = ET
k ck ∈ R

|Ik | (3.5)

and
AIk = ET

k Aτ jk
∈ R|Ik |×n. (3.6)

In a nutshell, ĉk and AIk are condensed counterparts of ck and Aτ jk
by encapsulating rows indexed in

the set Ik. A straightforward computation using (3.5) and (3.6) yields

‖ĉk‖
2
2 = cT

k EkET
k ck = ‖ck‖

2
2 =

∑
ik∈Ik

|b(ik) − A(ik)xk|
2, (3.7)

‖AT
τ jk

ck‖
2
2 = ĉT

k ET
k Aτ jk

AT
τ jk

Ekĉk = ĉT
k AIk A

T
Ik

ĉk = ‖AT
Ik

ĉk‖
2
2 ≤ σ

2
max(AIk)‖ĉk‖

2
2, (3.8)

where σ2
max(AIk) is the largest singular value of AIk . Besides, it follows from the definition of ck

and (3.7) that
cT

k (bτ jk
− Aτ jk

xk) =
∑
ik∈Ik

|b(ik)
τ jk
− A(ik)

τ jk
xk|

2 = ‖ĉk‖
2
2. (3.9)
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Combining (3.7)–(3.9), we have

|cT
k (bτ jk

− Aτ jk
xk)|2

‖AT
τ jk

ck‖
2
2

=

∑
ik∈Ik

|b(ik)
τ jk
− A(ik)

τ jk
xk|

2‖ĉk‖
2
2

‖AT
Ik

ĉk‖
2
2

≥

∑
ik∈Ik

|b(ik)
τ jk
− A(ik)

τ jk
xk|

2‖ĉk‖
2
2

σ2
max(AIk)‖ĉk‖

2
2

=

∑
ik∈Ik

|b(ik)
τ jk
− A(ik)

τ jk
xk|

2

σ2
max(AIk)

=
∑
ik∈Ik

(
|b(ik)
τ jk
− A(ik)

τ jk
xk|

2

‖A(ik)
τ jk
‖22

·
‖A(ik)

τ jk
‖22

σ2
max(AIk)

)

≥ α ·max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

 ·
∑

ik∈Ik

‖A(ik)
τ jk
‖22

σ2
max(AIk)

. (3.10)

Moreover, ‖bτ jk
− Aτ jk

xk‖
2
2 can be recast as

‖bτ jk
− Aτ jk

xk‖
2
2 =

∑
i∈τ jk

|b(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

‖A(i)
τ jk
‖22 ≤ max

i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

 ∑
i∈τ jk

‖A(i)
τ jk
‖22,

or, equivalently,

‖bτ jk
− Aτ jk

xk‖
2
2∑

i∈τ jk

‖A(i)
τ jk
‖22

≤ max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

 . (3.11)

Denote uk = xk − x∗ and uk = uk1 + uk2, where uk1 is in the column space of AT
τ jk

and uk2 is in
the subspace orthogonal to the column space of AT

τ jk
, i.e., Aτ jk

uk2 = 0. Let ‖uk1‖
2
2 = ωk‖uk‖

2
2 with

ωk ∈ (0, 1]. Therefore,

‖bτ jk
− Aτ jk

xk‖
2
2 = ‖Aτ jk

uk‖
2
2 = ‖Aτ jk

uk1‖
2
2 ≥ σ

2
min(Aτ jk

)‖uk1‖
2
2 = ωkσ

2
min(Aτ jk

)‖uk‖
2
2.

Multiplying both sides of (3.11) with α, we attain that

α ·max
i∈τ jk

 |b
(i)
τ jk
− A(i)

τ jk
xk|

2

‖A(i)
τ jk
‖22

 ≥ α · ‖bτ jk
− Aτ jk

xk‖
2
2∑

i∈τ jk

‖A(i)
τ jk
‖22

≥
αωkσ

2
min(Aτ jk

) · ‖uk‖
2
2∑

i∈τ jk

‖A(i)
τ jk
‖22

, (3.12)

where σ2
min(Aτ jk

) is the smallest nonzero singular value of Aτ jk
.

Substituting the inequality (3.12) into (3.10) gives

|cT
k (bτ jk

− Aτ jk
xk)|2

‖AT
τ jk

ck‖
2
2

≥
αωkσ

2
min(Aτ jk

)∑
i∈τ jk

‖A(i)
τ jk
‖22

·

∑
ik∈Ik

‖A(ik)
τ jk
‖22

σ2
max(AIk)

‖uk‖
2
2. (3.13)
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Finally, it follows from (3.4) and (3.13) that

‖uk+1‖
2
2 = ‖uk‖

2
2 −
|cT

k (bτ jk
− Aτ jk

xk)|2

‖AT
τ jk

ck‖
2
2

≤ ‖uk‖
2
2 −

αωkσ
2
min(Aτ jk

)∑
i∈τ jk

‖A(i)
τ jk
‖22

·

∑
ik∈Ik

‖A(ik)
τ jk
‖22

σ2
max(AIk)

‖uk‖
2
2

= (1 −
αωkσ

2
min(Aτ jk

)∑
i∈τ jk

‖A(i)
τ jk
‖22

·

∑
ik∈Ik

‖A(ik)
τ jk
‖22

σ2
max(AIk)

)‖uk‖
2
2

= (1 − αωk ·
σ2

min(Aτ jk
)

σ2
max(AIk)

·
‖AIk‖

2
F

‖Aτ jk
‖2F

)‖uk‖
2
2,

which completes the proof. �

Remark 3. Some remarks are in order. Since ‖AIk‖
2
F ≥ σ

2
max(AIk), it follows that

1 − αωk ·
σ2

min(Aτ jk
)

σ2
max(AIk)

·
‖AIk‖

2
F

‖Aτ jk
‖2F

≤ 1 − αωk ·
σ2

min(Aτ jk
)

‖Aτ jk
‖2F

< 1, (3.14)

where α ∈ (0, 1] and ωk ∈ (0, 1]. Therefore, the VGBK algorithm converges to the least-norm solution
under the assumption of Theorem 4. A special case of the VGBK algorithm exists when the number of
blocks s = 1, i.e., Aτ jk

= A. If so, then ωk = 1; thus (3.14) is simplified to

1 − αωk ·
σ2

min(Aτ jk
)

σ2
max(AIk)

·
‖AIk‖

2
F

‖Aτ jk
‖2F

≤ 1 − α ·
σ2

min(A)

‖A‖2F
.

More generally, ifσ2
min(Aτ jk

)/‖Aτ jk
‖2F ≥ σ

2
min(A)/‖A‖2F holds in (3.14), then the inequality (3.14) reduces

to

1 − αωk ·
σ2

min(Aτ jk
)

σ2
max(AIk)

·
‖AIk‖

2
F

‖Aτ jk
‖2F

≤ 1 − αωk ·
σ2

min(A)

‖A‖2F
,

which resembles those error bounds given in Theorems 1–3. It should be noted that the condition
σ2

min(Aτ jk
)/‖Aτ jk

‖2F ≥ σ2
min(A)/‖A‖2F is not too stringent; for instance, if A is a matrix of normally

distributed random numbers, then ‖Aτ jk
‖2F/‖A‖

2
F ≈ s−1 for sufficiently large m, where s is the number

of blocks and m is the number of rows in A. Consequently, the condition σ2
min(Aτ jk

)/‖Aτ jk
‖2F ≥

σ2
min(A)/‖A‖2F holds as long as σ2

min(Aτ jk
)/σ2

min(A) & s−1. In the numerical experiments, s is always
chosen as s = b0.8%mc or s = b4%mc, which implies that s−1 approaches 0 if m is large enough. In
the implementation of the VGBK algorithm, we only work on a small fraction of A and b, instead of
exploiting the full information of A and b as done in the GBK, FDBK and FGBK methods. For this
reason, the VGBK algorithm generally requires more iteration steps than these three algorithms to
reach the required accuracy. Nevertheless, this does not necessarily imply that the VGBK algorithm
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is numerically inferior to the three counterparts. On the contrary, as we will explain soon, the VGBK
algorithm consumes far less computational cost than the other three algorithms per iteration step,
which can readily reduce the total computing time. Numerical examples in the next section also
validate that the VGBK algorithm enjoys noticeable gains in CPU time as compared to the other
three algorithms.

Before ending this section, we investigate the computational overhead of VGBK at each iteration
step. The complexities of the block Kaczmarz algorithms outlined in Section 2, including the
GBK, FDBK and FGBK algorithms, are also analyzed for comparison. For each method, the total
computational overhead per iteration consists of the cost for determining the pseudoinverse of a matrix,
finding the maximum of a vector and updating the iteration and other costs. To keep the exposition
simple, we assume that the coefficient matrix A in (1.1) is dense and p = 2 in the FGBK algorithm.
The results are tabulated in Table 1.

Table 1. Comparison of computational complexities for GBK, FDBK, FGBK and VGBK
with m-D standing for m-dimensional.

Method Pseudoinverse-free No. of finding maximums Iteration update (FLOPS) Others (FLOPS)

GBK No 1 ( m-D vector) (2|IG
k | + 1)n (2n + 3)m + 1

FDBK Yes 1 ( m-D vector) (2|IFD
k | + 4)n + 2|IFD

k | + 1 (2n + 5)m + 4
FGBK Yes 1 ( m-D vector) (2|IFG

k | + 4)n + 2|IFG
k | + 1 (2n + 3)m + 1

VGBK Yes 1 ( |τ jk |-D vector) (2|Ik| + 4)n + 2|Ik| + 1 (2n + 3)|τ jk | + 1

The second column of Table 1 indicates whether the implementation of the corresponding method
involves computing the pseudoinverse. We see that the FDBK, FGBK and VGBK algorithms are
pseudoinverse-free, while the GBK method involves computing the pseudoinverse of a submatrix of A.
The computation involving the pseudoinverse of a matrix is expensive and often constitutes the bulk of
the total computational cost. A standard work-around refers to iterative methods such as CGLS [27]. In
Table 1, we do not specify the method for addressing the pseudoinverse in GBK as we just qualitatively
point out that the GBK algorithm is not pseudoinverse-free; a detailed analysis can be made available if
the method is prescribed, such as CGLS [28, p. 5]. The third column shows the number of maximum to
be found. Take the FDBK algorithm for example. We need to figure out max1≤i≤m{|b(i) − A(i)xk|

2/‖A(i)‖22}

at Step 2 of Algorithm 2, which is equivalent to finding the maximum of an m-dimensional vector. The
fourth column displays the FLOPS needed when updating the iterate xk. The last column collects
FLOPS that are not counted in the previous three columns; for instance, in the case of FDBK, it
includes the cost of computing the parameter εk, determining the index set IFD

k and accessing the
vector ck.

In the VGBK algorithm, recall that Ik ⊂ τ jk and τ jk ⊂ [m]. It follows that |Ik| < |τ jk | � m.
Furthermore, it generally holds that |Ik| � min{|IG

k |, |I
FD
k |, |I

FG
k |} since Ik is a subset of τ jk , which

itself is a subset of [m] while IG
k , IFD

k , IFG
k are subsets of [m]. Therefore, the total cost per iteration for

the VGBK algorithm can be much less than that for its three counterparts. To see this intuitively, we
consider the number of blocks s = b0.8%mc, which is a practical choice for the overdetermined linear
system given in Section 4. Thus each block τ jk has about m/s ≈ 125 rows on average. In light of this,
the computational cost per iteration for the VGBK algorithm roughly accounts for 1/s of those for the
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GBK, FDBK and FGBK methods, which greatly reduces the computing time and offsets the excessive
iterations due to the initial partitioning. Such an advantage becomes more pronounced when m is large
since 1/s = 1/b0.8%mc goes to 0 as m increases; see Section 4 for more details.

4. Numerical experiments

In this section, some numerical experiments are presented to verify the effectiveness of the VGBK
algorithm in comparison with three block Kaczmarz counterparts, i.e., GBK [28], FDBK [10] and
FGBK [33]. All experiments were run on a laptop with an AMD R5-5600H CPU @3.30GHZ 16
GB RAM by operating MATLAB 2022a on a Windows 11 system. Numerical performance of the
four algorithms is assessed by means of the CPU time in seconds (CPU) and the number of iteration
steps (IT). To demonstrate the effectiveness, we determine the speed-up values of VGBK against GBK,
FDBK and FGBK, which are respectively defined by

speed − up1 =
CPU time of GBK

CPU time of VGBK
,

speed − up2 =
CPU time of FDBK
CPU time of VGBK

,

speed − up3 =
CPU time of FGBK
CPU time of VGBK

.

As stated in Section 1, we are only concerned with the solution of consistent linear system (1.1) in this
work. To this end, the right-hand side vector b is set to be Ax∗ in all examples, where x∗ is generated by
the MATLAB built-in function randn. The coefficient matrices A are either given by randn or taken
from real-world applications [11, 23]; see Table 2 for detailed properties of these matrices. As such,
we are guaranteed to work on the consistent linear system (1.1). The initial guess is given by x0 = 0.
All computations are terminated once the relative solution error (RSE) at the current iteration satisfies
that RSE < 10−6 or when the number of iteration steps exceeds the maximum of 200000, where

RSE =
‖xk − x∗‖22
‖x∗‖22

.

In Algorithm 4, recall that the implementation of VGBK involves two parameters, i.e., the number
of blocks s and the tuning parameter α. Numerical experiments show that the VGBK algorithm often
offers sound performance with appropriate choices of s and α. The experimental parameters in the
GBK, FDBK, FGBK and VGBK algorithms are set as follows:

I. GBK [28]: The parameter α in Algorithm 1 is chosen to be

α =
1
2

+
‖b − Axk‖

2
2

2‖A‖2F

(
max
1≤i≤m

{
|b(i) − A(i)xk|

2

‖A(i)‖22

})−1

,

which is recommended in the original work on the GBK [28].
II. FDBK [10]: Algorithm 2 is parameter-free.

III. FGBK [33]: In [33], FGBK(p) with p = 2 requires the least CPU time for most tests. Therefore,
we set p = 2. Besides, the parameter α is set to be 0.05 or 0.1, which are preferred in [33].
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IV. VGBK: The tuning parameter α and the number of blocks s are required in Algorithm 4. We set
s = b0.8%mc (overdetermined linear system), s = b4%mc (underdetermined linear system) and
α = 0.1, the reason for which is given in Examples 1–2. Here, b·c denotes the floor function.

The purpose of this section is two-fold. In Section 4.1, we look into choices of the two parameters
s and α for various types of test matrices. In Section 4.2, the numerical performance of the VGBK
algorithm is appraised by comparing it with that of the GBK, FDBK and FGBK algorithms for
abundant experiments.

Table 2. Properties of the test matrices.

Matrix Size Density cond(A) Application field
ash958 958 × 292 0.6849% 3.2014 Least Squares Problem
abtaha1 14596 × 209 1.6819% 12.2284 Combinatorial Problem
abtaha2 37932 × 331 1.0930% 12.2199 Combinatorial Problem
ch7-9-b2 17640 × 1512 0.1984% 1.6077 · 1015 Combinatorial Problem
ch8-8-b2 18816 × 1568 0.1913% 1.6326 · 1015 Combinatorial Problem
Franz10 19588 × 4164 0.1195% 1.2694 · 1016 Combinatorial Problem
mk11-b3 17325 × 6930 0.0577% 5.8553 · 1015 Combinatorial Problem
bibd 49 3 1176 × 18424 0.2551% 1.7701 Combinatorial Problem
cat ears 3 4 5226 × 13271 0.0571% 17.9503 Combinatorial Problem
GL7d25 2798 × 21074 0.1385% 1.4241 · 1019 Combinatorial Problem
df2177 630 × 10358 0.3423% 2.0066 Linear Programming Problem
lp22 2958 × 16392 0.1413% 25.7823 Linear Programming Problem
lp maros r7 3136 × 9408 0.4910% 2.3231 Linear Programming Problem

4.1. Choices of s and α

Theoretically identifying the optimal values of s and α in the VGBK method, if they exist, is not
available for now, and we shall not pursue it here. Instead, we attempt to experimentally determine
practical choices of s and α in this subsection. In Example 1, we empirically analyze the influence of
s on VGBK. In Example 2, we tackle the problem of choosing α.

Example 1. This example serves to show how the number of blocks s impacts the numerical
performance of the VGBK algorithm. For the moment, α is selected to be 0.1; numerical experiments in
Example 2 indicate that setting α = 0.1 turns out to be practical. We consider linear system (1.1) with
thin (m ≥ n) or fat (m ≤ n) coefficient matrices A which are either generated by the MATLAB function
randn or adapted from the SuiteSparse Matrix Collection [23]. Numerical results with varying values
of s are illustrated in Figures 1–3.
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Figure 1. CPU and IT results for thin coefficient matrices randn(m, 1000) with varying s for
the VGBK algorithm, where m = 2000, 3000, 4000 and 5000, respectively.
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Figure 2. CPU and IT results for fat coefficient matrices randn(1000, n) with varying s for
the VGBK algorithm, where n = 2000, 3000, 4000 and 5000, respectively.
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Figure 3. CPU and IT results for thin (abtaha1, ash958) and fat coefficient matrices
(df2177, lp maros r7) with varying s for the VGBK algorithm.
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We are now in a position to give some remarks. For either thin or fat coefficient matrices, as
demonstrated in Figures 1–3, the CPU time (though with wiggles) exhibits a roughly V-shaped curve
while the number of IT increases in general as s increases. It can be explained as follows. As for
the CPU time, if s is small, or put it another way, if each submatrix/vector associated with τ j from
the partition in the VGBK algorithm is of large size, then the computation overhead tends to increase,
which in turn may consume more CPU time. On the contrary, if s is large, i.e., each submatrix/vector
indexed in τ j is of small size, then only a linear system of small size is handled; more iterations are
required in exchange for such inexpensive computation, which probably boosts the total CPU time.
This explains why the CPU time first drops and then bounces up as s grows. Nevertheless, the scenario
for the number of IT differs. In fact, small values of s often lead to large blocks which maintain most
information of the original linear system; computation with such large blocks tends to less demanding
in the number of iterations, which is quite in line with the observations reported in Figures 1–3.

In practice, it is often the CPU time that counts. Therefore, we restrict ourselves to diminishing the
CPU time here. As portrayed in Figures 1–3, one needs to strike a balance when choosing the number
of blocks s. To this end, we pinpoint the “experimental minimum” of the CPU time by tracking the
MATLAB data tips. Take the thin matrix abtaha1 as an example; the first subplot in Figure 3 illustrates
that the“experimental minimum” of the CPU time is achieved at s = 121, with approximately 0.82%
of the row size of abtaha1 (m = 14596). For all experiments in this example, the percentage s/m
ranges from 0.37% to 1.14% for thin matrices while that for fat matrices ranges from 2.10% to 5.71%.
Heuristically, any value in the intervals [b0.37%mc, b1.14%mc] and [b2.10%mc, b5.71%mc], separately,
can be a reasonable choice for thin and fat matrices, where b·c is the floor function and m is the row
size of A. In light of this, we pick two intermediate values by setting s = b0.8%mc for overdetermined
linear systems and s = b4%mc for underdetermined ones in Examples 2–5.

Example 2. In this example, we examine how the tuning parameter α influences the numerical
performance of the VGBK algorithm. In Algorithm 4, if the value of α is large, then only a small
fraction of rows are extracted from A and b to update the iterate xk+1. To ameliorate the possible loss
of information, more iterations (and thus CPU time) are required to reach the prescribed accuracy;
see Steps 5–7 in Algorithm 4. Conversely, if α is chosen to be small, more rows will be retained, which
amounts to updating the iterate xk+1 for a relatively large linear system. As a result, the computational
overhead per iteration increases, which results in more CPU time. Such an observation tallies with
Figures 4–6 for various test matrices. Therefore, one should exercise caution in picking the value of
α. As shown in Figures 4–6, values of α that entail the least CPU time for either thin or fat matrices
lie in some neighborhood of 0.1. For this reason, the choice α = 0.1 can be practical for the VGBK
algorithm. In what follows, we assume that α = 0.1 in all experiments. It should also be stressed that
the value 0.1 is also a candidate of choice for α in the FGBK algorithm [33, Section 3].
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Figure 4. CPU and IT results for thin coefficient matrices randn(m, 3000), where m = 6000,
8000, 10000 and 12000, with varying α for the VGBK algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

3

C
P

U

A=randn(3000,n)

n=6000

n=8000

n=10000

n=12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

IT

10
4 A=randn(3000,n)

n=6000

n=8000

n=10000

n=12000
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Figure 6. CPU and IT results for thin (abtaha2, ash958) and fat coefficient matrices
(df2177, lp maros r7), with varying α for the VGBK algorithm.
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4.2. Comparison of block Kaczmarz algorithms

In this subsection, the effectiveness of the VGBK algorithm is justified by comparing it with
the GBK, FDBK and FGBK algorithms. Reminiscent of Section 4.1, we consider consistent linear
system (1.1) with coefficient matrices adapted from the MATLAB built-in function randn or the
SuiteSparse Matrix Collection [23]. The structure of this subsection is as follows. In Example 3,
we consider solving overdetermined linear system (1.1). In Example 4, we look on solving
underdetermined linear system (1.1). In Example 5, we touch upon solving linear system (1.1) with
large coefficient matrices from real-world problems.

Example 3. In this example, we are concerned with solving linear systems with thin coefficient
matrices generated by the MATLAB built-in function randn. As recommended in Examples 1 and 2,
we set s = b0.8%mc and α = 0.1 for the VGBK algorithm. The number of IT and CPU time for
the GBK, FDBK, FGBK and VGBK algorithms are tabulated in Table 3. A rough conclusion is that
FDBK, FGBK and VGBK outperform their prototype GBK in terms of CPU time; see, e.g., the case of
10000×5000 where the speed-up of VGBK against GBK is up to 13.8089. Moreover, VGBK surpasses
all block Kaczmarz peers regarding CPU time, albeit with more iteration steps. This can be interpreted
as follows. In the VGBK, we only need to work on a small linear system with just b0.8%mc rows
once the partition is applied, which dramatically reduces the computational cost (and thus CPU) per
iteration. In general, the gain in CPU time reduction becomes more pronounced as m grows. It
tends to give us a hint that the VGBK algorithm is suitable for solving large overdetermined linear
systems. Finally, we explain how the comparison with the FGBK method is made. In fact, the speed-
up3 is obtained by FGBK with less CPU time for either α = 0.05 or α = 0.1 as compared to that of
VGBK; for example, speed-up3= 2.2912 is computed from a ratio of 3.4606 to 1.5104 in the case of
10000 × 5000.

Table 3. Numerical results for overdetermined linear systems in Example 3.

m × n
m 10000 12000 14000 16000 18000 20000
n 5000 5000 5000 5000 5000 5000

GBK
IT 466 289 231 185 158 131
CPU 20.8569 14.0318 11.7329 10.0255 8.9900 8.2728

FDBK
IT 489 307 229 177 152 136
CPU 9.0201 6.6980 5.5091 4.7936 4.5030 4.5538

FGBK
(α=0.05)

IT 71 46 36 30 25 22
CPU 4.3284 3.2734 3.0066 2.7094 2.6355 2.6696

FGBK
(α=0.1)

IT 74 47 37 31 26 23
CPU 3.4606 2.6517 2.3205 2.2693 2.0589 1.9840

VGBK
IT 1522 1107 968 867 813 744
CPU 1.5104 1.0828 0.8782 0.8355 0.7402 0.6693
s 80 96 112 128 144 160

speed-up1 13.8089 12.9588 13.3602 11.9994 12.1454 12.3604
speed-up2 5.9720 6.1858 6.2732 5.7374 6.0835 6.8038
speed-up3 2.2912 2.4489 2.6423 2.7161 2.7815 2.9643
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Example 4. In this example, we consider solving linear systems with fat coefficient matrices generated
by randn. The number of IT and CPU time for the GBK, FDBK, FGBK and VGBK algorithms are
listed in Table 4. We choose s = b4%mc and α = 0.1 for VGBK, as suggested in Examples 1 and 2. For
all test matrices, VGBK outperforms the other three algorithms regarding CPU time, with the speed-
up ranging from 1.0887 to 18.0378. Besides, the speed-up becomes noticeable as m increases; for
instance, the speed-up of VGBK against GBK reaches as high as 18.0378 for the case 12000 × 15000.
It should be noted that FGBK renders a performance that is comparable to that of the VGBK when m
is relatively small. As m increases, however, the VGBK algorithm has a remarkable advantage over
FGBK; see the results for speed-up3 in Table 4.

Table 4. Numerical results for underdetermined linear systems in Example 4.

m × n
m 2000 4000 6000 8000 10000 12000

n 15000 15000 15000 15000 15000 15000

GBK
IT 70 158 329 735 1628 5285

CPU 4.6013 17.3493 48.2193 136.6090 323.2486 1156.3538

FDBK
IT 71 157 338 746 1664 5292

CPU 1.2994 4.8180 13.8537 38.0042 104.2648 373.6110

FGBK

(α=0.05)

IT 13 24 45 90 189 573

CPU 0.5065 1.8356 5.0438 13.7018 34.3899 124.1716

FGBK

(α=0.1)

IT 15 26 47 92 195 589

CPU 0.4837 1.6001 4.3786 11.3237 29.5134 106.1159

VGBK
IT 628 1756 4218 10190 24687 82799

CPU 0.4443 1.3651 3.2769 8.9984 19.1812 64.1071

s 80 160 240 320 400 480

speed-up1 10.3563 12.7092 14.7149 15.1815 16.8524 18.0378

speed-up2 2.9246 3.5294 4.2277 4.2234 5.4358 5.8279

speed-up3 1.0887 1.1721 1.3362 1.2584 1.5387 1.6553

Example 5. In this example, we shall compare the performance of the VGBK algorithm with those
of GBK, FDBK and FGBK for solving linear systems with coefficient matrices from the SuiteSparse
Matrix Collection whose properties are listed in Table 2. The corresponding numerical results are
displayed in Tables 5 and 6. The effectiveness of VGBK is again verified regarding CPU time; for
instance, the speed-up of VGBK against GBK, FDBK and FGBK varies from 2.0647 to 15.0433, 2.2771
to 7.2730 and 1.2906 to 9.3184, respectively. In this sense, the VGBK algorithm is very appealing for
solving linear systems from real-world problems.
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Table 5. Numerical results for overdetermined linear systems in Example 5.

Test Matrix abtaha1 abtaha2 ch7-9-b2 ch8-8-b2 Franz10 mk11-b3

GBK
IT 22 18 23 23 104 90
CPU 0.0351 0.1121 0.6100 0.6007 5.3835 9.3379

FDBK
IT 101 83 39 43 198 95
CPU 0.0954 0.2982 0.3535 0.4401 5.2831 4.0183

FGBK
(α=0.05)

IT 82 72 5 6 47 14
CPU 0.1400 0.4799 0.1658 0.1873 4.6478 1.6653

FGBK
(α=0.1)

IT 89 92 9 8 49 20
CPU 0.1245 0.4771 0.1701 0.1900 3.7400 1.8330

VGBK
IT 467 965 502 540 990 736
CPU 0.0170 0.0512 0.0935 0.1017 0.7264 1.0474
s 116 303 141 150 156 138

speed-up1 2.0647 2.1895 6.5241 5.9066 7.4112 8.9153
speed-up2 5.6118 5.8242 3.7807 4.3274 7.2730 3.8365
speed-up3 7.3235 9.3184 1.7733 1.8417 5.1487 1.5899

Table 6. Numerical results for underdetermined linear systems in Example 5.
Test Matrix bibd 49 3 cat ears 3 4 df2177 GL7d25 lp22 lp maros r7

GBK IT 36 4045 41 57 1457 91
CPU 2.4013 317.1875 0.6528 8.0641 61.2920 4.7440

FDBK IT 37 4044 42 276 2447 92
CPU 0.6679 112.6446 0.2235 7.7782 45.7603 1.4195

FGBK
(α=0.05)

IT 10 465 11 277 589 18
CPU 0.3229 29.8907 0.1087 7.4476 25.3378 0.7734

FGBK
(α=0.1)

IT 11 580 12 275 657 18
CPU 0.3400 30.8552 0.0978 7.0040 23.5825 0.6171

VGBK IT 276 25568 159 3790 15019 912
CPU 0.2502 21.0849 0.0686 3.4158 11.4409 0.3425
s 47 209 25 111 118 125

speed-up1 9.5975 15.0433 9.5160 2.3608 5.3573 13.8511
speed-up2 2.6695 5.3424 3.2580 2.2771 3.9997 4.1445
speed-up3 1.2906 1.4176 1.4257 2.0505 2.0612 1.8018

5. Conclusions

By imposing a row partitioning, we put forth a VGBK algorithm for solving consistent linear
systems. We establish theoretical results that characterize the convergence of the proposed algorithm.
Numerical experiments demonstrate that the new algorithm offers good performance for a broad class
of problems and outperforms other block Kaczmarz-type counterparts in terms of CPU time for large
linear systems. The choice of partitioning approach is crucial for the performance of the proposed
algorithm, and it can be regarded as important future work.
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