Let $ M $ be a compact connected orientable 3-manifold and $ F $ be a compact connected orientable surface properly embedded in $ M $. If $ F $ cuts $ M $ into two handlebodies $ X $ and $ Y $ (i.e., $ M = X\cup_FY $), then we say that $ F $ is an $ H' $-splitting surface for $ M $ and call $ X\cup_FY $ an $ H' $-splitting for $ M $. When the $ H' $-splitting surface $ F $ is incompressible in a handlebody $ H $, a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote $ H $ is already known. In the present paper, we generalize the above result as follows: Let $ H $ be a handlebody of genus $ g\geq 1 $, $ X\cup_F Y $ an $ H' $-splitting for $ H $. Then, either $ X\cup_F Y $ is stabilized, or there exists a reducing system $ \mathcal{J}_1\cup\mathcal{K}_1 $ of $ F $, such that $ \mathcal{J}_1 $ is quasi-primitive in $ Y $ and $ \mathcal{K}_1 $ is quasi-primitive in $ X $. Combining the result with the known result, we obtain a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote a handlebody.
Citation: Yan Xu, Bing Fang, Fengchun Lei. On $ H' $-splittings of a handlebody[J]. AIMS Mathematics, 2024, 9(9): 24385-24393. doi: 10.3934/math.20241187
Let $ M $ be a compact connected orientable 3-manifold and $ F $ be a compact connected orientable surface properly embedded in $ M $. If $ F $ cuts $ M $ into two handlebodies $ X $ and $ Y $ (i.e., $ M = X\cup_FY $), then we say that $ F $ is an $ H' $-splitting surface for $ M $ and call $ X\cup_FY $ an $ H' $-splitting for $ M $. When the $ H' $-splitting surface $ F $ is incompressible in a handlebody $ H $, a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote $ H $ is already known. In the present paper, we generalize the above result as follows: Let $ H $ be a handlebody of genus $ g\geq 1 $, $ X\cup_F Y $ an $ H' $-splitting for $ H $. Then, either $ X\cup_F Y $ is stabilized, or there exists a reducing system $ \mathcal{J}_1\cup\mathcal{K}_1 $ of $ F $, such that $ \mathcal{J}_1 $ is quasi-primitive in $ Y $ and $ \mathcal{K}_1 $ is quasi-primitive in $ X $. Combining the result with the known result, we obtain a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote a handlebody.
[1] | J. S. Downing, Decomposing compact 3-manifolds into homeomorphic handlebodies, Proc. Amer. Math. Soc., 24 (1970), 241–244. https://doi.org/10.1090/S0002-9939-1970-0250318-1 doi: 10.1090/S0002-9939-1970-0250318-1 |
[2] | L. G. Roeling, The genus of an orientable 3-manifold with connected boundary, Illinois J. Math., 17 (1973), 558–562. https://doi.org/10.1215/ijm/1256051475 doi: 10.1215/ijm/1256051475 |
[3] | S. Suzuki, Handlebody splittings of compact 3-manifolds with boundary, Rev. Mat. Complut., 20 (2007), 123–137. http://dx.doi.org/10.5209/rev_REMA.2007.v20.n1.16548 doi: 10.5209/rev_REMA.2007.v20.n1.16548 |
[4] | A. Casson, C. Gordon, Reducing heegaard splittings, Topol. Appl., 27 (1987), 275–283. https://doi.org/10.1016/0166-8641(87)90092-7 doi: 10.1016/0166-8641(87)90092-7 |
[5] | Y. Gao, F. Li, L. Liang, F. Lei, Weakly reducible $H'$-splittings of 3-manifolds, J. Knot Theor. Ramif., 30 (2021), 2140004. https://doi.org/10.1142/S0218216521400046 doi: 10.1142/S0218216521400046 |
[6] | F. Lei, H. Liu, F. Li, A. Vesnin, A necessary and sufficient condition for a surface sum of two handlebodies to be a handlebody, Sci. China Math., 63 (2020), 1997–2004. https://doi.org/10.1007/s11425-019-1647-9 doi: 10.1007/s11425-019-1647-9 |
[7] | A. Hatcher, Notes on basic 3-Manifold topology, 2000. Available from: https://api.semanticscholar.org/CorpusID: 9792594 |
[8] | W. Jaco, Lectures on three manifold topology, Providence: American Mathematical Soc., 1980. http://dx.doi.org/10.1090/cbms/043 |
[9] | M. Scharlemann, Heegaard splittings of compact 3-manifolds, arXiv Prepr. Math., 2000. Available from: https://arXiv.org/pdf/math/0007144 |
[10] | J. Johnson, Notes on Heegaard splittings, Preprint, 2006. Available from: http://pantheon.yale.edu/jj327/ |
[11] | F. Waldhausen, Heegaard-Zerlegungen der 3-Sph$\ddot{\text{a}}$re, Topology, 7 (1968), 195–203. https://doi.org/10.1016/0040-9383(68)90027-X doi: 10.1016/0040-9383(68)90027-X |
[12] | M. Scharlemann, A. Thompson, Heegaard splittings of $(surface)\times I$ is standard, Math. Ann., 295 (1993), 549–564. https://doi.org/10.1007/BF01444902 doi: 10.1007/BF01444902 |
[13] | C. M. Gordon, On primitive sets of loops in the boundary of a handlebody, Topol. Appl., 27 (1987), 285–299. https://doi.org/10.1016/0166-8641(87)90093-9 doi: 10.1016/0166-8641(87)90093-9 |
[14] | F. Lei, Some properties of an annulus sum of 3-manifolds, Northeast. Math. J., 10 (1994), 325–329. https://doi.org/10.13447/j.1674-5647.1994.03.007 doi: 10.13447/j.1674-5647.1994.03.007 |