
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(9): 24385–24393.
DOI: 10.3934/math.20241187
Received: 01 July 2024
Revised: 29 July 2024
Accepted: 31 July 2024
Published: 19 August 2024

Research article

On H′-splittings of a handlebody

Yan Xu, Bing Fang and Fengchun Lei*

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

* Correspondence: Email: fclei@dlut.edu.cn.

Abstract: Let M be a compact connected orientable 3-manifold and F be a compact connected
orientable surface properly embedded in M. If F cuts M into two handlebodies X and Y (i.e.,
M = X ∪F Y), then we say that F is an H′-splitting surface for M and call X ∪F Y an H′-splitting
for M. When the H′-splitting surface F is incompressible in a handlebody H, a characteristic of an
H′-splitting H1 ∪F H2 to denote H is already known. In the present paper, we generalize the above
result as follows: Let H be a handlebody of genus g ≥ 1, X ∪F Y an H′-splitting for H. Then, either
X∪F Y is stabilized, or there exists a reducing systemJ1∪K1 of F, such thatJ1 is quasi-primitive in Y
and K1 is quasi-primitive in X. Combining the result with the known result, we obtain a characteristic
of an H′-splitting H1 ∪F H2 to denote a handlebody.
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1. Introduction

It is a well known fact that each compact connected orientable 3-manifold M admits a Heegaard
splitting V ∪F W, where F is an orientable closed surface embedded in the interior of M which cuts M
into two compression bodies V and W with ∂+V = F = ∂+W. In 1970, Downing [1] proved that each
compact connected 3-manifold M with nonempty boundary has a decomposition as H1 ∪F H2, where
H1 and H2 are two handlebodies with the same genus, and F = H1∩H2 is a connected surface properly
embedded in M. In 1973, Roeling [2] discussed such handlebody-splittings for 3-manifolds with
connected boundaries. Later, Suzuki [3] slightly modified the results of Downing [1] and Roeling [2],
and formulated a Haken type theorem for these handlebody-splittings in the way of Casson-Gordon [4].

Let M be a compact connected orientable 3-manifold and F be a compact connected orientable
surface properly embedded in M. If F cuts M into two handlebodies X and Y (not necessarily with the
same genus), that is, M = X∪F Y , then we say that F is an H′-splitting surface for M and call X∪F Y an
H′-splitting of M. It is clear that if M is closed, then the H′-splitting X∪F Y is just a Heegaard splitting
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for M. If M is with non-empty boundary, then the H′-splitting X ∪F Y is distinct from a Heegaard
splitting of M.

It has been shown in [5] that each compact connected orientable 3-manifold admits an H′-splitting
(i.e., H′-splittings, similar to Heegaard splittings, which are common structures of 3-manifolds). Thus,
it follows that it is a new way to construct all compact connected orientable 3-manifolds.

The Casson-Gordon Theorem [4] on weakly reducible Heegaard splittings has been generalized to
the H′-splitting case in [5]. On the other hand, there exist examples (refer to [5]) to show that Haken’s
lemma does not hold in the H′-splitting case in general. This implies that the properties of H′-splitting
structures for the 3-manifolds with boundaries are quite different from the Heegaard splitting structures
and Downing’s handlebody-splitting structures as above.

A characteristic of an H′-splitting H1 ∪F H2 to denote a handlebody has been described in [6],
where F is incompressible in both H1 and H2 (see Theorem 2.7 in Section 2 or [6] for the detail). In
the present paper, we generalize the above result, regardless that F is compressible or incompressible
in H, as follows: Let H be a handlebody of genus g ≥ 1, X ∪F Y an H′-splitting for H. Then, either
X ∪F Y is stabilized or there exists a reducing system J1 ∪ K1 of F, such that J1 is quasi-primitive in
Y and K1 is quasi-primitive in X. (refer to Sections 2 and 3 for the definitions). Combining the result
with Theorem 2.7, we obtain a characteristic of an H′-splitting X ∪F Y to denote a handlebody.

The other parts of the paper is organized as follows. In Section 2, some necessary preliminaries
are given. In Section 3, the statements of the main results and their proofs are given. It is worth noting
that a refined version (see Lemma 2.9) of the Haken’s lemma in disk case plays an essential role in the
the proof of Theorem 3.3.

2. Preliminaries

In this section, we will review some notions and fundamental facts about 3-manifolds that will
be used in Section 3. All the 3-manifolds considered in the paper are assumed to be compact and
orientable. The concepts and terminologies which are not defined in the paper are all standard (refer
to, for example, [7–9]).

Let M be a 3-manifold. A 2-sphere S embedded in M is essential in M if S does not bound a 3-ball
in M; otherwise, S is inessential in M. M is reducible if M contains an essential 2-sphere; otherwise,
M is irreducible.

Let M be a compact 3-manifold, and F a 2-sided surface properly embedded in M or F ⊂ ∂M.
If there exists a disk D ⊂ M such that D ∩ F = ∂D and ∂D is essential in F, then we say that F is
compressible in M. Such a disk D is called a compressing disk of F. F is incompressible if F is not
compressible in M and no component of F is an inessential 2-sphere, parallel to a disk in ∂M, or a disk
in ∂M. If ∂M is compressible in M, then M is said to be ∂-reducible.

A handlebody H is a 3-manifold such that there exists a collection D = {D1, · · · ,Dn} of pairwise
disjoint disks properly embedded in H such that the manifold obtained by cutting H open along D is
a 3-ball. D is called a complete system of disks for H, and n is called the genus of H.

Let S be an orientable closed surface, and J = {J1, · · · , Jk} a collection of pairwise disjoint
simple closed curves (s.c.c.) on S . Let C be the 3-manifold obtained by adding 2-handles to S × I
along J × 0, then capping of any resulting 2-spheres with 3-balls. C is called a compression body. In
C, set ∂+C = S × 1 and ∂−C = ∂C − ∂+C. J is naturally extended to a collectionD = {D1, · · · ,Dk} of
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pairwise disjoint disks properly embedded in C. D is called a defining system of disks for C. It is clear
that if ∂−C = ∅, C is a handlebody; and if ∂−C , ∅, the manifold obtained by cutting C open along D
is homeomorphic to ∂−C × I. S × I is called a trivial compression body.

Let D = {D1, ...,Dk} be a defining disk system for a compression body C, and ∆ a disk in C such
that for some i, 1 ≤ i ≤ k, ∆ ∩ D j = ∅ for j , i, and ∆ ∩ Di = α is an arc in ∂∆ properly embedded in
Di, ∆ ∩ ∂+C = β is an arc in ∂∆, and α ∩ β = ∂α = ∂β, α ∪ β = ∂∆. α cuts Di into two disks Di1 and
Di2. Set D′i = Di1 ∪ ∆ and D′′i = Di2 ∪ ∆, and move D′i by a small isotopy such that D′i ∩ D′′i = ∅. Set
D′ = (D\{Di}) ∪ {D′i ,D

′′
i }. It is clear that D′ is also a defining disk system for C. We say that D′ is a

slide ofD along ∆.
Let Mi be a compact connected 3-manifold, Fi ⊂ ∂Mi a connected surface such that no component

of ∂Fi bounds a disk in ∂Mi, i = 1, 2, and h : F1 → F2 a homeomorphism. Set M = M1 ∪h M2,
F1 = F = F2 in M, and call M an amalgamation of M1 and M2 along F. M is also denoted as
M1 ∪F M2, and F is called a splitting surface of M.

Clearly, if F is a disk, M is a boundary connected sum of M1 and M2, and is also denoted by
M1#∂M2; if both M1 and M2 are compression bodies and ∂+M1 = F = ∂+M2, then M1 ∪F M2 is a
Heegaard splitting for M, and F is a Heegaard surface of M; if both M1 and M2 are handlebodies,
then M1 ∪F M2 is called an H′-splitting for M, and F is an H′-splitting surface of M (here, F is not
necessarily closed).

It is well known that any compact connected orientable 3-manifold admits a Heegaard splitting [8].
It has been shown in [5] that any compact connected orientable 3-manifold admits an H′-splitting.

For M = M1 ∪F M2, suppose that F is connected and compressible in both M1 and M2. Let Di

be a compressing disk of F in Mi, i = 1, 2. We say that F is stabilized if |∂D1 ∩ ∂D2| = 1; reducible
if ∂D1 = ∂D2; and weakly reducible if ∂D1 ∩ ∂D2 = ∅. Otherwise, F is unstabilized, irreducible, or
strongly irreducible, respectively.

Let V∪F W be a Heegaard splitting of genus g for M, and T∪TT ′ the Heegaard splitting of genus 1
for S 3. The connected sum (V ∪F W)#(T ∪T T ′) is a Heegaard splitting of genus g + 1 for M, and is
called an elementary stabilization of V ∪F W. A Heegaard splitting V ′ ∪F′ W ′ is called a stabilization
of V ∪F W if it is obtained by a finite number of elementary stabilization from V ∪F W.

In the following, we collect some known facts which will be used in Section 3.

Lemma 2.1. [10] Let H be a handlebody of genus n ≥ 2 and F be an incompressible surface in H.
Then, the manifold obtained by cutting H open along F is a union of handlebodies.

Lemma 2.2. [10] Let A be a spanning annulus in the compression body C. Then, there exists a
defining systemD of disks for C such that A is disjoint from any disk inD.

The following is the uniqueness theorem of Heegaard splittings for S 3, due to Waldhausen [11].

Theorem 2.3. Any positive genus Heegaard splitting of S 3 is stabilized.

A handlebody H has a natural Heegaard splitting: A surface F in int(H) which is parallel to ∂H
splits H into a handlebody (� H) and a trivial compression body. Call it the trivial splitting of H. A
Heegaard splitting of H is called standard if it is a stabilization of the trivial splitting.

Two consequences of Theorem 2.3 are as follows.

Theorem 2.4. [12] Any Heegaard splitting of a handlebody H of positive genus is standard.

AIMS Mathematics Volume 9, Issue 9, 24385–24393.



24388

Theorem 2.5. [10] Let M be an irreducible 3-manifold and X ∪F Y be a Heegaard splitting for M.
Suppose that X ∪F Y is reducible. Then, X ∪F Y is stabilized.

Let H be a handlebody and J be a collection of pairwise disjoint s.c.c. in ∂H. Denote by H(J)
the 3-manifold obtained by attaching 2-handles to H along the curves in J .

Definition 2.6. Let J = {J1, · · · , Jm} be a collection of simple closed curves in the boundary of a
handlebody H of genus n.

(1) If {[J1], · · · , [Jm]} ⊂ π1(H) (after some conjugation) can be extended to a basis of π1(H), then
we say that J is primitive in H.

(2) If the curves in J are pairwise disjoint, and H(J) is a handlebody (of genus n − m), then we
say that J is quasi-primitive in H.

In the Definition 2.6, if the curves in J are pairwise disjoint, it is clear that J is primitive implies
that J is quasi-primitive. But the converse is generally not true except for m = 1. It is a theorem
in [13] that if all subsets J ′ of J are quasi-primitive in H, then J is primitive in H.

The following theorem gives a characteristic of an H′-splitting X ∪F Y for a handlebody H, where
F is incompressible in H.

Theorem 2.7 ( [6]). Let X ∪F Y be an H′-splitting for a 3-manifold M, where g(X), g(Y) ≥ 2. Suppose
that F is incompressible in both X and Y . Then, M is a handlebody if and only if there exists a basis
curve set J = {J1, · · · , Jm} of π1(F) with a partition (J1, J2) of J such that J1 is primitive in X and
J2 is primitive in Y .

A properly embedded annulus A in a compression body C is called a spanning annulus if A is
incompressible in C and the two components of ∂A are lying in ∂+C and ∂−C respectively.

The following is a well-known fact, refer to [10] for a proof.

Theorem 2.8. Let V be a compression body with ∂−V , ∅ and F be an incompressible, ∂-
incompressible surface properly embedded in M. Then, each component of F is either a spanning
annulus, an essential disk, or parallel to a component of ∂−V in V .

Let Pb be a connected planar surface with b boundary components, b > 0. Let Γ be a collection of
pairwise disjoint and non-parallel simple arcs properly embedded in Pb, such that the surface obtained
by cutting Pb along Γ is a union of m disks, it is clear that m ≤ b − 1.

Haken’s lemma states that any Heegaard splitting of a reducible 3-manifold is reducible. It
was generalized to the ∂-reducible 3-manifolds as follows: For any Heegaard splitting V ∪S W of
a ∂-reducible 3-manifold M, there exists a compression disk D for ∂M in M, such that D ∩ S is
a single circle. The following is a stronger version of this result, and an outline proof is included
for convenience.

Lemma 2.9. Let M be a connected 3-manifold with a Heegaard splitting V∪S W and F be a sub-surface
of ∂−V . Suppose that F is incompressible in V and compressible in M. Then, there exists a compresing
disk D for F in M, such that D ∩ S is a single circle.

Proof. By assumption, F ⊂ ∂−V is incompressible in V and compressible in M, so V is non-trivial.
Any compressing disk E of F in M intersects S non-empty. Let Γ be a spine of W such that Γ is in
general position with E ∩ W. Thus E ∩ W consists of pairwise disjoint disks in W. Choose such a
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compressing disk D of F in M, such that |D∩S | is minimal among all such disks in M. Set P = D∩V .
P is a connected planar surface. We may further assume that P is incompressible in V . If P is an
annulus, then the lemma holds.

Assume m = |S ∩ P| ≥ 2. By Theorem 2.8, P is ∂-compressible in V . Let ∆ be a ∂-compresing
disk for P. Push D along ∆ by isotopy to get D1, and denote D1 ∩ V by P1. Then, P1 is the surface
obtained by doing the boundary compressing P in V along ∆. If P1 is still ∂-compressible in V , do the
similar operation as above. After a finite number such operations, we can isotope D to D′ in M such
that D′ ∩ V consists of a spanning annulus and a collection of essential disks in V . It is easy to see
m′ = |P′ ∩ S | ≤ m. Thus, Q′ = D′ ∩ W is a connected planar surface properly embedded in W with
∂Q′ ⊂ S .

We may further assume that Q′ is incompressible in M. Similarly, we can isotope D′ to D′′ in M
such that Q′′ = D′′∩W consists of a collection of essential disks in W with m′′ = |Q′′∩S | < |Q′∩S | ≤ m,
a contradiction to the minimality of |D ∩ S |. �

3. Main results

A similar result to Theorem 2.5 for a reducible H′-splitting of an irreducible 3-manifold holds
as follows.

Theorem 3.1. Let M be an irreducible 3-manifold, and X ∪F Y an H′-splitting for M. Suppose that
X ∪F Y is reducible. Then X ∪F Y is stabilized.

Proof. By assumption, X∪F Y is reducible. There exists an essential circle α in F, and α bounds a disk
D in X and a disk E in Y , respectively. We divide it into three cases to discuss.
Case 1. α is non-separating in F. Then, there exists a s.c.c. β in F such that β meets α in one point. Let
N be a regular neighborhood of D ∪ E ∪ β in M. Then, N is a once-punctured S 2 × S 1, contradicting
to that M is irreducible. See Figure 1 (a) below. Thus, Case 1 cannot happen.
Case 2. α is separating in F, and cuts F into two surfaces F1 and F2 with (∂Fi) ∩ ∂M , ∅, i = 1, 2.
In the case, D ∪ E is a separating 2-sphere in M, which cuts M into M1 and M2, and neither M1 nor
M2 is a 3-ball, again contradicting to that M is irreducible. See Figure 1 (b) below. Thus, Case 2
cannot happen.

Figure 1. Case (1) and Case (2).

Case 3. α is separating in F, and cuts out of a once-punctured surface F′ of positive genus from F with
∂F′ = α. In the case, D cuts out of a handlebody H1 from X and E cuts out of a handlebody H2 from
Y , H1 ∩ F = F′ = H2 ∩ F. Set M′ = H1 ∪F′ H2, then ∂M′ = D ∪ E. By the irreducibility of M, M′ is a
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3-ball. By capping of M′ with a 3-ball B3, we get M′′ = M′ ∪∂ B3 � S 3, and F′ naturally extended to
a Heegaard surface of positive genus for M′′. By Theorem 2.3, such a Heegaard splitting is stabilized.
It follows that X ∪F Y is stabilized. �

The following is a direct consequence of Theorem 3.1:

Corollary 3.2. Let H be a handlebody of genus g ≥ 1. If X ∪F Y is a reducible H′-splitting for H, then
X ∪F Y is stabilized.

Let H be a handlebody of genus g and J be an s.c.c. on ∂H. If there exists a disk D properly
embedded in H with |J ∩ ∂D| = 1, we call J a longitude of H. It is clear that X#∂Y is a handlebody if
and only if both X and Y are handlebodies. For an H′-splitting X ∪A Y for a 3-manifold M, where A is
an annulus, it is known (refer to [14] for a proof) that M is a handlebody if and only if the core curve
of A is a longitude of either X or Y . In particular, if HJ is the manifold obtained by adding a 2-handle
to the handlebody along an s.c.c. J on ∂H, then HJ is a handlebody if and only if J is a longitude of H
(or equivalently, J is primitive in H).

Theorem 3.3. Let H be a handlebody of genus g ≥ 1, X ∪F Y an H′-splitting for H. Suppose that F is
weakly reducible in H. Then either X ∪F Y is stabilized, or there exists a collectionD = {D1, · · · ,Dm}

(E = {E1, · · · , En}, resp.) of pairwise disjoint compressing disks of F in X (in Y , resp.), such that
∂D∩∂E = ∅, and if we denote by F′ the surface obtained by compressing F in H alongD∪E, then F′

is incompressible in H. Moreover, ifD′ (E′, resp.) is the subset ofD (E, resp.) which consists of only
the non-separating disks in X (in Y , resp.), then ∂D′ is quasi-primitive in Y and ∂E′ is quasi-primitive
in X.

Proof. By assumption, F is weakly reducible in H. There exist compresing disks D1 ⊂ X and E1 ⊂ Y
of F with ∂D1 ∩ ∂E1 = ∅. If ∂D1 is parallel to ∂E1, then X ∪F Y is reducible (therefore, stabilized,
by Corollary 3.2). Extend D1 and E1 to a collection D = {D1, · · · ,Dm} (E = {E1, · · · , En}, resp.) of
pairwise disjoint compressing disks of F in X (in Y , resp.) in such a way that ∂D ∩ ∂E = ∅, and the
following conditions are satisfied:

(1) If we denote by FX (FY , resp.) the surface obtained from F by compressing X (Y , resp.) along
D (E, resp.), then no component of FX (FY , resp.) whose boundary is a subset of the set of the cutting
sections ofD (E, resp.) is a planar surface.

(2) If ∆ is a compresing disk of F in X (Y , resp.) with ∂∆ ∩ (∂D∪ ∂E) = ∅, then ∂∆ cuts out of a
planar surface P from FX (FY , resp.) with ∂P − {∂∆} ⊂ ∂D (∂P − {∂∆} ⊂ ∂E, resp.).

(3) If F′ is the surface obtained from F by compressing F along D ∪ E, C(F′) = −χ(F′), the
comlexity of F′, is minimal over all suchD∪ E.

By (1) and (2), each ∂Di (∂E j, resp.) either is non-separating in F, or cuts F into two pieces, each
of which intersects ∂H non-empty.

Denote by F̃ the surface obtained by cutting F open along ∂D∪ ∂E. If F̃ has a planar component
Q with ∂Q = L1 ∪ L2, where L1 is a subset of the set of the cutting sections of ∂D and L2 is a subset of
the set of the cutting sections of ∂E, then let α be an s.c.c. on Q such that α cuts Q into Q1 and Q2 with
∂Q1 − α = L1 and ∂Q2 − α = L2. Therefore, by above (1), L1, L2 , ∅. Thus, α is essential in F and α
bounds disks in both X and Y . Hence, X ∪F Y is reducible (therefore, stabilized, by Corollary 3.2). In
the following, we assume that F̃ has no such planar component.
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Let N1 (N2, resp.) be a regular neighborhood ofD in X (E in Y , resp.) such that (N1 ∩ F)
⋂

(N2 ∩

F) = ∅. Set X∗ = X \ N1, Y∗ = Y \ N2. X∗ (Y∗, resp.) is in fact the manifold obtained by compressing
X along D (Y along E, resp.), therefore it is a union of handlebodies. Assume that after compressing
X along D (Y along E, resp.), F is changed into F1 (F2, resp.). Since F is separating in H, each
component of F1 (F2, resp.) is separating in H. If F1 (F2, resp.) has a component which is a closed
surface of positive genus, it bounds a handlebody in X∗ (Y∗, resp.), contradicting to the choice ofD (E,
resp.). Thus, each component of F1 (F2, resp.) has non-empty boundary.

Set X′ = X∗ ∪ N2, Y ′ = Y∗ ∪ N1, and F′ = X′ ∩ Y ′. Then, H = X′ ∪F′ Y ′. By above (1), no
component of ∂X′ (∂Y ′, resp.) is a 2-sphere. Suppose that F′ has k components F′1, · · · , F

′
k. It follows

that each F′i is separating in H, 1 ≤ i ≤ k. With no loss, assume that F′ cuts H into k + 1 pieces
M1, · · · ,Mk+1, and

H = ((M1 ∪F′1
M2) ∪F′2

· · · ) ∪F′k
Mk+1,

where each Mi is the 3-manifold obtained by adding some 2-handles (possibly empty) to a handlebody
in X∗ or Y∗, 1 ≤ i ≤ k + 1.

We now show that F′ is incompressible in H. Otherwise, some F′i is compressible in Mi. Without
loss of generality, assume that Mi is a 3-manifold obtained by adding a subset N′ (2-handles) of N2 to a
handlebody H∗ in X∗ along the curves on a component S ′ of FX. Say N′ = {η(Ei1), ..., η(Eis)}. Let S be
a surface in the interior of H∗ which is parallel to ∂H∗. Then, S is a Heegaard surface in Mi. In fact, S
splits Mi into a handlebody V � H∗ and a compression body W, and E′ = {Ei1 , ..., Eis} can be extended
to a defining disk system for W. Note that F′i ⊂ ∂−W. By Lemma 2.9, there exists a compressing disk
D of F′i in Mi, such that D ∩ S is an essential circle in S . Set A = D ∩W, A is a spanning annulus in
W. See Figure 2 below. By Lemma 2.2, there exists a defining disk system E∗ for W, such that A is
disjoint from each disk in E∗. Assume that A and E′ are in general position. By an innermost argument,
we may further assume that Λ = A ∩

⋃s
j=1 Ei j has no circle components. Let γ be an arc component of

Λ which is outermost in A. Then, γ cuts out of a disk ∆ from A with int(∆) ∩
⋃s

j=1 Ei j = ∅. Slide E′

along ∆ to a new defining disk system for W with less intersection with A. After finite such slides, we
can obtain the defining disk system E∗ for W which is disjoint from A. Since both the component of
∂A lying in S and ∂E′ are lying in the parallel copy S ′′ of S ′ in S , it follows that ∂E∗ ⊂ S ′′. It is clear
that there is a subset Ẽ of E∗, such that Ẽ is a defining disk system for W and Ẽ contains s disks. Set
D1 = D ∪ {D}, and E1 = (E\E′)

⋃
(Ẽ ∩ Y). Note that ∂D is essential in F′. Denote by F′′ the surface

obtained from F by compressing F in H alongD1 ∪ E1, it is clear that C(F′′) < C(F′), a contradiction
to the minimality of C(F′).

Figure 2. The Heegaard splitting V ∪S W of Mi.
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Thus, F′ is incompressible in H. It follows from Lemma 2.1 that each Mi is a handlebody, 1 ≤
i ≤ k + 1. IfD′ (E′, resp.) is the subset ofD (E, resp.) which consists of only the non-separating disks
in X (in Y , resp.), it follows that ∂D′ is quasi-primitive in Y and ∂E′ is quasi-primitive in X.

This completes the proof. �

By a similar arguments to the proof of Theorem 3.3, we have the following theorem. The proof
is omitted.

Theorem 3.4. Let H be a handlebody of genus g ≥ 1, X ∪F Y an H′-splitting for H. Suppose that F is
compressible in X (or Y) and incompressible in Y (or X), or F is compressible in both X and Y , and is
strongly irreducible in H. Then, there exists a collection D = {D1, · · · ,Dm} (E = {E1, · · · , En}, resp.)
of pairwise disjoint compressing disks of F in X (in Y , resp.), such that if we denote by F′ the surface
obtained by compressing F in H along D (E, resp.), then F′ is incompressible in H. Moreover, if D′

(E′, resp.) is the subset of D (E, resp.) which consists of only the non-separating disks in X (in Y ,
resp.), then ∂D′ is quasi-primitive in Y (∂E′ is quasi-primitive in X, resp.).

Use the notations as in Theorems 3.3 and 3.4. We call ∂D′ ∪ ∂E′ a reducing system of F (in
Theorem 3.4, ∂D′ or ∂E′ = ∅). Combining Theorem 3.3, Theorem 3.4, and Theorem 2.7, we have the
following direct corollary.

Theorem 3.5. Let H be a handlebody of genus g ≥ 1, X ∪F Y an H′-splitting for H. Then, either
X ∪F Y is stabilized, or there exists a reducing system J1 ∪K1 of F, such that J1 is quasi-primitive in
Y , andK1 is quasi-primitive in X. Moreover, if the incompressible surface F′ obtained by compressing
F in H along the disks in H bounded by J1 ∪ K1 is connected, then there exists a basis curve set L of
π1(F′) with a partition (J2, K2) of L such that J2 is primitive in X and K2 is primitive in Y .

We remark that a similar conclusion as in Theorem 3.5 holds when F′ not connected. We omit
the statement.

4. Conclusions

We describe a characteristic of an H′-splitting X ∪F Y to denote a handlebody H, where F may
be compressible in H. This generalizes an earlier result (Theorem 2.7) in which the H′-surface in a
handlebody is assumed to be incompressible.
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