We consider the energy-minimizing configuration of the Sadowsky-type functional for narrow rectifying strips. We show that the functional is proportional to the $ p $-Willmore functional using classical analysis techniques and the geometry of developable surfaces. We introduce hyperelastic strips (or p-elastic strips) as rectifying strips whose base curves are the critical points of the Sadowsky-type functional and find the Euler-Lagrange equations for hyperelastic strips using a variational approach. We show a naturally expected relationship between the planar stationary points of the Sadowsky-type functional and the hyperelastic curves. We derive two conservation vector fields, the internal force and torque, using Euclidean motions and obtain the first and second conservation laws for hyperelastic strips.
Citation: Gözde Özkan Tükel. Integrable dynamics and geometric conservation laws of hyperelastic strips[J]. AIMS Mathematics, 2024, 9(9): 24372-24384. doi: 10.3934/math.20241186
We consider the energy-minimizing configuration of the Sadowsky-type functional for narrow rectifying strips. We show that the functional is proportional to the $ p $-Willmore functional using classical analysis techniques and the geometry of developable surfaces. We introduce hyperelastic strips (or p-elastic strips) as rectifying strips whose base curves are the critical points of the Sadowsky-type functional and find the Euler-Lagrange equations for hyperelastic strips using a variational approach. We show a naturally expected relationship between the planar stationary points of the Sadowsky-type functional and the hyperelastic curves. We derive two conservation vector fields, the internal force and torque, using Euclidean motions and obtain the first and second conservation laws for hyperelastic strips.
[1] | J. Arroyo, O. Garay, M. Barros, Closed free hyperelastic curves in the hyperbolic plane and Chen-Willmore rotational hypersurfaces, Isr. J. Math., 138 (2003), 171–187. http://dx.doi.org/10.1007/BF02783425 doi: 10.1007/BF02783425 |
[2] | B. Şahin, G. Tükel, T. Turhan, Hyperelastic curves along immersions, Miskolc Math. Notes, 22 (2021), 915–927. http://dx.doi.org/10.18514/MMN.2021.3501 doi: 10.18514/MMN.2021.3501 |
[3] | T. Turhan, G. Tükel, B. Şahin, Hyperelastic curves along Riemannian maps, Turk. J. Math., 46 (2022), 1256–1267. http://dx.doi.org/10.55730/1300-0098.3156 doi: 10.55730/1300-0098.3156 |
[4] | R. Capovilla, C. Chryssomalakos, J. Guven, Hamiltonians for curves, J. Phys. A: Math. Gen., 35 (2002), 6571. http://dx.doi.org/10.1088/0305-4470/35/31/304 doi: 10.1088/0305-4470/35/31/304 |
[5] | R. Huang, A note on the p-elastica in a constant sectional curvature manifold, J. Geom. Phys., 49 (2004), 343–349. http://dx.doi.org/10.1016/S0393-0440(03)00107-4 doi: 10.1016/S0393-0440(03)00107-4 |
[6] | G. Tükel, T. Turhan, A. Yücesan, Hyperelastic Lie quadratures, Honam Math. J., 41 (2019), 369–380. http://dx.doi.org/10.5831/HMJ.2019.41.2.369 doi: 10.5831/HMJ.2019.41.2.369 |
[7] | G. Tükel, T. Turhan, A. Yücesan, Generalized elastica in SO(3), Miskolc Math. Notes, 20 (2019), 1273–1283. http://dx.doi.org/10.18514/MMN.2019.2900 doi: 10.18514/MMN.2019.2900 |
[8] | M. Barros, A. Ferrandez, P. Lucas, M. Merono, Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces, J. Geom. Phys., 28 (1998), 45–66. http://dx.doi.org/10.1016/S0393-0440(98)00010-2 doi: 10.1016/S0393-0440(98)00010-2 |
[9] | J. Guven, P. Vázquez-Montejo, Confinement of semiflexible polymers, Phys. Rev. E, 85 (2012), 026603. http://dx.doi.org/10.1103/PhysRevE.85.026603 doi: 10.1103/PhysRevE.85.026603 |
[10] | J. Guven, J. Santiago, P. Vázquez-Montejo, Confining spheres within hyperspheres, J. Phys. A: Math. Theor., 46 (2013), 135201. http://dx.doi.org/10.1088/1751-8113/46/13/135201 doi: 10.1088/1751-8113/46/13/135201 |
[11] | D. Singer, Lectures on elastic curves and rods, AIP Conf. Proc., 1002 (2008), 3–32. http://dx.doi.org/10.1063/1.2918095 doi: 10.1063/1.2918095 |
[12] | M. Sadowsky, Ein elementarer Beweis für die Existens eines abwickelbare Möbiuss-chen Bandes und Züruckführung des geometrischen problems auf ein variations problem, Sitzungsbericht Preussich Akademischer Wissenschaften, 22 (1930), 412–415. |
[13] | D. Hinz, E. Fried, Translation of Michael Sadowsky's paper "An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem", J. Elast., 119 (2015), 3–6. http://dx.doi.org/10.1007/s10659-014-9490-5 doi: 10.1007/s10659-014-9490-5 |
[14] | W. Wunderlich, Über ein abwickelbare Möbiusband, Monatsh. Math., 66 (1962), 276–289. http://dx.doi.org/10.1007/BF01299052 doi: 10.1007/BF01299052 |
[15] | R. Todres, Translation of W. Wunderlich's "On a developable Möbius band", J. Elast., 119 (2015), 23–34. http://dx.doi.org/10.1007/s10659-014-9489-y doi: 10.1007/s10659-014-9489-y |
[16] | B. Seguin, Y. Chen, E. Fried, Closed unstretchable knotless ribbons and the Wunderlich functional, J. Nonlinear Sci., 30 (2020), 2577–2611. http://dx.doi.org/10.1007/s00332-020-09630-z doi: 10.1007/s00332-020-09630-z |
[17] | T. Willmore, Note on embedded surfaces, An. Sti. Univ."Al. I. Cuza" Iasi Sect. I a Mat.(NS) B, 11 (1963), 493–496. |
[18] | E. Starostin, G. van der Heijden, The equilibrium shape of an elastic developable Möbius strip, PAMM, 7 (2007), 2020115–2020116. http://dx.doi.org/10.1002/pamm.200700858 doi: 10.1002/pamm.200700858 |
[19] | D. Chubelaschwili, U. Pinkall, Elastic strips, Manuscripta Math., 133 (2010), 307–326. http://dx.doi.org/10.1007/s00229-010-0369-x doi: 10.1007/s00229-010-0369-x |
[20] | G. Tükel, A. Yücesan, Elastic strips with timelike directrix, Math. Reports, 21 (2019), 67–83. |
[21] | G. Tükel, A. Yücesan, Elastic strips with spacelike directrix, Bull. Malays. Math. Sci. Soc., 42 (2019), 2623–2638. http://dx.doi.org/10.1007/s40840-018-0622-0 doi: 10.1007/s40840-018-0622-0 |
[22] | G. Tükel, A. Yücesan, Elastic strips with null and pseudo-null directrix, Int. J. Geom. Methods M., 17 (2020), 2050022. http://dx.doi.org/10.1142/S021988782050022X doi: 10.1142/S021988782050022X |
[23] | D. Yoon, Z. Yüzbaşı, Elastic strips along isotropic curves in complex 3-spaces, Turk. J. Math., 48 (2024), 515–526. http://dx.doi.org/10.55730/1300-0098.3522 doi: 10.55730/1300-0098.3522 |
[24] | E. Starostin, G. van der Heijden, Forceless Sadowsky strips are spherical, Phys. Rev. E, 97 (2018), 023001. http://dx.doi.org/10.1103/PhysRevE.97.023001 doi: 10.1103/PhysRevE.97.023001 |
[25] | E. Efrati, Non-Euclidean ribbons, J. Elast., 119 (2015), 251–261. http://dx.doi.org/10.1007/s10659-014-9509-y doi: 10.1007/s10659-014-9509-y |
[26] | E. Efrati, E. Sharon, R. Kupferman, Hyperbolic non-Euclidean elastic strips and almost minimal surfaces, Phys. Rev. E, 83 (2011), 046602. http://dx.doi.org/10.1103/PhysRevE.83.046602 doi: 10.1103/PhysRevE.83.046602 |
[27] | L. Freddi, P. Hornung, M. Mora, R. Paroni, A corrected Sadowsky functional for inextensible elastic ribbons, J. Elast., 123 (2016), 125–136. http://dx.doi.org/10.1007/s10659-015-9551-4 doi: 10.1007/s10659-015-9551-4 |
[28] | A. Gruber, Curvature functionals and p-Willmore energy, Ph. D Thesis, Texas Tech University, 2019. |
[29] | Z. Guo, Generalized Willmore functionals and related variational problems, Differ. Geom. Appl., 25 (2007), 543–551. http://dx.doi.org/10.1016/j.difgeo.2007.06.004 doi: 10.1016/j.difgeo.2007.06.004 |
[30] | M. Barros, A. Ferrández, P. Lucas, M. Meroño, A criterion for reduction of variables in the Willmore-Chen variational problem and its applications, Trans. Amer. Math. Soc., 352 (2000), 3015–3027. http://dx.doi.org/10.1090/S0002-9947-00-02366-7 doi: 10.1090/S0002-9947-00-02366-7 |
[31] | B. Chen, Total mean curvature and submanifolds of finite type, 1 Ed., Singapore: World Scientific Publishing Company, 1984. |
[32] | J. Santiago, F. Monroy, Inhomogeneous Canham-Helfrich abscission in catenoid necks under critical membrane mosaicity, Membranes, 13 (2023), 796. http://dx.doi.org/10.3390/membranes13090796 doi: 10.3390/membranes13090796 |
[33] | Z. Tu, Z. Ou-Yang, A geometric theory on the elasticity of bio-membranes, J. Phys. A: Math. Gen., 37 (2004), 11407. http://dx.doi.org/10.1088/0305-4470/37/47/010 doi: 10.1088/0305-4470/37/47/010 |
[34] | A. Gruber, M. Toda, H. Tran, On the variation of curvature functionals in a space form with application to a generalized Willmore energy, Ann. Glob. Anal. Geom., 56 (2019), 147–165. http://dx.doi.org/10.1007/s10455-019-09661-0 doi: 10.1007/s10455-019-09661-0 |
[35] | A. Mondino, Existence of integral $m$-varifolds minimizing $\int \left\vert A\right\vert ^{p}$ and $\int \left\vert H\right\vert ^{p}$, $p>m, $ in Riemannian manifolds, Calc. Var., 49 (2014), 431–470. http://dx.doi.org/10.1007/s00526-012-0588-y doi: 10.1007/s00526-012-0588-y |
[36] | A. Gruber, M. Toda, H. Tran, Stationary surfaces with boundaries, Ann. Glob. Anal. Geom., 62 (2022), 305–328. http://dx.doi.org/10.1007/s10455-022-09850-4 doi: 10.1007/s10455-022-09850-4 |
[37] | E. Starostin, G. van der Heijden, Tension-induced multistability in inextensible helical ribbons, Phys. Rev. Lett., 101 (2008), 084301. http://dx.doi.org/10.1103/PhysRevLett.101.084301 doi: 10.1103/PhysRevLett.101.084301 |
[38] | E. Starostin, G. van der Heijden, Forceless folding of thin annular strips, J. Mech. Phys. Solids, 169 (2022), 105054. http://dx.doi.org/10.1016/j.jmps.2022.105054 doi: 10.1016/j.jmps.2022.105054 |
[39] | E. Starostin, G. van der Heijden, Equilibrium shapes with stress localisation for inextensible elastic Mö bius and other strips, J. Elast., 119 (2015), 67–112. http://dx.doi.org/10.1007/s10659-014-9495-0 doi: 10.1007/s10659-014-9495-0 |
[40] | B. O'neill, Elementary differential geometry, Burlington: Elsevier, 2006. |
[41] | M. Dias, B. Audoly, A non-linear rod model for folded elastic strips, J. Mech. Phys. Solids, 62 (2014), 57–80. http://dx.doi.org/10.1016/j.jmps.2013.08.012 doi: 10.1016/j.jmps.2013.08.012 |
[42] | L. Jantschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. http://dx.doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |