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Abstract: We consider the energy-minimizing configuration of the Sadowsky-type functional for
narrow rectifying strips. We show that the functional is proportional to the p-Willmore functional using
classical analysis techniques and the geometry of developable surfaces. We introduce hyperelastic
strips (or p-elastic strips) as rectifying strips whose base curves are the critical points of the Sadowsky-
type functional and find the Euler-Lagrange equations for hyperelastic strips using a variational
approach. We show a naturally expected relationship between the planar stationary points of the
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internal force and torque, using Euclidean motions and obtain the first and second conservation laws
for hyperelastic strips.
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1. Introduction

The variational problem of finding the stationary points of the functional
∫
γ

f ( κ, λ) ds, where
λ = τ/κ, and κ and τ are the curvature and torsion of a space curve γ, arises in a number of applications.
For example, the case f (κ, λ) = κ2 is the classical elastic curve problem, in which the physical
state of a thin elastic rod in equilibrium is studied when it is subjected to bending. This elasticity
problem and its various generalizations, such as hyperelastic curves (see [1–3]), generalized elastic
curves and Lie quadratics (see [4–7]), have a rich history and are actively studied today (see [8–11],
etc.). The functional f (κ, λ) = κ2

(
1 + λ2

)2
is known as the Sadowsky functional, introduced by M.

Sadowsky (1930) to find the formulation of a Möbius strip with minimum energy [12] (see [13] for
a translation). Sadowsky transformed the problem of searching for the equations of equilibrium of a
narrow Möbius strip into a one-dimensional variational problem using the geometry of the developable
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ruled surface. In line with Sadowsky’s works on Möbius bands of infinitesimal width, Wunderlich
in [14] (see [15] for a translation) employed an energy minimization principle. This principle asserts
that the equilibrium shape of the Möbius band has the lowest bending energy among all possible shapes
of the band, reducing the bending energy from a surface integral to a line integral without assuming the
band’s width is small [16]. Using the regression point of the generator (bending line) of a developable
surface and the fact that one of the principal normal curvatures is zero on a developable surface,
Wunderlich showed that the Willmore functional

∫
M

H2dσ, whose critical points are known Willmore
surfaces (see [17]) is proportional to the Sadowsky functional. This implies that a developable surface,
whose base curve is a critical curve for this functional under certain boundary conditions, is a Willmore
surface. In [18], the authors applied a variational geometric approach to elastic strips to define the
characteristic shape of a Möbius strip made from an inextensible rectangular sheet. Chubelaschwili and
Pinkall obtained integrable solutions of the Sadowsky functional, derived conservation laws of elastic
strips by using Euclidean motions, and defined two new integrable systems of elastic strips [19]. The
theory of elastic strip was developed by Tükel and Yücesan in Minkowski 3-space with the Poincaré
isometry group (see [20–22]). Yoon and Yüzbaşı studied the properties of elastic strips defined along
isotropic curves in a three-dimensional complex space [23]. The authors, in [24], investigated the
force-free consequences for the general functional f (κ, λ) for regular space curves and stated that all
forceless critical points are spherical curves only for Sadowsky-type functional

∫
γ

Cκp(1+λ2)pds, where
C is constant, and p , 0, 1. The Sadowsky functional and its various generalizations, which are useful
for modeling the behavior of developable surfaces, continue to be developed today by researchers
interested in the subject (see [16, 25–27], etc.).

The conformally invariant Willmore energy has attracted considerable interest due to its connection
to minimal surfaces in the 3-sphere. Given that many interesting surface measurements depend on
shape, it is important to have a more general framework for studying these curvature-dependent
functionals [28]. Guo [29] introduced a class of conformal invariants, defined as generalized Willmore
functionals, in the most general sense of these energy functionals and presented generalized Willmore
functionals, including structures frequently studied in energy minimization problems such as the
Willmore functional and the Chen-Willmore functional (see [8, 30, 31]). Recently, researchers have
studied the elasticity of biomembranes using geometric and mathematical models, including some
generalizations of the Willmore functional. To explain the mechanical stability and equilibrium shapes
of membranes, they have considered the functional whose integrand is defined as a general function
of the mean curvature and the Gauss curvature of a surface M embedded in Euclidean 3-space R3

(see [32, 33], etc.). One particularly interesting application involves the p-Willmore energy functional
discussed in [34, 35]. In his doctoral thesis [34], Gruber introduced the p-Willmore functional in 3D-
space forms, which extends the Willmore functional to accommodate different powers of the mean
curvature. Accordingly, the critical points of the p-Willmore functional defined as

∫
M

Hpdσ, p ≥ 0 ∈ Z,
in a 3D-space form are called p-Willmore surfaces (see [28, 34, 36]).

In this paper, we show that the Sadowsky-type functional (for C = 1) is proportional to the p-
Willmore functional using Wunderlich’s approach. We define the modified Sadowsky-type functional
and derive the Euler-Lagrange (EL) equations characterizing the critical points of this functional. We
refer to the rectifying, developable surfaces formed by the extremals of the Sadowsky-type functional
as hyperelastic strips (or p-elastic strips). We show that the torsion-free critical curves are nothing but
hyperelastic curves. From an integrable geometric opinion, it turns out that it is more convenient
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to calculate the internal force W0 and torque W1 in a fixed coordinate system so that W0 and W1

become conservation fields along hyperelastic strips. We find vector fields W0 and W1 by creating
new variations involving Euclidean translational and rotational motions. Then, we obtain the first and
second conservation laws of hyperelastic strips. We hope that these conservation laws will present
an open problem that can be explored in the future, as they allow the finding of two new integrable
systems that will enable the connection between hyperelastic stirps and spherical hyperelastic curves.

2. Hyperelastic strips

The terms ribbon or strip are used to describe elastic bodies where the thickness, width, and length
vary widely. Since their lengths are much greater than their thickness and width, such objects and
their elastic responses are explained according to a 1D theory using the centerline of them. We think
an inextensible strip, when developed on a plane, forms a strip bounded by two parallel straight lines.
Thanks to the developability feature, no matter how deformed the strip is, it can be reconstructed from
an arbitrary reference curve on the surface of the strip. Specifically, the centerline of the strip, which
can be defined by its curvature and torsion, is identified as the most natural and suitable choice for this
reference curve. This detail emphasizes that the geometry of the strip can be completely determined
and interpreted through these intrinsic characteristics (see [25, 37, 38]).

Let γ : [0, `]→ R3 be a smooth and regular curve with velocity υ = ‖γ′‖ . Since a developable strip
is a special case of a ruled surface, we can parametrize the strip with the base curve γ as follows:

Fγ : [0, `] × [−ω,ω] → R3

(t, δ) → Fγ (t, δ) = γ (t) + δ(λT (t) + B (t)),
(2.1)

where T (t) and B(t) are, respectively, the unit tangent and the binormal vector at the point γ(t) of γ.
The Frenet formulas for γ are shown by

T ′ = υκN, N′ = −υκT + υλκB and B′ = −υλκN, (2.2)

where N is the unit normal vector of γ. The generator of the developable surface Fγ (t, δ) makes an
angle θ = arctan (1/λ) with the positive tangent direction of the curve γ (s) [37]. The area element and
the mean curvature of the surface are computed as follows:

dσ =
(
1 − δλ′

)
dδdt and H =

κ
(
1 + λ2

)
2 (1 − δλ′)

(see, [38, 39]). (2.3)

Fγ (t, δ) parametrized by (2.1) has zero Gaussian curvature, that is, one of the principal curvatures is
zero. Since Fγ is developable and the strip is planar when relaxed, the energy functional can be written
as

D
2

"
κ

p
1 dσ, (2.4)

where D = 2Yh3

3(1−ν2) is the flexural rigidity, h is thickness, ν is the Poisson’s ratio, Y is Young’s modulus,
and κ1 = 2H, p ≥ 2. Substituting (2.3) into (2.4), we arrive at

D
2

`∫
0

ω∫
−ω

κp
(
1 + λ2

)p

(1 − δλ′)p−1 dδdt = Dω

`∫
0

h
(
κ, λ, λ′

)
dt, (2.5)
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where

h
(
κ, λ, λ′

)
= κp

(
1 + λ2

)p
V

(
ωλ′

)
,

V
(
ωλ′

)
=

(1 − ωλ′)2−p
− (1 + ωλ′)2−p

2 (p − 2)ωλ′
.

Note that the equilibrium position for strips with no intrinsic curvature does not depend upon the
material properties: Young’s modulus is a simple factor, and Poisson’s ratio does not enter the energy
expression (see, [14, 39]). Also, in the limit of narrow strips ωλ′ → 0, we have V (ωλ′) → 1 and no
derivatives enter the integrand in Eq (2.5). This shows that the p-Willmore functional

∫
M

Hpdσ in these
conditions is proportional to the Sadowsky-type functional. Observe that for λ = 0, this is nothing but
a free hyperelastic curve’s functional.

According to the Euler formula for parabolic surface points, the common curvature κ = κ (t) of
the centerline of Fγ is related to the principal normal curvature κ1 by κ = κ1 (t) sin2 θ (t), and drawing
attention to the familiar relation cot θ = λ

(
gives 1/ sin2 θ = 1 + λ2

)
from the theory of space curves,

agreement is reached with Sadowsky for the description of the centerline by

`∫
0

κ
p
1 dt =

`∫
0

κp 1(
sin2 θ

)p dt =

`∫
0

κp
(
1 + λ2

)p
dt.

Now, we investigate infinitely narrow rectifying strips formed by using extremals of the Sadowsky-type
functional among all space curves with fixed end points and

·

` :=
∂

∂δ
` (γδ)

∣∣∣∣∣
δ=0

= 0. (2.6)

So, we can give the following definition:

Definition 1. If the centerline γ of a rectifying strip Fγ is a critical curve for the modified Sadowsky-
type functional

S µ (γ) =

`∫
0

(
κp

(
1 + λ2

)p
− µ

)
υdt, (2.7)

µ is a Lagrange multiplier representing the length constraint, then Fγ is a hyperelastic strip (or p-
elastic strip).

Lemma 1. [19] Let γ : [0, `]→ R3 be a reparametrized curve with its arc length and

γ : [0, `] × [−ω,ω] → R3

(s, δ) → γ (s, δ) = γδ (s) = γ (s) + δ
·
γ (s) ,

a variation of γ with a variational vector field

·
γ (s) =

∂

∂δ

∣∣∣∣∣
δ=0

γδ (s) = u1 (s) T (s) + u2 (s) N (s) + u3 (s) B (s) . (2.8)
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We have
·
υ = u′1 − κu2, (2.9)
·
κ = u1κ

′ + u2κ
2
(
1 − λ2

)
− 2u′3λκ − u3 (λκ)′ + u′′2 , (2.10)

and
·

λ = u1λ
′ + u2

(
(λκ)′′

κ2 −
(λκ)′κ′

κ3 + λ3κ + λκ
)

+ u′2
(
2λ′

κ
+

(λκ)′

κ2

)
+ u′′2

λ
κ
− u3λλ

′ + u′3
(
1 + λ2

)
− u′′3

κ′

κ3 + u′′′3
1
κ2 .

(2.11)

Suppose that a reparametrized space curve γ : [0, `] → R3 is the centerline of a hyperelastic strip, and
we take a variation of γ that has the variational vector field (2.8). Now, we calculate the first variation
of the functional (2.7). To minimize the functional

S µ (γδ) =

∫ `

0

(
κ

p
δ

(
1 + λ2

δ

)p
− µ

)
υδds,

we perform the following computation:

∂

∂δ

∣∣∣∣∣
δ=0

S µ (γδ) =
∂

∂δ
` (γδ)

∣∣∣∣∣
δ=0

((
κ

p
δ

(
1 + λ2

δ

)p
− µ

)
υδ

)
+

∫ `

0

∂

∂δ

(
κ

p
δ

(
1 + λ2

δ

)p
− µ

)
υδ

∣∣∣∣∣
δ=0

ds.

Taking into consideration (2.6), we obtain

∂

∂δ

∣∣∣∣∣
δ=0

S µ (γδ) =

∫ `

0

∂

∂δ

(
κ

p
δ

(
1 + λ2

δ

)p
− µ

)
υδ

∣∣∣∣∣
δ=0

ds.

Now, from (2.9)–(2.11), we obtain
1
2
∂

∂δ

∣∣∣∣∣
δ=0

(
κ

p
δ

(
1 + λ

p
δ

)p
− µ

)
υδ =

1
2

(
κp

(
1 + λ2

)p
− µ

)
(u′1 − κu2) +

p
2
κp−1

(
1 + λ2

)p
(u1κ

′

+u2κ
2
(
1 − λ2

)
− 2u′3λκ − u3 (λκ)′ + u′′2 )

+pκpλ
(
1 + λ2

)p−1
(u1λ

′ + u2

(
(λκ)′′

κ2 −
(λκ)′ κ′

κ3 + λ3κ + λκ

)
+u′2

(
2
λ′

κ
+

(λκ)′

κ2

)
+ u′′2

λ

κ
− u3λλ

′ + u′3
(
1 + λ2

)
−u′′3

κ′

κ3 + u′′′3
1
κ2 ).

If these processes continue, the integrand can be written as follows:

1
2
∂

∂δ

∣∣∣∣∣
δ=0

(
κ

p
δ

(
1 + λ2

δ

)p
− µ

)
υδ = u2 f1 + u3 f2 + b′, (2.12)

where
f1 :=

(
p(p−1)

2 κp−2κ′
(
1 + λ2

)p
+ p (p − 1) κp−1

(
1 + λ2

)p−1
λλ′

)′
+ κ

2

(
(p − 1) κp

(
1 + λ2

)p
+ µ

)
+ λκ( p

2κ
p
(
1 + λ2

)p
λ

+

(
pκp−3κ′

(
1 + λ2

)p−1
λ
)′

+

(
pκp−2

(
1 + λ2

)p−1
λ
)′′

),

f2 := −
(

p
2κ

p
(
1 + λ2

)p
λ +

(
pκp−3κ′

(
1 + λ2

)p−1
λ
)′

+

(
pκp−2

(
1 + λ2

)p−1
λ
)′′)′

+ λκ
(

p(p−1)
2 κ′κp−2

(
1 + λ2

)p
+ p (p − 1) κp−1

(
1 + λ2

)p−1
λλ′

)
,
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and

b := u1
1
2

(
κp

(
1 + λ2

)p
− µ

)
+ u2

((
3pλλ′κp−1 + pκp−2λ2κ′

) (
1 + λ2

)p−1
−

(
p
2κ

p−1
(
3λ2 + 1

) (
1 + λ2

)p−1
)′)

+ u′2
(

p
2κ

p−1
(
3λ2 + 1

) (
1 + λ2

)p−1
)

+ u3

((
pκp−3κ′λ

(
1 + λ2

)p−1
)′

+

(
pλκp−2

(
1 + λ2

)p−1
)′′)

− u′3
(
pκp−3κ′λ

(
1 + λ2

)p−1
+

(
pκp−2λ

(
1 + λ2

)p−1
)′)

+ u′′3
(
pκp−2λ

(
1 + λ2

)p−1
)
.

(2.13)

Theorem 1. The critical points of the modified Sadowsky functional (2.7) are characterized by EL
equations

f1 = f2 = 0. (2.14)

We also obtain b′ = 0, when γ is an extremal for S µ for each variation of γ, which leaves the integrand
of the functional (2.7) invariant.

Proof. Let a reparametrized curve γ be a stationary point of S µ. From (2.12), we obtain

∂

∂δ

∣∣∣∣∣
δ=0

S µ (γδ) =

∫ `

0
(u2 (s) f1 (s) + u3 (s) f2 (s)) ds + b (`) − b (0) = 0.

Using the fact that b (`) = b (0) = 0 for a proper variation, the boundary conditions are naturally
introduced, and we deduce the desired EL equations. These boundary conditions ensure that the
variations of γ at the endpoints do not contribute to the variation of the functional, highlighting how
geometric properties such as the endpoints’ positions influence the stability and configuration of the
system. On the other hand, it can be observed from (2.12) that b′ = 0 when γ is a critical point of the
functional (2.7). �

One can see from the EL Eq (2.14) that critical points with torsion-free of the modified Sadowsky-
type functional are just hyperelastic curves with torsion-free (see [1], for EL equations of hyperelastic
curves).

In the following, we can give an obvious application.

Example 1. Let γ(s) be a reparametrized planar curve with non-constant curvature κ (s) . We know
that γ (s) is a borderline elastic curve if κ = κ0 sec h

(
κ0
2 s

)
, an orbitlike elastic curve if κ = κ0dn

(
κ0
2 s, k

)
,

and a wavelike elastic curve if κ = κ0cn
(
κ0
2k s, k

)
, where dn and cn are respectively elliptic delta and

cosine functions with parameter k, and parameter κ0 determines the maximum curvature [11]. Now
suppose that a borderline elastic curve γ is the centerline of the rectifying strip Fγ. Then, we calculate
the second derivative of the curvature κ of γ as follows:

κ′′ =
κ4

0

4
sec h(

κ0

2
s)

(
1 − 2 sec h2(

κ0

2
s)
)
.

Moreover, we can obtain µ = −
κ2

0
2 . Putting κ, κ′′ and µ in EL Eq (2.14) for p = 2, we obtain that Fγ

is a 2-elastic strip (or elastic strip). Similar processes are also applicable for orbitlike and wavelike
elastic curves.
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Furthermore, it is demonstrated that circular helices solve EL Eq (2.14). Now, we will illustrate this
with an example.

Example 2. Let β (s) =
(
cos

√
2s
2 , sin

√
2s
2 ,

√
2s
2

)
be a unit-speed helix with the curvature and the modified

torsion
κ =

1
2

and λ = 1 [40]. (2.15)

By using the values (2.15) and EL Eq (2.14), we can see that the rectifying strip

Fβ=

cos

√
2s
2

, sin

√
2s
2

,

√
2s
2

+
√

2δ


with centerline β is a hyperelastic strip chosen µ = 1 − 2p (see Figure 1).

Figure 1. The hyperelastic strip and its base curve corresponding to Example 1.

3. Conservation laws of hyperelastic strips

In physics, conserved quantities such as internal forces and torques are interpreted in terms of
fundamental conservation laws such as momentum and angular momentum. In the context of elastic
strips, conserved quantities are often interpreted as internal forces and torques due to the fundamental
conservation laws of linear and angular momentum because they are obtained through Euclidean
translations and rotations. These internal forces and torques are necessary to maintain the structural
integrity and stability of the ribbon under deformation. While internal forces help maintain the linear
stability of the ribbon, torques govern rotational dynamics. In this section, we obtaion the internal
force and torgue vector for hyperelastic strips and prove the first and second conservation laws.

Now, we take a variation that consists only of translations, as follows:

γδ (s) = γ (s) + δΓ

with the variation vector field
·
γδ (s) = Γ = u1T + u2N + u3B,
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where Γ is an arbitrary vector in R3, u1 =< Γ,T >, u2 =< Γ,N >, and u3 =< Γ, B >. The derivatives,
u′2, u′3 and u′′3 are calculated as

u′2 = −κ < Γ,T > +λκ < Γ, B >, (3.1)
u′3 = −λκ < Γ,N >, (3.2)

and
u′′3 = − (λκ)′ < Γ,N > +λκ2 < Γ,T > −λ2κ2 < Γ, B >, [19]. (3.3)

Combine the Eq (2.13) with the derivatives (3.1)–(3.3), and we obtain

b =< Γ,W0 >,

where

W0 := 1
2

(
(p − 1) κp

(
1 + λ2

)p
+ µ

)
T +

(
p(p−1)

2 κp−2κ′
(
1 + λ2

)p
+ p (p − 1) κp−1λλ′

(
1 + λ2

)p−1
)

N

−

(
p
2λκ

p
(
1 + λ2

)p
+

(
pκp−3κ′λ

(
1 + λ2

)p−1
)′

+

(
pκp−2λ

(
1 + λ2

)p−1
)′′)

B.

We know that b is a constant when the Frenet curve γ is an extremal of the Sadowsky-type functional.
Therefore, W0 is a constant for any Γ ∈ R3.

For a variation consisting only of rotations, Γ̃ ∈ R3, Aδ ∈ S O (3) , u1 =< Γ̃×γ,T >, u2 =< Γ̃×γ,N >

and u3 =< Γ̃ × γ, B >, we have

∂

∂δ

∣∣∣∣∣
δ=0

Aδγ (s) = Γ̃ × γ (s) = u1T + u2N + u3B.

By using a similar method, we arrive at

b =< Γ̃,W1 >,

where

W1 := pλκp−1
(
1 + λ2

)p−1
T +

1
κ

(
pκp−1λ

(
1 + λ2

)p−1
)′

N +
p
2
κp−1

(
1 + λ2

)p−1 (
1 − λ2

)
B − γ ×W0

is a constant for hyperelastic strips.
We show that hyperelastic strips can be determined by W0 and W1 in the following theorems. We

call these theorems the first and second conservation laws of hyperelastic strips, respectively.

Theorem 2. A rectifying strip Fγ is a hyperelastic strip if and only if the force vector W0 = a1T +

a2N + a3B is constant, where

a1 : =
1
2

(
(p − 1) κp

(
1 + λ2

)p
+ µ

)
, (3.4)

a2 : =

(
p (p − 1)

2
κp−2κ′

(
1 + λ2

)p
+ p (p − 1) κp−1λλ′

(
1 + λ2

)p−1
)
, (3.5)

and
a3 := −

( p
2
λκp

(
1 + λ2

)p
+

(
pκp−3κ′λ

(
1 + λ2

)p−1
)′

+

(
pκp−2λ

(
1 + λ2

)p−1
)′′)

. (3.6)
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Proof. It suffices to show
W ′

0 = f1N + f2B, (3.7)

because the vector W0 is a constant if and only if f1 = f2 = 0 in (3.7). By using Eq (2.2), we obtain

W ′
0 = (a′1 − κa2)T +

(
a′2 + κa1 − λκa3

)
N +

(
a′3 + λκa2

)
B. (3.8)

On the other hand, from (3.4) and (3.5), we find

a2 =
1
κ

a′1.

It then follows that the coefficient of T in Eq (3.8) vanishes. Now, by using (3.4)–(3.6), the coefficients
of N and B are found as follows:

a′2 + κa1 − λκa3 = f1, (3.9)
a′3 + λκa2 = f2. (3.10)

Equations (3.9) and (3.10) show that W0 is a constant if and only if f1 = f2 = 0. �

Theorem 3. For a hyperelastic strip Fγ, the torque vector W1 = s1T + s2N + s3B− γ ×W0 is constant,
where

s1 : = pλκp−1
(
1 + λ2

)p−1
, (3.11)

s2 : =
1
κ

(
pκp−1λ

(
1 + λ2

)p−1
)′
, (3.12)

and
s3 :=

p
2
κp−1

(
1 + λ2

)p−1 (
1 − λ2

)
. (3.13)

Moreover, if W1 is a constant but γ does not define a hyperelastic strip, then ‖γ‖ is conserved.

Proof. Taking into consideration Eq (2.2), we calculate the first derivative of W1 as follows:

W ′
1 =

(
s′1 − κs2

)︸     ︷︷     ︸
0

T +

κs1 + s′2 − λκs3︸             ︷︷             ︸
−a3

− (−a3)

 N +

s′3 + λκs2︸    ︷︷    ︸
a2

+ a2

 B − γ ×W ′
0. (3.14)

Substituting (3.11)–(3.13) and the derivatives s′1, s′2 and s′3 in (3.14), we see that the coefficients of T,
N, and B are zero. Thus, Eq (3.14) is reduced to

W ′
1 = −γ ×W ′

0. (3.15)

Equation (3.15) implies that W ′
1 = 0 when W0 is a constant, so we can see from Theorem 2 that W1 is

constant when γ defines a hyperelastic strip.
On the contrary, suppose that W1 is a constant vector field but γ does not define a hyperelastic strip.

From (3.7), we get
0 = W ′

1 = −γ × ( f1N + f2B) .

This means that γ ∈ Span {N, B}. So we have

< γ, γ >′= 2 < γ,T >= 0.

�

AIMS Mathematics Volume 9, Issue 9, 24372–24384.



24381

We give the following example, which provides the condition that a cylindrical helix can define a
hyperelastic strip.

Example 3. Let a unit speed curve γ be base curve for a hyperelastic strip Fγ with internal force W0.
Taking the inner product of both sides of W0 = a1T + a2N + a3B with T , we obtain

< W0,T >= a1 =
1
2

(
(p − 1) κp

(
1 + λ2

)p
+ µ

)
.

Thus, γ is a slope line if a1 is a constant. Moreover, λ and κ must be constants in this case. This means
that a hyperelastic strip is defined by a cylindrical helix when a1 is a constant.

4. Conclusions

Sheet, bar, or band-like structures, which are foldable or bendable and deformed solely by bending,
have minimum energy when brought into a flat position. Because of these features, the mechanics of
curved structures are based on the classical formulation of developable surfaces, and as a matter of
fact, the deformation energy calculation resulting from bending combines mechanics with geometry
(see [18, 39, 41]). Wunderlich showed that the functional introduced by Sadowsky is proportional to
the Willmore functional, which is one of the most important representatives of the minimal surface
studies frequently studied in differential geometry, and proved that the structure of a developable band
looks like the 1-dimensional structure of thin rods and is determined by the classical equations of thin
elastic rods. Elastic strips, which are actively studied today, are developable ruled surfaces formed by
stationary points of the Sadowsky functional. The Sadowsky-type functional is a natural generalization
of the Sadowsky functional. The Sadowsky-type functional offers a different method and perspective to
the problem of finding the extremals of the generalized Willmore functional, which has been frequently
studied recently.

In the present work, we show that the Sadowsky functional is proportional to the p-Willmore
functional. Using a Lagrangian multiplier representing the length constraint, we define the modified
Sadowsky-type functional and obtain EL equations characterizing the critical points of this functional.
We call a rectifying strip whose base curve is the critical point of a Sadowsky-type functional a
hyperelastic strip. We obtain the conservation laws of hyperelastic strips with the help of Euclidean
motions. These conservation laws provide a starting point for the open problem of finding new
integrable systems of hyperelastic strips corresponding to spherical hyperelastic curves. Different
perspectives on the solutions of these derived equation systems can be explored (see [42]). On the
other hand, hyperelastic curves are a useful tool for generating rotational Chen-Willmore hypersurface
samples. It is known that Chen-Willmore hypersurfaces in the Euclidean n-space Rn+1 and the sphere
Sn+1 can be obtained with the help of hyperelastic curves in the hyperbolic 2-plane (see for details [8]).
For this reason, Chen-Willmore hypersurface samples can be derived with the help of the Hopf
transform by establishing connections between new strip types obtained by using conservation laws
and spherical hyperelastic curves. There also arises the open problem of studying hyperelastic strips
in n-dimensional Euclidean space to derive more distinct Chen-Willmore hypersurfaces. This problem
can also be considered in non-Euclidean spaces. It may also be useful to work with Minkowski spaces
with Poincaré isometry groups.
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