Research article

Global error bounds for the extended vertical LCP of $ \sum-SDD $ matrices

  • Received: 22 May 2024 Revised: 19 July 2024 Accepted: 26 July 2024 Published: 16 August 2024
  • MSC : 65H14

  • An error bound for the solution of the $ \sum-SDD $ matrix extended vertical linear complementarity problem is given when the $ \sum-SDD $ matrix satisfies the row W-property. It is shown by the illustrative example that the new bound is better than those in [1] in some cases.

    Citation: Mengting Gan. Global error bounds for the extended vertical LCP of $ \sum-SDD $ matrices[J]. AIMS Mathematics, 2024, 9(9): 24326-24335. doi: 10.3934/math.20241183

    Related Papers:

  • An error bound for the solution of the $ \sum-SDD $ matrix extended vertical linear complementarity problem is given when the $ \sum-SDD $ matrix satisfies the row W-property. It is shown by the illustrative example that the new bound is better than those in [1] in some cases.



    加载中


    [1] C. Zhang, X. J. Chen, N. H. Xiu, Global error bounds for the extended vertical LCP, Comput. Optim. Appl., 42 (2009), 335–352. http://dx.doi.org/10.1007/s10589-007-9134-9 doi: 10.1007/s10589-007-9134-9
    [2] M. S. Gowda, R. Sznajder, The generalized order linear complementarity problem, SIAM J. Matrix Anal. Appl., 15 (1994), 779–795. http://dx.doi.org/10.1137/S0895479892237859 doi: 10.1137/S0895479892237859
    [3] R. W. Cottle, G. B. Dantzig, A generalization of the linear complementarity problem, J. Combinat. Theory Series A, 8 (1970), 79–90. http://dx.doi.org/10.1016/S0021-9800(70)80010-2 doi: 10.1016/S0021-9800(70)80010-2
    [4] M. Sun, Monotonicity of Mangasarian's iterative algorithm for generalized linear complementarity problems, J. Math. Anal. Appl., 144 (1989), 474–485. http://dx.doi.org/10.1016/0022-247X(89)90347-8 doi: 10.1016/0022-247X(89)90347-8
    [5] M. Sun, Singular stochastic control problems in bounded intervals, Stochastics, 21 (1987), 303–344. http://dx.doi.org/10.1287/mnsc.17.9.612 doi: 10.1287/mnsc.17.9.612
    [6] M. Sun, Singular stochastic control problems solved by a sparse simplex method, Ima J. Math. Contro. Inf., 6 (1989), 27–38. http://dx.doi.org/10.1093/imamci/6.1.27 doi: 10.1093/imamci/6.1.27
    [7] L. L. Zhang, Z. R. Ren, Convergence of multi splitting iterative methods for M-Matrix linear complementarity problems, J. Math., 60 (2017), 547–556. http://dx.doi.org/10.3969/j.issn.0583-1431.2017.04.002 doi: 10.3969/j.issn.0583-1431.2017.04.002
    [8] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, San Diego: Academic Press, 1992. http://dx.doi.org/10.1137/1.9780898719000
    [9] M. Z. Wang, M. M. Ali, On the ERM formulation and a stochastic approximation algorithm of the stochastic-$R_{0}$ EVLCP, J. Math., 217 (2014), 513–534. http://dx.doi.org/10.1007/s10479-014-1575-9 doi: 10.1007/s10479-014-1575-9
    [10] J. Zhang, W. B. Shan, N. Shi, Smoothing SAA method for solving a special class of stochastic generalized vertical linear complementarity problems, J. Liaoning Normal Univ., 40 (2017), 18–23. http://dx.doi.org/CNKI:SUN:LNSZ.0.2017-03-004
    [11] L. P. Zheng, Z. Y. Gao, Global linear and quandratic one-step smoothing newton method for vertcal linear complementarity problems, Appl. Math. Mech., 24 (2003), 738–746. http://dx.doi.org/10.1007/BF02437876 doi: 10.1007/BF02437876
    [12] F. Q. Zhu, Iterative algorithms and related research for two types of linear complementarity problems, University of Electronic Science and Technology of China, 2007. http://dx.doi.org/10.7666/d.Y1105908
    [13] G. N. Chen, Matrix theory and applications, Science Press, 2007.
    [14] H. H. Wang, H. B. Zhang, C. Q. Li, Global error bounds for the extended vertical LCP of B-type matrices, Comput. Appl. Math., 40 (2021), 1–15. http://dx.doi.org/10.1007/s40314-021-01528-0 doi: 10.1007/s40314-021-01528-0
    [15] Y. X. Zhao, Error estimation of solutions for several types of structural matrix extended vertical linear complementarity problems, Guizhou Minzu University, 2023. http://dx.doi.org/10.27807/d.cnki.cgzmz.2023.000516
    [16] M. García-Esnaola, J. M. Peña, Error bounds for linear complementarity problems with a $\sum-SDD$ matrices, Linear Algebra Appl., 438 (2013), 1329–1346. http://dx.doi.org/10.1016/j.laa.2012.09.018 doi: 10.1016/j.laa.2012.09.018
    [17] N. Moraca, Upper bounds for the innity norm of the inverse of SDD and S-SDD matrices, Comput. Appl. Math., 206 (2007), 666–678. http://dx.doi.org/10.1016/j.cam.2006.08.013 doi: 10.1016/j.cam.2006.08.013
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(469) PDF downloads(67) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog