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1. Introduction and Preliminaries

The extended vertical linear complementarity problem is to find a vector x € R" such that
r(x) := min(Aox + go, A1x+q1,- - ,Arpx+qr) =0,

or prove that there is no such vector, where the min operater works componentwise for both vectors
and matrices. Here, it is abbreviated by EVLCP(A,q), where

A:(AO’AI,"',Ak),AleR"X”,l:(),l,"',k,

is a block matrix and
q=o.q1, " ,q0),q1€R",1=0,1,--- ,k,

is a block vector.

When £ = 1,Ay = 1,q0 = O,the EVLCP(A, q) reduces to linear Complementarity problems
(denoted by LCP (A1, ¢1), and when Ay = 1,qo = 0, the EVLCP(A, q) comes back to vertical linear
complementarity problems (can be found in [2,3]).The results proposed by Gohda and Sznajder (can
be found in [4-6]) for the extended vertical linear complementarity problem.

Some experts and scholars have extended the theories of existence, uniqueness, and error bound
of the linear complementarity problem to the extended vertical linear complementarity problem. For
example, for any vector ¢ , in the LCP (A, q) has unique solutions if and only if matrix A is the
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P-matrix (can be found in [7-8]). Gowda and Sznajder extended this to the extended vertical linear
complementarity to be replaced by problem [2] in 1994, which became the theoretical basis for the
later study of the extended vertical linear complementarity problem.

In [9-12], the algorithms for solving the extended vertical linear complementarity problem are
proposed, but the solutions obtained by using these algorithms often have errors; thus, the error
estimation of the extended vertical linear complementarity problem is worth studying.

Next, let us review some relevant symbols, concepts, theorems, and lemmas.

When the B = (bi j) € R™" matrix satisfies b;; < 0, for any i # j, B is called Z-matrices; if
the principal and sub equations of B are all positive, then B is a P-matrix; if B is a Z-matrix and
B~' > 0, then B is an M-matrix; if B = (l~7,-‘,-) and if the comparison matrix of B is an M-matrix, when
i =], Eij = |b,-j , wheni # j, l~7,-j =- |b,-j , then B is an H-matrix (can be found in [12]).

Definition 1.1. [13] B matrix is B = (b;;) € R, if for any i, j € N,|b;| > ri(B), is called a strictly
diagonally dominant (S DD) matrix.
Definition 1.2. [1] Ifforanyie N,

(47), = (45), e {@o . @i .- A | = {(AD), . (4]), ) - ,(A;),._} :

where (A;.)i represents the i-th row of matrix (A;) then the block matrix A’ = (AE) Al A,’c) 1s called
row rearrangement. Similarly, block vectors g and ¢’ also satisfy the above relationship, respectively
and here use R (M) and R(q) to represent the set of rearranged rows of A and g.
Theorem 1.1. [13] For any block vector ¢ = (g0, 41, - », qx), the EVLCP(A, q) has a unique solution
if and only if the block matrix A = (Ao, Ay, - - , Ax) has the row W-property, i.e.,

min (Agx, Ay x, -+ ,Arx) <0 <max (Apx,A1x, - ,Aix) = x =0,

where, the max and min operators work componentwise for both matrices and vectors, 0 represents a
zero vector.

In 2009, Zhang et al. (can be found in [1]) applied the property of row rearrangement in block
matrices to provid necessary and sufficient conditions for block matrices to have the row properties.
The specific expression is as follows:

Lemma 1.1. [1] The block matrix A = (Ao, Ay, - ,Ax) has the row W-property if and only if (1 —
D)A’; + DA is nonsingular for any two blocks A%, A} of A” € R(A) and for any D = diag(d;).d; €
[0,1],i € N.

Furthermore, a global error estimation formula for the EVLCP(A, q) is also provided, as follows:

Let x* be the solution of the EVLCP(A, q). If the block matrix A = (Ao, Ay, -, A;) has the row
W-property, then for any x € R",

[lx — x"ll < a(A) - lIr(oll, (1.1)

where

|- D), + D] .

a(A) := max max max
M’ €R(M) J<IE0.1....k} de[0.1]"
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Apparently, due to the difficulty to compute H[(I - D)A'j + DA;]_1 H exactly, it is upper bound (1.1)
for @(A) and cannot be computed easily. Thus, some computable upper bounds for @(A) are given
under various matrix norms by considering the structured property for matrices A;, j = 0,1,... k.

For example, Zhang et al. provided an upper bound on @(A) when all A; are § DD matrices in [1],
and also provided an upper bound on another @.,(A) for a special matrix A under certain conditions.
Theorem 1.2. [1] Suppose that matrices Ay, Ay, -+ ,Ax has the positive diagonals, with the
spectral radius

p (max (A5 1Qol . AT QI -+ AT IQK)) < 1.
then A = (Ag, Ay, - -+, Ax) has the row W-property and

Ue(A) <

b

-1
- (o] e, ()

0

where A, is the diagonal part of A;, Q; = A; — A;, fori =0,1,... k.

In addition, Zhang et al. presented a computable upper bound for a(A) under the infinity norm in
another rspecial class of block matrices.
Theorem 1.3. [1] Suppose that Ag, Ay, - , A, are S DD matrices and A = (Ap, Ay, -, Ay) has the
row W-property , and for each i € N, (Aj)ii (A);; > 0,withany j<1€{0,1,...,k}, then

1
miney {(min(Age, Ave, . .., Are));}’

Ao(A) <

where A; is the comparison matrix of A;, i.e., (/L)TT = (A)l, (A,-)Tj = - |(A,-)Tj for v # j,(A),; is the

element in the 7-th row and j-th column of 4;, and (4,), ;1s the element in the 7-th row and j-th column
of (A),.

However, the error estimation formula provided is applicable only to a certain type of special
matrix, and it is not easy to verify. Therefore, it is necessary to explore the error estimation formula
for solutions of EVLCP(A, q) for other special matrix classes.

In 2021, Wang et al. provided error estimation formulas for the EVLCP(A, q) of BR-matrices
and B-matrices in reference [14]. In 2023, Zhao et al. provided error estimation formulas for the
EVLCP(A, q) of S — SDDS — B matrix and S — S DDS matrix in reference [15].

In 2013, Garcia Esnaola and Pefia first proposed a special class of H-matrices: ,-SDD matrices
(see [16] for details) and provided error estimates for their linear complementarity problems with
parameters. Its definition is as follows:

Definition 1.3. [16] Let matrix B = (b,- J-) € C™" if there is a non empty subset S such that the
following two conditions hold:

(@ |bil > r} (B),i € S;

(D) (b4l - 5B)) (|b1;| - r(B)) > ri(B)ri(B).i€ S, j €.
then B is called the )} —S DD matrix.

Theorem 1.4. [16] If Bisan ), —S DD matrix and S is a nonempty subset of N, then
||B‘1||Oo < max max {pfj(B),pfi(B)} ,

ieS,jes
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where
bl = r (B) + rf (B)

bal = 5 (B) (|| - r (B)) - 17 (B)r (B)
|bij| = 5 (B) + r{ (B)
bil = 3 (B)) (|bss] - 5 (B)) - 1 (B)rS (B)

pi(B) = (

Pf,-(B) =
(

2. A global error bound for the extended vertical LCP of ), —S DD Matrix

Proposition 2.1. Let B = (bi j) € C™ and M = (m,» j) € C™" be »,—S DD matrices with positive
main diagonal elements, and all have the same set S ¢ N, If Vi € §,Vj € S, satisfies b; im;; > 0 (or
bj,-mjl- > 0) and

(1bil = £ (B)) (| - 5 () > 17 (BYFS (M),

(Imal = 5 D) (|b1;] = 75 (B)) > i (M)r (B),

then (I — D)B + DM is a ), —S DD matrices, where D = diag (d;) ,d; € [0, 1],i € N.
Proof. Since both B and M are Y. —S DD matrice, so for any i € S, j € S, the following hold:

Ibil > £ (B), (bl — 75 (B)) (|bs] - 5 (B)) > i (B (B).

il > r? (M), (jmal = v M) (|| = 75 (M) > 7 (M)r (M.

Note that d; € [0,1], hence 1 —d; > 0 and d; > O, they are not equal to O at the same time. Let
(I-D)B+D =C = (c;;). Thus forany i € S, j € §, we have

jcil = 5(0)
= (1= d) |bal + di migl = 3 jes g (1 = di) |bis] = 3 jes o di Imi
= (1= d) (1bal = 5 (B)) + d; (Imal - r (D)) > 0,

i.e.,
s
lciil > 17 (C),

and foranyi€ S, j€ S, we have

(Icil = 72 ©) (|es] - 5(©)

= |0 = d) (1bal = 3 B)) + d (1mil = 3 MD)| x [(1 = &) (|| = 5 (B)) + d; (|m] = 5 (2|

= (1 =d) (1 =) (1ol = ¥ B)) (Ibs] = r§ B)) + (1 = d) d; (bl = i (B)) (my; | = (D)

+d; (1= d;) (1mal = 5 D) (|bj;] = 5 (B)) + did; (jmil = 13 WD) (jmy| - 5 (1)

> (1=d)(1-d)) S (B)rS(B) + (1 - d) djrs (ByrS (M) + d; (1 — dj) 13 (M)rS (B) + did s (M)rS (M)
= |1 =d) ¥ B) + dirf )| [(1 - ;) S (B) + djrS (M)

=5 (O)r(C),

form Definition 1.3 the conclusion follows.
According to Proposition 2.1, Lemma 1.1 and the fact that a ), —S DD matrix is nonsingular( can
be found in [17] for), block matrix composed of >} —S DD matrix has the row W-property.
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Proposition 2.2. Ay, A, - ,A; are ), =SS D matrices, and each A;, (/; =0,1,--- ,k) satisfies the
condition of Proposition 2.1, then each A; inA" € R(A)is a Y —S DD matrix, A = (Ay, Ay, --- , Ag) has
the row W-property.

Proof. From Definition 1.2, for the i-th row (4}) (i € N) of A, there exist /; € {0, 1, , k}, such that

( ;)l = (Aji)i.' Since A, is a Y, —S DD matrix, for any i € S, j € S, we have

|(Al,-)i,'| > ris (Ali)’ _
(|(Ali)ii| - ris (All)) (|(Ali)jj| - rj_‘ (All)) > r;S‘ (Al;) r].S“ (Ali) s

(47),] > i ().
(] = ) (Ja), | = 75 () > o5 (40) 5 ()
from Definition 1.3, A; is a ), =S DD matrix.

Let A;,A; be any two blocks in A" € R(A), then A/J.,A; are all ), —S DD matrices. According to
Proposition 2.1, (I — D) A;. + DA; is a ), =S DD matrix for any D = diag(d;),d; € [0,1],i € N, and
thus (/ — D) A'j + DA; is nonsingular. From Lemma 1.1, block matrix A = (Ag, Ay, -+ ,Ax) has the
row W-property.

Next, we provide an upper bounds for a@.(A) with each A;,,l = 0,1,2,---,k being a
>, —S DD matrix.

Theorem 2.1. Let A = (Ag, A, ,Ay), ifeach A, ([; =0,1,...,k) is a ), =S DD matrix and satisfies
the condition of Proposition 2.1, then

i.e.,

’ ’ -1
maxM/E%(M) max j<efo,1,....k} MaXqefo,17" [(I — D)A + DA ] “

4maxp=o,1... k{(a’ZM) S X} maxp=0,1...., k{(ﬁ,’;m)A’Z’”} 4maxp=o,1..., k{(afmx) 3 }maxp 0,1, k{(ﬁm,,) ””"}
ax
2 s 2
mlnﬂ 0,1, k{(ﬂfmn) mm} mlnl’ 0,1, "{('Bl]:ml) mm}

< max maX;es res

b

where

p _ _ P
(amax)pfmn = MaX;es r¢§ {(aiT)PiST} >
P _ _ S S
(@), =](a0). | =72 (47) + 7 ().
oS o3
4 min . _ P \lit
(ﬂmin)A - mlniES,TES (ﬁi‘r)A
P P

Proof. For any two blocks A'J.,A; inA" € R(A), and any D = diag(d;),d; € [0,1],i € N. According to
Propositions 2.1 and 2.2, it can be inferred that A'j,A; and Ap all are )} —S DD matrices with positive
main diagonal elements. According to Theorem 1.4,

451l = |(c2 - D24 + DAY | < maxmax o, A0). o540}

where anyi € S,7€ S,
|aii| — Vf(AD) + VE(AD)
jail = 5 (Ap)) (lasel = 1 (Ap)) = r (Ap)rs(Ap)

P (Ap) =
(
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jarel = 73 (Ap) + 3 (Ap)
il = r$ (Ap)) (lacel = 5 (Ap)) = r (Ap)rS(Ap)

Pi(Ap) =
(

We have
lail =} (Ap) + 17 (AD)
= ](1 —d) (A7) +d ' (1= dp)rd (A%) = dir (A)) + (1 = d) 75 (A7) + dir (A))
4wmkaewrm»(K»\e<w (%)
(o) + (),

< 2max,- il (a/max)ps ’

max

where t = i, /, and
(@i, = max (@ )s | (@h))s = [(AD] = 77 (A7) + 77 (4)).
Similarly, we have

larel =75 (Ap) + 17 (Ap)
=|a1-a )( ) +d (A7) | - (1= do) 7S (A)) = dord (A7) + (1= dy 7§ (A) + dor? ()

)+ 75 (4)) + (|(4)..

()
= (0 ) ( )
<2m ax, Jl(amax)prs»mx’

where ¢t = j,/, and

(@, = max {(at)s b @i)s = (40, = () + F (41).

Therefore, it can be concluded that

(lail = 7 (AD))(|aTT| rS(AD>) r$ (Ap) 7S (Ap)
:(‘(1 d) (A ',- (4)),| -1 —dyrs (a) —dirs (A,))

((1 d.) (A (4),.| - =d)rs (4) - dnrf(f‘ﬁ))
—((1 - d)r ( )+drS A7) x (1 =d)rs (A ])_+d,r§(A;))
—(1—d)(l - d)( )| - rlS(A])(' A) —T(A;.))
eat=anar ()| - () a0, | - = ()

+d; (1 - df)(( 1),,'”? (Aj )(‘(A?)TT - (AJ))

v ([(),| - () (), | - (a9)

—(L=d) (1 —do)rd (A7) 15 (A) = (1 = dy dord (A7) 15 (4))

—di (1= dg) S (A) 1S (A7) = dider (A7) 75 (47)
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(1(a),

> =y (1 =do([(ar),] - 72 (a) (| (as). | - % (7))
ct=ad(|(a)| - () ((40).] - ()
+dide (|(a7), = 7 (7)) (|(w7)

==y -do(

s [(a7)| = () (29,
0

= (1 =d) (1 =) (B)7 +did (B,)

; A
. S fu‘n
> -d)(1-d) (ﬁilm)f{f "+ did. ('Bfnin)j;

> 0,
where ¢ = j, 1, and

(ﬁt )pf;zin _ ; ' VP
max A; = min (ﬂi‘r)A; ’

ieS,reS

Therefore,

laiil—r; (Ap)+75 (Ap)

s _
Pir(Ap) = (12—} (Ap))(laz<|-73 (Ap))-r3 (Ap)rs (Ap)

(ot
2maxe=ji(@hax) 5

<

T S
1=d)(1=d)(p’. Y min s d;d (8. ) min
(1=d;)(1- T)(ﬁmm)Ml +ai T(ﬂmin)M’
j !
r
2 max,- (!
t _].1( max)psmax
A / oS
. J min min
min (ﬁm[nr;’ ‘(’Bmin)A'
Jj !
VT
J min min
2max (ﬂminf" ’(’Bmin)A’
j 1
’ : pS ! ﬂS
. 1 . J min min
4max1:_/.[(wmax)p£1ax max (IBmin)A' ’(ﬂmin)

A/

2
S S
. J \min [ Pimin
[mln{(ﬁ,,1[n)A' ’(ﬁmin)A’ }]
j !

2

Similarly, it can be inferred that
’ Jj PS i i pS i
4 maxt=j,1 (alinax)prs—n smax {(ﬁmin)A’ ’ (IBmin)A’ }
ax / 1

S S 2
in{ ) )}
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then

(1 - D)A’ + DA

-1
max s ew vy MaX j<iefo,1,...k) MaAXge[0,1]" ‘

’ ’
o j (ot Y j
4 max,- ,,z(cyma,()pg1 N max{(,Bmm) min (B ) ’""’} 4 max;= j,z(amax)ps 5 max{(ﬁmm) min (8L ""’l}

] pS . pS . 2 ’ 2
e | i3 |

J

< max maXes re5

Furthermore, from Definition 1.2, we can regard A/j and A; as two blocks in a row rearrangement
fo A = (Ap,Aq,...,As), and thus for t = jort = [ and for any i € N, there exists t; € {0, 1,--- ,k}
such that
o8

S
Y ti Y t; t \Pir _ t; \it
(a/iT)p*igT - (aiT)p;S; s (a/‘l'i)pfl. - (a’,ri)pfi s iT)A; - (ﬁiT)Ati s
we have

’
t 4 — _ t — li
max,-; (amax)p% = maxe—j {max,-:S,TGS (a/l.T)p_S} = MaXies res {maxt: il (ai;)ps}

it it

_ p — _ p — p
< MmaXies re§ {maxp:0,1,~-~,k (a/ir)pS} - maxp:0,1,~~-,k {maXiES,TES (aif)pg - maxp:0,1,~~ k {(a/max)pgm} )

it it

and

. Jj pmm pmm . . t p;ST ! pS

min ( mln)A’ ,( min - mlnt:j,l MiNjeg 7§ (’BiT)A, mlnt gl mlnLES re§ (:8 )Ar-

1
S S

. > . p p”- _ . p

MiNjes res {MiN,— B mlﬂles re§ YN p=0,1,- k \ P}y A = MiNy=q,1, k MiNjeg 7§ )4
4 4

. 4 pmm
min,=o,1,-- k min /4
4

2

and
S S S
; fo foa fo
J min [ ‘min Y4 min
max (B,), (6) < max {( ) }
{ min/4’ > \"min A p=0,1, k min/4, ’
thus

S S
’ ; P 00 S
t min [ min foae
m . [0% m 8 8 . P P min
4 AXr=jil ( maX)anax ax {( mm)A] ’ ( mm)A; } 4 max,=o,1,-k {(a/max)pﬁmx} *MaxX,=0,1,- k {( min) }
< .

AP
2 - s 12
S S
) C \Poi o : P \Pmin
J min [ min min,_ ( . )
[mln {( min)A/_ ’( min)A; }:| p—O,l, k min Ap
J

Similarly, it can be concluded that

S

S S
t J min [ min Yo
m _ S -m . . P _ Y4 min
4 aXi=ji (amax)pﬁm ax {( mln)A; 5 (ﬁmm)A; } 4 max,=o,1,-k {(a/max)prsm} *MaXp=0,1, k {( min) }

AP
2 s 12
S S
Pmin [ Pmin 1 ( P )pmi"
min,—oi... .
[mm {( min)y > (B POl iy,
J

then for any A'J. and A, for A" € R(A), satisfy

IA

2

’ ’ -1
MaX ' ek (pr) MAX j<lef0,1,...k) MAXe[0,1]" [(1 —D)A; + DA ] ”
4maxp=0,1,...k{(a.';ax)pﬁ1 ax}-maxp=o,1, {(ﬁﬁm) mm} 4maxp=0,l,»«k{((l€mx)p§ }‘maxp=0.1, {(Bmm) mm}
minﬂ=0,l {(ﬁmm) mm} HliIlp:O,l {(ﬂmm) mm}

< max maX;es re§
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from the arbitrariness of A;. and A}, the conclusion follows.

Next, we give a numerical example to illustrate that our results have advantages over some
existing results.
Example 1. Let A = (Ag, A1, A,), where

3 -1 -1 310 3 151
Ao = 1 6 1 ,Al = 1 5 1 ,A2 = 2 6 3 ,
1 1 6 2 17 19 1 3

are all >} —S DD matrices and satisfies the condition of Proposition 2.1, thus A = (A, A;,A2)A =
(A, A1, Ay) has the row W-property. Then by Theorem 2.1 we can get

as(A) < 2.0378.
By Theorem 1.2, Sincep(max (A51 1Qol, ATH O], -+ L AL Ile)) =0.8760 < 1, we get
aso(A) < 10.

By Theorem 1.3 we get
@s(A) < 2.5210.

According to the calculation example, it can be seen that new bound in Theorem 2.1 is sharper
than those in Theorems 1.2 and 1.3 given by Zhang et al. in [1] in some cases.

3. Conclusions

In this paper, I first apply the properties of ), —S DD matrices to prove that block matrices
composed of )} —S DD matrices have row W-properties under certain conditions and obtains the
extension of ) —S DD matrices under these conditions for the error bound of the solution to the
vertical linear complementarity problem. In the process of research, it is found that the error bounds
of extended vertical linear complementarity problems for other types of matrices need to be further
studied and explored, such as N-type matrices and CKV-type matrices.
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