We introduce the general notion of a rank on a vector space, which includes both tensor rank and conventional matrix rank, but incorporates other examples as well. Extending this concept, we investigate vector spaces consisting of vectors with a lower bound on their rank. Our main result shows that bases for such spaces of maximum dimension can be chosen to consist exclusively of vectors of minimal rank. This generalization extends the results of [
Citation: Zoran Z. Petrović, Zoran S. Pucanović, Marko D. Pešović, Miloš A. Kovačević. Some insights into rank conditions of vector subspaces[J]. AIMS Mathematics, 2024, 9(9): 23711-23723. doi: 10.3934/math.20241152
We introduce the general notion of a rank on a vector space, which includes both tensor rank and conventional matrix rank, but incorporates other examples as well. Extending this concept, we investigate vector spaces consisting of vectors with a lower bound on their rank. Our main result shows that bases for such spaces of maximum dimension can be chosen to consist exclusively of vectors of minimal rank. This generalization extends the results of [
[1] | J. F. Adams, Vector fields on spheres, Ann. Math., 75 (1962), 603–632. https://doi.org/10.2307/1970213 doi: 10.2307/1970213 |
[2] | E. Ballico, A. Bernardi, Tensor ranks on tangent developable of Segree varieties, Linear Multil. Algebra, 61 (2013), 881–894. https://doi.org/10.1080/03081087.2012.716430 doi: 10.1080/03081087.2012.716430 |
[3] | G. M. Bergman, Ranks of tensors and change of base field, J. Algebra, 11 (1969), 613–621. https://doi.org/10.1016/0021-8693(69)90094-5 doi: 10.1016/0021-8693(69)90094-5 |
[4] | W. Bruzda, S. Friedland, K. Życzkowski, Rank of a tensor and quantum entanglement, Linear Multil. Algebra, 72 (2023), 1796–1859. https://doi.org/10.1080/03081087.2023.2211717 doi: 10.1080/03081087.2023.2211717 |
[5] | E. Carlini, M. V. Catalisano, A. V. Geramita, The solution to the Waring problem for monomials and the sum of coprime monomials, J. Algebra, 370 (2012), 5–14. https://doi.org/10.1016/j.jalgebra.2012.07.028 doi: 10.1016/j.jalgebra.2012.07.028 |
[6] | J. D. Carroll, J. J. Chang, Analysis of individual differences in multidimensional scaling via an $N$-way generalization of "Eckart-Young" decomposition, Psychometrika, 35 (1970), 283–319. https://doi.org/10.1007/BF02310791 doi: 10.1007/BF02310791 |
[7] | P. Comon, G. Golub, L. H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., 30 (2008), 1254–1279. https://doi.org/10.1137/060661569 doi: 10.1137/060661569 |
[8] | P. Comon, J. M. F. ten Berge, L. De Lathauwer, J. Castaing, Generic and typical ranks of multi-way arrays, Linear Algebra Appl., 430 (2009), 2997–3007. https://doi.org/10.1016/j.laa.2009.01.014 doi: 10.1016/j.laa.2009.01.014 |
[9] | T. Cubitt, A. Montanaro, A. Winter, On the dimension of subspaces with bounded Schmidt rank, J. Math. Phys., 49 (2008), 022107. https://doi.org/10.1063/1.2862998 doi: 10.1063/1.2862998 |
[10] | H. Derksen, Kruskal's uniqueness inequality is sharp, Linear Algebra Appl., 438 (2013), 708–712. http://dx.doi.org/10.1016/j.laa.2011.05.041 doi: 10.1016/j.laa.2011.05.041 |
[11] | V. De Silva, L. H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30 (2008), 1084–1127. https://doi.org/10.1137/06066518X doi: 10.1137/06066518X |
[12] | W. J. Ellison, A 'Waring problem' for homogeneous forms, Math. Proc. Camp. Phil. Soc., 65 (1969), 663–672. https://doi.org/10.1017/S0305004100003455 doi: 10.1017/S0305004100003455 |
[13] | D. Falikman, S. Friedland, R. Loewy, On spaces of matrices containing a nonzero matrix of bounded rank, Pacific J. Math., 207 (2002), 157–176. https://doi.org/10.2140/pjm.2002.207.157 doi: 10.2140/pjm.2002.207.157 |
[14] | P. Gubkin, On unique tensor rank decomposition of $3$-tensors, Linear Multil. Algebra, 72 (2023), 1860–1866. https://doi.org/10.1080/03081087.2023.2211718 doi: 10.1080/03081087.2023.2211718 |
[15] | D. Handel, On subspaces of tensor products containing no elements of rank one, J. Algebra, 14 (1970), 523–527. https://doi.org/10.1016/0021-8693(70)90099-2 doi: 10.1016/0021-8693(70)90099-2 |
[16] | R. A. Harshman, Foundations of the PARAFAC procedure: models and conditions for an "explanatory" multi-modal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), 1–84. |
[17] | J. Håstad, Tensor rank is NP-complete, In: Automata, Languages and Programming. ICALP 1989. Lecture Notes in Computer Science, 372 (1989), 451–460. https://doi.org/10.1007/BFb0035776 |
[18] | F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), 164–189. https://doi.org/10.1002/sapm192761164 doi: 10.1002/sapm192761164 |
[19] | F. L. Hitchcock, Multilple invariants and generalized rank of a $p$-way matrix or tensor, J. Math. Phys., 7 (1927), 39–79. https://doi.org/10.1002/sapm19287139 doi: 10.1002/sapm19287139 |
[20] | A. Hurwitz, Über der Komposition der quadratischer Formen, Math. Ann., 88 (1922), 1–25. https://doi.org/10.1007/BF01448439 doi: 10.1007/BF01448439 |
[21] | A. Iarrobino, V. Kanev, Power sums, gorenstein algebras, and determinantal Loci, In: Lecture Notes in Mathematics 1721, Berlin: Springer, 1999. |
[22] | N. Johnston, B. Lovitz, A. Vijayaraghavan, Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond, In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 2023, 1316–1336. https://doi.org/10.1109/FOCS57990.2023.00079 |
[23] | T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455–500. https://doi.org/10.1137/07070111X doi: 10.1137/07070111X |
[24] | J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), 95–138. https://doi.org/10.1016/0024-3795(77)90069-6 doi: 10.1016/0024-3795(77)90069-6 |
[25] | J. B. Kruskal, Statement of Some Current Results about Three-Way Arrays, manuscript, AT & T Bell Laboratories, 1983. Available from: http://three-mode.leidenuniv.nl/pdf/k/kruskal1983.pdf. |
[26] | K. Y. Lam, P. Yiu, Linear spaces of real matrices of constant rank, Linear Algebra Appl., 195 (1993), 69–79. https://doi.org/10.1016/0024-3795(93)90257-O doi: 10.1016/0024-3795(93)90257-O |
[27] | R. Loewy, N. Radwan, Spaces of symmetric matrices of bounded rank, Linear Algebra Appl., 197/198 (1994), 189–215. https://doi.org/10.1016/0024-3795(94)90488-X doi: 10.1016/0024-3795(94)90488-X |
[28] | B. Lovitz, F. Petrov, A generalization of Kruskal's theorem on tensor decomposition, Forum Math., Sigma, 11 (2023), e27. https://doi.org/10.1017/fms.2023.20 doi: 10.1017/fms.2023.20 |
[29] | B. Lovitz, N. Johnston, Entangled subspaces and generic local state discrimination with pre-shared entanglement, Quantum, 6 (2022), 760. https://doi.org/10.22331/q-2022-07-07-760 doi: 10.22331/q-2022-07-07-760 |
[30] | B. Lovitz, V. Steffan, New techniques for bounding stabilizer rank, Quantum, 6 (2022), 692. https://doi.org/10.22331/q-2022-04-20-692 doi: 10.22331/q-2022-04-20-692 |
[31] | R. Meshulam, On $k$-spaces of real matrices, Linear Multil. Algebra, 26 (1990), 39–41. https://doi.org/10.1080/03081089008817963 doi: 10.1080/03081089008817963 |
[32] | E. Naslund, The partition rank of a tensor and k-right corners in $\mathbb{F}_q^n$, J. Combin. Theory Ser. A, 174 (2020), 105190. https://doi.org/10.1016/j.jcta.2019.105190 doi: 10.1016/j.jcta.2019.105190 |
[33] | G. Ni, Y. Li, A semidefinite relaxation method for partially symmetric tensor decomposition, Math. Oper. Res., 47 (2022), 2931–2949. https://doi.org/10.1287/moor.2021.1231 doi: 10.1287/moor.2021.1231 |
[34] | S. Peleg, A. Shpilka, B. L. Volk, Lower bounds on stabilizer rank, Quantum, 6 (2022), 652. https://doi.org/10.22331/q-2022-02-15-652 doi: 10.22331/q-2022-02-15-652 |
[35] | Z. Z. Petrović, On spaces of matrices satisfying some rank conditions, Ph.D thesis, The Johns Hopkins University, USA, 1996. |
[36] | Z. Z. Petrović, Bases of spaces of matrices satisfying rank conditions, Linear Multil. Algebra, 57 (2009), 625–631. https://doi.org/10.1080/03081080802316198 doi: 10.1080/03081080802316198 |
[37] | J. Radon, Lineare Scharen orthogonalen Matrizen, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 1–14. https://doi.org/10.1007/BF02940576 doi: 10.1007/BF02940576 |
[38] | E. G. Rees, Linear spaces of real matrices of large rank, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 147–151. https://doi.org/10.1017/S030821050003064X doi: 10.1017/S030821050003064X |
[39] | J. Rhodes, A concise proof of Kruskal's theorem on tensor decomposition, Linear Algebra Appl., 432 (2010), 1818–1824. https://doi.org/10.1016/j.laa.2009.11.033 doi: 10.1016/j.laa.2009.11.033 |
[40] | C. Seguins Pazzis, Large affine spaces of matrices with rank bounded below, Linear Algebra Appl., 437 (2012), 499–518. https://doi.org/10.1016/j.laa.2012.03.008 doi: 10.1016/j.laa.2012.03.008 |
[41] | N. D. Sidiropoulos, R. Bro, On the uniqueness of multilinear decomposition of $N$-way arrays, J. Chemometr., 14 (2000), 229–239. https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N |
[42] | T. Tao, A symmetric formulation of the croot-lev-pach-ellenberg-gijswijt capset bound, Tao's Blog Post, 2016. |
[43] | B. M. Terhal, P. Horodecki, Schmidt number for density matrices, Phys. Rev. A, 61 (2000), 040301. https://doi.org/10.1103/PhysRevA.61.040301 doi: 10.1103/PhysRevA.61.040301 |
[44] | A. Wigderson, J. Zuiddam, Asymptotic spectra: theory, applications and extensions, Manuscript, 2022. |