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1 Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia
2 Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, Belgrade,

Serbia

* Correspondence: Email: pucanovic@grf.bg.ac.rs.

Abstract: We introduce the general notion of a rank on a vector space, which includes both tensor
rank and conventional matrix rank, but incorporates other examples as well. Extending this concept, we
investigate vector spaces consisting of vectors with a lower bound on their rank. Our main result shows
that bases for such spaces of maximum dimension can be chosen to consist exclusively of vectors of
minimal rank. This generalization extends the results of [15,36], with potential applications in different
areas.

Keywords: rank function; subspaces with rank conditions; tensor decompositions; tensor rank
Mathematics Subject Classification: 15A03, 15A69, 15A72

1. Introduction

Research on linear matrix spaces of matrices with bounded rank has a rich history and continues to
be an active area of investigation, driven by both theoretical developments and practical applications
across various disciplines. For any positive integer k ⩽ min{m, n}, three interesting types of subspaces
exist within the space of m × n real matrices. These include subspaces where the rank of each matrix
is bounded above by k, subspaces where the rank of each non-zero matrix is at least k, and subspaces
consisting of matrices with a fixed rank k and a zero matrix, referred to as k-spaces of matrices. The
study of matrices with a bounded rank dates back to the early days of linear algebra, with expanding
applications across disciplines.

One of the initial breakthroughs in this field is the determination of the maximum possible
dimension of a subspace consisting of real n × n full-rank matrices (i.e., a subspace in which every
non-zero matrix is invertible), known as the Radon-Hurwitz number [20, 37]. This corresponds to the
problem of vector fields on spheres, as noted by J. F. Adams [1]. E. G. Rees [38] showed that for each
k, where 0 < k < m ⩽ n, there exist linear subspaces of real n × m matrices with dimensions
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(m − k)(n − k), in which every non-zero matrix has a rank of at least k. K. Y. Lam and P. Yiu [26]
determined the largest possible dimensions of linear spaces consisting of real n × n matrices with
fixed ranks of n − 1 or n − 2, using topological K-theory. For further exploration, we recommend
papers [3, 13, 22, 27, 31, 40] for various results in this field.

Of particular interest is the paper by Handel [15], investigating subspaces of the tensor product of
two finite-dimensional vector spaces V ⊗W that do not contain rank-1 tensors. This corresponds to the
existence of non-singular bilinear maps. Determining the minimum possible dimension of the vector
space U for which there exists a vector space homomorphism f : V ⊗W → U such that:

f (v ⊗ w) = 0 =⇒ v = 0 or w = 0

is equivalent to finding a subspace of maximum dimension M that does not contain rank-1 matrices.
When the underlying field is the field of real numbers, the existence of non-singular bilinear maps has
important applications in topology. Handel’s paper presents two important results. First, he showed
that maximal subspaces meeting the specified condition possess bases consisting only of elements
with ranks two and three. This result was crucial in establishing his second main result: the existence
of subspaces with maximum dimension that satisfy the aforementioned condition and have a basis
consisting exclusively of rank-2 tensors. Expanding on Handel’s work in [36] (see also [35]), the
author generalized these results to include cases where the subspaces do not contain non-zero matrices
with a rank less than the specified number. The author showed the existence of a subspace of maximum
dimension consisting entirely of matrices having rank k or higher (for any given k ⩾ 2), together with
the zero matrix, which has a basis consisting only of rank k matrices. Corresponding results related to
the spaces of symmetric and skew-symmetric matrices were also discussed.

The paper is structured as follows: In Section 2, we revisit the notions of tensor rank and CP
decomposition, due to their fundamental importance. Section 3 introduces a general rank function
applicable to all vector spaces and provides some simple examples. As far as we know, this rank
function does not appear elsewhere in the existing literature. Section 4 investigates subspaces with rank
conditions and generalizes results from [36]. The proofs closely resemble those in the aforementioned
paper, as we distilled from the usual tensor rank what is necessary to make our proofs go through.
Section 5 presents several more advanced examples. Finally, in Section 6, we point out that our rank
function is not related to rank functions arising in Strassen’s works on asymptotic spectra.

2. Tensor rank and CP decomposition

This section introduces basic concepts related to tensor rank and CP decomposition. Let F denote a
field, and V1,V2, . . . ,Vn be F-vector spaces. A non-zero tensor t ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn is rank-one if it
can be written as v1 ⊗ v2 ⊗ · · · ⊗ vn, where v j ∈ V j for j = 1, . . . , n.

The rank of the zero tensor is defined to be zero. Clearly, each tensor admits a decomposition into
a sum of k rank-1 tensors with a corresponding non-negative integer k.

Definition 1. The rank of a tensor t ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn, denoted by rank(t), is the minimal number r
of rank-1 tensors needed to express t as a sum:

t =
r∑

i=1

vi
1 ⊗ vi

2 ⊗ · · · ⊗ vi
n, vi

j ∈ V j, j = 1, . . . , n. (2.1)
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The CP decomposition (2.1), introduced by Hitchcock [18, 19], represents t as a sum of rank-one
tensors, and is also known as CANDECOMP/PARAFAC [6, 16].

For an n-th order tensor t of size m1×m2× · · · ×mn, the CP decomposition (2.1) can be equivalently
expressed as

t = ⟦U1,U2, . . . ,Un⟧, (2.2)

where U j ∈ R
m j×r.

Difficulties in tensor rank research include the lack of efficient algorithms for determining the rank
of tensors when n > 2 [17] and variations in rank based on the underlying field [25].

Uniqueness in tensor decomposition, as shown by Kruskal’s criteria, demonstrates distinct
properties of tensor rank compared to matrices [24, 39, 41]. It may seem unexpected that higher-order
tensors show an advantage in this regard. While the decomposition of matrices into a sum of rank-1
matrices lacks uniqueness, higher-order tensors generally possess a unique CP decomposition (up to
permutations and scalings) under relatively mild conditions. To establish uniqueness criteria, Kruskal
introduced the concept of a k-rank, indicating the largest number k such that every k vector in the
vector collection {v1, . . . , vn} is linearly independent, or equivalently, the largest number k such that
dim(span{vi1 , . . . , vik}) = k for any subset of k vectors. If

k j = k-rank
(
{v j

1, v
j
2, . . . , v

j
r}
)
, j = 1, . . . , n, where n ⩾ 3,

then, according to Kruskal’s theorem, a sufficient condition for the uniqueness of the CP
decomposition (2.1) is given by:

n∑
j=1

k j ⩾ 2r + n − 1. (2.3)

For recent advances in the generalization of Kruskal’s theorem, we recommend consulting [10,14,28].
Various concepts related to tensor ranks, such as symmetric rank, border rank, and Schmidt rank,

among others, are actively researched [7, 8, 11, 33]. In addition, new concepts have recently been
introduced, which will be discussed in more detail in Section 5.

For detailed discussions of tensor rank properties, we recommend the paper by T. Kolda and B.
Bader [23], and for applications in quantum information theory, Bruzda et al. [4].

While higher-order tensors represent a natural extension of matrices, their rank properties exhibit
distinct characteristics. In this paper, we demonstrate that certain properties related to matrix spaces,
originally established in the paper by Z. Petrović [36], can be extended to higher-order tensor spaces.

At the end of this section, let us consider the following example:

Example 1. Consider the positive integer k ⩾ 2 and the real vector spaces V1, V2, and V3 of dimensions
m, n, and p, respectively. Assume m = sk, where s is a positive integer, and m < n < p. Choose any set
of linearly independent vectors (e.g., standard basis vectors) {u1, . . . , um} ⊂ V1, {v1, . . . , vn} ⊂ V2, and
{w1, . . . ,wp} ⊂ V3. Define the tensors:

tl =

lk∑
j=(l−1)k+1

u j ⊗ v j ⊗ w j, l = 1, . . . , s. (2.4)

The set {u j ⊗ v j ⊗w j : 1 ⩽ j ⩽ m} contains linearly independent tensors due to the linear independence
of the respective vectors in V1, V2, and V3. Furthermore, tl is a rank-k tensor. Since k ⩾ 2, Kruskal’s
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condition (2.3) ensures unique CP decompositions for tl. It follows that

span{t1, t2, . . . , ts}

represents a tensor subspace where every non-zero tensor has a rank of at least k.

Remark. Note that the tensors tl are actually diagonal tensors with frontal slices Ei j = [δi j], where δi j

is the Kronecker delta, i, j = (l− 1)k+ 1, . . . , lk. Visualizing them as third-order tensors, they resemble
cuboids with frontal slices Ei j.

3. Rank function on a vector space

Let us first revisit an example from [35]. Consider m×n matrices (assuming m ⩽ n) of the following
form: 

0 · · · 0 x1 x2 · · · · · · xn−k+1

0 · · · x1 x2 · · · · · · xn−k+1 0
...

...
...

...
...

...
...

...

x1 x2 · · · · · · · · · xn−k+1 · · · 0
0 0 · · · · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · · · · · · · 0 · · · 0


Except when x1 = · · · = xn−k+1 = 0, these matrices all have rank k. Thus, the lower bound on the
maximum dimension of subspaces generated by m×n matrices with fixed rank k is at least max{m, n}−
k + 1. Determining the maximum possible dimensions of such spaces involves various techniques
from algebraic topology and algebraic geometry. However, these methods do not readily extend to
higher-order tensors.

Motivated by the results from [36], we propose a rank function that can be applied to any vector
space.

Definition 2. Let V be an arbitrary vector space over the field F, and let N denote the set of non-
negative integers. A numerical function ρ : V → N is called a rank function if it satisfies the following
conditions:

(1) ρ(v) = 0 if and only if v = 0.
(2) ρ(αv) = ρ(v) for all α ∈ F \ {0}.
(3) ρ(v + w) ⩽ ρ(v) + ρ(w) for all v,w ∈ V.
(4) If ρ(v) = k, there exists v1, . . . , vk ∈ V such that v = v1 + · · · + vk and ρ(vi) = 1, i = 1, . . . , k.

Proposition 1. Let V be an arbitrary vector space and ρ a rank function on V. Then ρ(v) is the smallest
number k such that v = v1 + · · · + vk, where ρ(vi) = 1 for all i. If we have two rank functions ρ1 and ρ2

satisfying these conditions, and if for all v ∈ V, ρ1(v) = 1 if and only if ρ2(v) = 1, then ρ1(v) = ρ2(v)
for all v ∈ V.

Proof. The first statement follows immediately from conditions (3) and (4). Suppose ρ(v) = k. By
condition (4), v can be expressed as a sum of k vectors of rank 1. If v could also be expressed as
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v = w1 + · · · + wl with l < k and ρ(wi) = 1 for all i, then by condition (3), we would have ρ(v) ≤ l < k.
This contradicts ρ(v) = k, so v must indeed be expressible as a sum of k rank 1 vectors.

Therefore, the rank function is completely determined once we know which vectors have rank 1,
and the second statement follows. □

Such rank functions do indeed exist. We present a few examples here; additional examples will be
presented in Section 5. The simplest yet crucial one for our purposes is the following:

Example 2. If V is a space consisting entirely of tensors of a certain order, the usual tensor rank serves
as a rank function.

We can also construct rank functions on a general vector space in a straightforward manner.

Example 3. Let V be an arbitrary vector space over a field F. Take any basis of V, and define ρ(v) = k
if and only if v is a linear combination of k elements of this basis with non-zero coefficients.

This example illustrates that there exist infinitely many rank functions on a given vector space. It is
straightforward to check that a function defined in this manner satisfies all the conditions specified in
Definition 2. Note that this rank function does not coincide with the usual rank if the elements of V are
tensors.

Example 4. For a field F and V = F[X1, . . . , Xn], the previous example provides us with a rank function
ρ, where ρ(p) counts the monomials appearing in the polynomial p ∈ V.

It depends on the structure of elements in a particular vector space which other rank functions one
may introduce. For example, in the space of skew-symmetric matrices of a given order over fields of
characteristic not equal to 2, the most natural rank function is half of the usual rank (since the usual
rank of skew-symmetric matrices is an even number).

It is noteworthy that rank functions exhibit a rather important property derived from conditions (3)
and (4):

Proposition 2. If ρ(v) = l > 1 and 1 ⩽ k < l, then there exist vectors w and w′ such that:

ρ(w) = k, ρ(w′) = l − k, and v = w + w′.

Proof. This can be easily proved using Definition 2. We have v = v1 + · · ·+ vl for some vectors vi such
that ρ(vi) = 1 for all i. If we take w = v1 + · · · + vk and w′ = vk+1 + · · · + vk (in that order), we observe
that according to the third condition:

v = w + w′, ρ(w) ⩽ k, and ρ(w′) ⩽ l − k.

Moreover, if ρ(w) < k or ρ(w′) < l − k, condition (3) would imply that ρ(v) < l. Thus, the proposition
is established. □

Let us rephrase the fundamental notion of an unshrinkable basis by Handel [15, Definition 2.1].

Definition 3. Let V be a vector space with a rank function ρ, W be a subspace of V, and e = [v1, . . . , vr]
be a basis of W. Define:

ρ(e) : =
∑

i

ρ(vi).
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Then e is called unshrinkable if ρ(e) = min{ρ(e′) : e′ is a basis of W}. If e is an unshrinkable basis
satisfying ρ(v1) ⩽ · · · ⩽ ρ(vr), it is called a sorted unshrinkable basis. We define ρ(W) to be min{ρ(v) :
v ∈ W, v , 0}.

These bases always exist and they have useful properties (cf. [15, Lemmas 2.3 and 2.4]), one of
which is crucial for this paper, expressed through the rank function ρ:

Lemma 1. For an unshrinkable basis e = [v1, . . . , vm] of W, we have:

ρ

∑
i

αivi

 ⩾ max {ρ(vi) | αi , 0} .

Proof. Suppose ρ(
∑

i αivi) < ρ(v j) for some j where α j , 0. If we replace v j with
∑

i αivi in our basis
e, while keeping the other vectors unchanged, we obtain another basis e′. Since α j , 0, v j is a linear
combination of vectors from e′, ensuring e′ is indeed a basis. However, this new basis e′ has

ρ(e′) < ρ(e),

which contradicts the fact that e is unshrinkable. □

4. Subspaces with rank conditions

We are now ready to state the main results.

Theorem 1. Let k ⩾ 2 be an integer and W a subspace of a finite-dimensional vector space V equipped
with the rank function ρ. Suppose W is maximal among those subspaces W ′ with ρ(W ′) = k. Let
[v1, . . . , vs] be an unshrinkable basis of W. Then, for all i = 1, . . . , s, we have:

k ⩽ ρ(vi) ⩽ 3k − 3.

Proof. Consider a subspace U of W spanned by all vi’s such that k ⩽ ρ(vi) ⩽ 3k − 3.
We claim that W = U. Assume, to the contrary, that W , U and let x ∈ W \ U. By Lemma 1, we

have ρ(x) > 3k − 3. To establish W = U, we construct an epimorphism f : V → V/U with kernel W.
This proves dim W = dim U, hence W = U.

Let x ∈ V . We want to show that there exist y ∈ W and z ∈ V such that ρ(z) < k and x = y + z.
If x ∈ W, then we can take y = x and z = 0.
Let x ∈ V \ W. Since W is maximal among those subspaces W ′ with ρ(W ′) = k, the subspace

spanned by W and x must contain a vector z1 with ρ(z1) < k. Thus, there exist z1 and y1 such that

z1 = αx + y1,

where ρ(z1) < k, y1 ∈ W, and α ∈ F. Since z1 < W, α , 0, and we conclude that x can be expressed as

x = y + z, y ∈ W, ρ(z) < k.

If x = y′ + z′ is another such expression for x, then

z − z′ = y′ − y ∈ W,
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and
ρ(z − z′) ⩽ ρ(z) + ρ(z′) ⩽ 2(k − 1).

Therefore, z − z′ ∈ U. Since the previous expression for x is also unique (mod U) when x ∈ W, we
conclude that the following function is well defined:

f : V → V/U

f (x) = z + U, if x = y + z, y ∈ W, ρ(z) < k.

Let us now show that f is a linear map. Consider x = y + z as a previous representation of x.
For any c ∈ F, we have cx = cy + cz, which gives the corresponding representation of cx. Hence,
f (cx) = cz + U = c(z + U).

Next, suppose x = y + z, x′ = y′ + z′, and x + x′ = y′′ + z′′ for appropriate y, z, y′, z′, y′′, z′′. We then
have:

f (x) + f (x′) = z + z′ + U; f (x + x′) = z′′ + U.

We have z′′ − z − z′ = y + y′ − y′′ ∈ U and ρ(z′′ − z − z′) ⩽ 3(k − 1). Therefore, z′′ − z − z′ ∈ U and we
conclude that f (x + x′) = f (x) + f (x′). The kernel of f consists of those x where the corresponding z
belongs to U. However, if x = y + z where y ∈ W and z ∈ U, then z ∈ W. Therefore, Ker ( f ) = W.

To show that f is onto, note that every vector in V is a sum of vectors where the rank function takes
the value 1. It suffices to show that for any z with ρ(z) = 1, there exists an x such that f (x) = z + U.
But,

f (z) = f (0 + z) = z + U.

Thus, f is onto, completing the proof. □

Theorem 2. Let k ⩾ 2 be an integer, and let q be the largest integer for which a finite-dimensional
vector space V with rank function ρ admits a vector subspace W ′ of dimension q such that ρ(W ′) = k.
Then, there exists such a subspace W which admits a basis entirely composed of elements wi such that
ρ(wi) = k for all i.

Proof. Among those subspaces W of maximum dimension q, which contain no non-zero elements of
rank less than k, let us choose one such that ρ(e) is minimal, where e is a sorted unshrinkable basis of
W. It suffices to prove ρ(e) = kq.

To prove ρ(e) = kq, assume otherwise, ρ(e) > kq. Let e = [v1, . . . , vq]. Since ρ(e) > kq, it follows
that ρ(vq) = l > k. We know there exist w and w′ such that vq = w + w′, ρ(w) = k, and ρ(w′) = l − k.

We prove that e′ = {v1, . . . , vq−1,w} is linearly independent, and the subspace W ′ spanned by e′

satisfies ρ(W ′) = k.
Suppose for some linear combination z of elements in e′:

z =
q−1∑
i=1

αivi + βw, ρ(z) ⩽ k − 1.

This will establish the properties we want to prove. If β = 0, then z = 0 since ρ(W) = k. Consequently,
all αi’s are zero. Thus, β , 0, and we define an element t by:

t =
q−1∑
i=1

αivi + βvq.
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Since β , 0, by Lemma 1, ρ(t) ⩾ l = ρ(vq). On the other hand:

t = z + β(vq − w).

Then,
ρ(t) ⩽ ρ(z) + ρ(vq − w) ⩽ k − 1 + l − k = l − 1.

Let W ′ be the subspace spanned by e′. Then dim W ′ = dim W, and ρ(e′) < ρ(e). Therefore W ′ is a
subspace of maximum dimension containing no non-zero elements of rank less than k, and it has an
unshrinkable basis e′ such that ρ(e′) < ρ(e). Since we may transform this basis into a sorted one, this
contradicts our choice of W.

Thus, we have a contradiction, which completes the proof. □

For a finite-dimensional vector space V , define

L(V, ρ, k) := max{dim W : W is a subspace of V such that (∀v ∈ W \ {0}) ρ(v) ≥ k}.

We immediately obtain the following corollary of Theorem 2.

Corollary 1. For a given finite-dimensional vector space V over a field F, rank function ρ, and integer
k ⩾ 2, we have that L(V, ρ, k) is the maximal number s such that there exists x1, . . . , xs ∈ V, with
ρ(x1) = · · · = ρ(xs) = k, for which ρ(α1x1 + · · · + αsxs) ⩾ k for every non-trivial linear combination
(αi ∈ F \ {0} for at least one index i). □

Therefore, if one wants to find L(V, ρ, k) it is enough to consider elements of rank k whose non-trivial
linear combinations are of rank at least k.

5. Examples

In this section, we present additional examples of rank functions in vector spaces. It is easy to check
that they all satisfy the conditions in Definition 2.

Example 5. Symmetric tensor and symmetric tensor rank.

Let F be a field and V a finite-dimensional vector space over F. An element A ∈
n︷              ︸︸              ︷

V ⊗ V ⊗ · · · ⊗ V
is symmetric if σ(A) = A for all σ ∈ Sn, where σ acts on A in the usual way. The symmetric tensor
rank ofA is defined as the minimal r such that

A =

r∑
i=1

vi ⊗ vi ⊗ · · · ⊗ vi,

for some vi ∈ V \ {0}. For more details on this rank, we refer the reader to the paper by Comon [7].

Example 6. Slice and partition rank.
The notion of slice rank was introduced by Tao in his blog [42] and partition rank was introduced

by Naslund in [32]. They are of crucial importance in additive combinatorics.
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Definition 4. Let X1, . . . , Xn be finite sets and F a field. We say that a function h : X1 × · · · × Xn → F

has slice rank 1, denoted by srank, if

h(x1, . . . , xn) = f (xi)g(x1, . . . , xi−1, xi+1, . . . xn),

for some i ∈ {1, . . . , n} and functions f and g. Then the slice rank is defined as

srank(h) := min{r : h = h1 + · · · + hr, srank(hi) = 1}.

Definition 5. Let X1, . . . , Xn be finite sets and F a field. We say that a function h : X1 × · · · × Xn → F

has partition rank 1, denoted by prank, if

h(x1, . . . , xn) = f1(xs11 , . . . , xs1i1
) · · · fk(xsk1 , . . . , xskik

),

for some k and functions fi : S i → F, where {1, . . . , n} = S 1 ⊔ · · · ⊔ S k and S r = {sr1, . . . , srir}. Then the
partition rank is defined as

prank(h) := min{r : h = h1 + · · · + hr, prank(hi) = 1}.

If we denote the usual tensor rank by trank, then we have the inequalities

prank(h) ⩽ srank(h) ⩽ trank(h)

for every h.

Example 7. Waring rank.
Let k be an algebraically closed field of characteristic zero, and consider k[X1, . . . , Xn], the graded

polynomial ring in n indeterminates over k. Let F be a non-zero homogeneous d-form. The Waring
rank of this form is defined as the smallest r such that

F =
r∑

i=1

Ld
i ,

where Li are linear forms. This rank satisfies our conditions, with forms of rank 1 being powers of
linear forms. Condition (2) is satisfied since the field k is algebraically closed.

The Waring rank is related to the classical Waring problem in number theory and also to
Hilbert’s 17th problem. For more about this, we refer the reader to [5, 12, 21].

Example 8. Schmidt rank.
This concept arises in quantum mechanics and is significant in quantum information theory. Simply

put, for two finite-dimensional Hilbert spaces H1 and H2 over C, any vector w ∈ H1 ⊗ H2 can be
expressed as

w = λ1u1 ⊗ v1 + · · · + λrur ⊗ vr,

where u1, . . . , ur ∈ H1 and v1, . . . , vr ∈ H2 are orthonormal vectors, and λi are non-zero complex
numbers. The Schmidt rank of w is defined to be the number r, denoted Sch(w) = r.

In [9], the authors discuss the problem of finding L(Cd ⊗Cd,Sch, k). See also [43], where the notion
of a Schmidt number for density matrices, related to Schmidt rank, is introduced.
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Example 9. Stabilizer rank.
This concept is another important notion from quantum information theory. For a quantum state ψ,

the stabilizer rank is the minimal r such that, in Dirac ket notation:

|ψ⟩ =

r∑
j=1

c j |φ j⟩,

where c j ∈ C and |φ j⟩ are stabilizer states. For more details on stabilizer rank, refer to [29, 30, 34].

Condition (4) in Definition 2 is rather restrictive. Let us discuss briefly the border rank of a tensor,
denoted here by brank(t). Simply put, the border rank of a tensor t is defined as the smallest r such
that t lies in the closure of the subset of tensors of rank r in the appropriate projective space (for more
details and precise definitions, see, e.g., [2] and [11]).

Since tensors of rank 1 form a closed subset, we have that for any tensor t, trank(t) = 1 if and only
if brank(t) = 1. Therefore, if brank were to satisfy condition (4), then from Proposition 1, it would
follow that brank(t) = trank(t) for all tensors t. However, since this is not the case, we conclude that
brank is not a rank function in our sense.

6. Discussion

As pointed out in Section 2, the usual rank properties of matrices do not carry over to higher-order
tensors. However, Theorems 1 and 2 reveal that certain aspects of rank properties may be extended to
tensors.

In establishing the main results of this paper, the introduction of the rank function ρ was essential.
This function was purposefully chosen to capture the fundamental properties of the tensor rank.
However, as demonstrated by several examples presented, there exist interesting rank functions that
satisfy our conditions. By customizing rank functions for specific problem domains, valuable insights
can potentially be obtained.

Finally, it should be noted that our rank function is distinct from various rank functions arising
in connection with Strassen’s work on asymptotic spectra (for a comprehensive presentation of these
results, from the modern viewpoint which include (Strassen) preorder on semirings, see [44]). Our
rank function is simpler – it takes values in the set of non-negative integers, can be defined on all
vector spaces, and does not require any deeper structural assumptions.
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