Let a prime $ p\equiv 1(\text{mod}3) $ and $ z $ be non-cubic in $ \mathbb{F}_p $. Gauss proved that the number of solutions of equation
$ x_1^3+x_2^3+zx_3^3 = 0 $
in $ \mathbb{F}_p $ was $ p^2+\frac{1}{2}(p-1)(9d-c) $, where $ c $ was uniquely determined and $ d $, except for the sign, was defined by
$ 4p = c^2+27d^2,\ \ c\equiv 1(\text{mod}3). $
In 1978, Chowla, Cowles, and Cowles determined the sign of $ d $ for the case of 2 being non-cubic in $ \mathbb{F}_p $. In this paper, we extended the result of Chowla, Cowles and Cowles to finite field $ \mathbb{F}_q $ with $ q = p^k $, $ p\equiv 1(\text{mod}3) $, and determined the sign of $ d $ for the case of 3 being non-cubic.
Citation: Wenxu Ge, Weiping Li, Tianze Wang. A note on some diagonal cubic equations over finite fields[J]. AIMS Mathematics, 2024, 9(8): 21656-21671. doi: 10.3934/math.20241053
Let a prime $ p\equiv 1(\text{mod}3) $ and $ z $ be non-cubic in $ \mathbb{F}_p $. Gauss proved that the number of solutions of equation
$ x_1^3+x_2^3+zx_3^3 = 0 $
in $ \mathbb{F}_p $ was $ p^2+\frac{1}{2}(p-1)(9d-c) $, where $ c $ was uniquely determined and $ d $, except for the sign, was defined by
$ 4p = c^2+27d^2,\ \ c\equiv 1(\text{mod}3). $
In 1978, Chowla, Cowles, and Cowles determined the sign of $ d $ for the case of 2 being non-cubic in $ \mathbb{F}_p $. In this paper, we extended the result of Chowla, Cowles and Cowles to finite field $ \mathbb{F}_q $ with $ q = p^k $, $ p\equiv 1(\text{mod}3) $, and determined the sign of $ d $ for the case of 3 being non-cubic.
[1] | W. X. Ge, W. P. Li, T. Z. Wang, A remark for Gauss sums of order 3 and some applications for cubic congruence equations, AIMS Math., 7 (2022), 10671–10680. https://doi.org/10.3934/math.2022595 doi: 10.3934/math.2022595 |
[2] | J. Y. Zhao, On the number of unit solutions of cubic congruence modulo $n$, AIMS Math., 6 (2021), 13515–13524. https://doi.org/10.3934/math.2021784 doi: 10.3934/math.2021784 |
[3] | W. P. Zhang, J. Y. Hu, The number of solutons of the diagonal cubic congruence equation $\text{mod}p$, Math. Rep., 20 (2018), 73–80. |
[4] | J. Y. Zhao, Y. Zhao, Y. J. Niu, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. https://doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192 |
[5] | J. Y. Zhao, S. F. Hong, C. X. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710–2731. https://doi.org/10.3934/math.2020175 doi: 10.3934/math.2020175 |
[6] | S. Chowla, J. Cowles, M. Cowles, The number of zeroes of $x^3 + y^3 + cz^3$ in certain finite fields, J. Reine Angew. Math., 299-300 (1978), 406–410. https://doi.org/10.1515/crll.1978.299-300.406 doi: 10.1515/crll.1978.299-300.406 |
[7] | S. Chowla, J. Cowles, M. Cowles, Congruence properties of the number of solutions of some equations, J. Reine Angew. Math., 298 (1978), 101–103. https://doi.org/10.1515/crll.1978.298.101 doi: 10.1515/crll.1978.298.101 |
[8] | S. Chowla, M. Cowles, J. Cowles, On the difference of cubes $(\text{mod}p)$, Acta Arith., 37 (1980), 61–65. |
[9] | C. F. Gauss, Disquisitiones arithmeticae, Yale University, 1966. https://doi.org/10.1007/978-1-4939-7560-0 |
[10] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5 |
[11] | G. Myerson, On the numbers of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. https://doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4 |
[12] | S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. https://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354 |
[13] | G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251–264. https://doi.org/10.4064/AA-39-3-251-264 doi: 10.4064/AA-39-3-251-264 |
[14] | W. X. Ge, W. P. Li, T. Z. Wang, The number of solutions of diagonal cubic equations over finite fields, Finite Fields Appl., 80 (2022), 102008. https://doi.org/10.1016/j.ffa.2022.102008 doi: 10.1016/j.ffa.2022.102008 |
[15] | R. Lidl, H. Niederreiter, Finite fields, 2 Eds., Cambridge University, 1997. https://doi.org/10.1017/CBO9780511525926 |
[16] | B. C. Berndt, K. S. Williams, R. J. Evans, Gauss Jacobi Sums, John Wiley & Sons, Inc., 1998. |