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Abstract: Let a prime p ≡ 1(mod3) and z be non-cubic in Fp. Gauss proved that the number of
solutions of equation

x3
1 + x3

2 + zx3
3 = 0

in Fp was p2 + 1
2 (p − 1)(9d − c), where c was uniquely determined and d, except for the sign, was

defined by
4p = c2 + 27d2, c ≡ 1(mod3).

In 1978, Chowla, Cowles, and Cowles determined the sign of d for the case of 2 being non-cubic in
Fp. In this paper, we extended the result of Chowla, Cowles and Cowles to finite field Fq with q = pk,
p ≡ 1(mod3), and determined the sign of d for the case of 3 being non-cubic.
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1. Introduction

Let Fq be a finite field of
q = pk

elements. Let F∗q be the multiplicative group of Fq, i.s.,

F∗q = Fq \ {0}.

Counting the number of solutions (x1, x2, · · · , xn) ∈ Fn
q of the general diagonal equation

a1xd1
1 + a2xd2

2 + · · · + anxdn
n = b
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over Fq is an important and fundamental problem in number theory and finite field. The special case
where all the di are equal has extensively been studied by many authors (see, for example, [1–3] for
di = 3, and [4, 5] for di = 4).

For a prime
p ≡ 1(mod3),

Chowla et al. [6–8] first considered the number of solutions of equation

x3
1 + x3

2 + zx3
3 = 0 (1.1)

over finite field Fp.
For z is cubic, using the classic result of the cubic equation of periods by Gauss [9]. Chowla

et al. [10] showed that the number of solutions of (1.1) is p2 + c(p− 1), where c is uniquely determined
by

4p = c2 + 27d2, c ≡ 1(mod3). (1.2)

For z is non-cubic, as pointed out in [6], using the classic result of the cubic equation of periods by
Gauss [9], one can only obtain that the number of solutions of (1.1) is

p2 +
1
2

(p − 1)(9d − c),

where c is uniquely determined, and d is determined except for the sign by

4p = c2 + 27d2, c ≡ 1(mod3).

Thus the key of these problems is to determine the sign of d. Chowla et al. [6] determined the sign of
d for the case of 2 being non-cubic in Fp.

Theorem 1.1. [6] Let a prime be
p ≡ 1(mod3).

If 2 is non-cubic in Fp, then for any non-cubic element z, the number of solutions of (1.1) is

p2 +
1
2

(p − 1)(9d − c),

where c and d are uniquely determined by (1.2) with

d ≡
{

c(mod4), if z ≡ 2(modH),
−c(mod4), if z ≡ 4(modH),

where H is the subgroup of nonzero cubes in F∗p.

Therefore, it is nature to ask the following problem: Is there another element which can determine
the sign of d?

In this paper, we extend the result of Chowla et al. to finite field Fq, and determine the sign of d by
non-cube 3.
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In the rest of this paper, Fq is a finite field of

q = pk

elements with
p ≡ 1(mod3),

and F∗q is the multiplicative group of Fq, i.s.,

F∗q = Fq \ {0}.

For any z ∈ Fq, one lets An(z) denote the number of solutions of the following diagonal equation

x3
1 + x3

2 + · · · + x3
n = z

over Fq. Let Bn(z) be the number of solutions of diagonal cubic equation

x3
1 + x3

2 + · · · + x3
n + zx3

n+1 = 0

over Fq. Since
p ≡ 1(mod3),

the nonzero cubic elements form a multiplicative subgroup H of order 1
3 (q − 1) and index 3, which

partitions F∗q into three cosets H, zH and z2H. Now, we can state our main results.

Theorem 1.2. Let Fq be a finite field of
q = pk

elements with the prime
p ≡ 1(mod3).

c is uniquely determined, and d is determined except for the sign by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1. (1.3)

(1) If 2 | d, then 2 is a cube in Fq and one has

A2(2) = q − 2 + c, B2(2) = q2 + c(q − 1).

(2) If 2 ∤ d, then 2 is a non-cube in Fq, and for any non-cubic z, one has

A2(z) =

 q − 2 + 1
2 (9d − c), if z ≡ 2(modH),

q − 2 + 1
2 (−9d − c), if z ≡ 4(modH),

and

B2(z) =

 q2 + 1
2 (q − 1)(9d − c), if z ≡ 2(modH),

q2 + 1
2 (q − 1)(−9d − c), if z ≡ 4(modH),

where d is uniquely determined by (1.3) and

d ≡ c(mod4).
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Theorem 1.3. Let Fq be a finite field of
q = pk

elements with the prime
p ≡ 1(mod3).

c is uniquely determined, and d is determined except for the sign by (1.3).
(1) If 3 | d, then 3 is a cube in Fq, and one has

A2(3) = q − 2 + c and B2(3) = q2 + c(q − 1).

(2) If 3 ∤ d, then 3 is a non-cube in Fq, and for any non-cubic z, one has

A2(z) =

 q − 2 + 1
2 (9d − c), if z ≡ 3(modH),

q − 2 + 1
2 (−9d − c), if z ≡ 9(modH),

and

B2(z) =

 q2 + 1
2 (q − 1)(9d − c), if z ≡ 3(modH),

q2 + 1
2 (q − 1)(−9d − c), if z ≡ 9(modH),

where d is uniquely determined by (1.3) and d ≡ −1(mod3).

Remark 1.4. (1) When z is cubic in Fq with

p ≡ 1(mod3),

as pointed out in [11] (or [12]), one has

A2(z) = q − 2 + c and B2(z) = q2 + c(q − 1).

(2) When
q ≡ 2(mod3),

it is known that every element is a cube. When

q ≡ 1(mod3)

with
p ≡ 2(mod3),

as [13, Theorem 16], one has

c =

 −2pk/2, if k ≡ 0(mod4),

2pk/2, if k ≡ 2(mod4),

and d = 0.

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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(3) In [12], Hong and Zhu use the generator g of group F∗q to determine the sign of d, and give the
sign of d by

δz(q) =
 (−1)⟨indg(d)⟩3 · sgn

(
Im(r1 + 3

√
3r2i)k

)
, if k ≡ 1(mod2),

0, if k ≡ 0(mod2),
(1.4)

where r1 and r2 are uniquely determined by

4p = r2
1 + 27r2

2, r1 ≡ 1(mod3), 9r2 ≡ (2NFq/Fp(g)
p−1

3 + 1)r1(mod p).

Here, the norm NFq/Fp(α) of α ∈ Fq over Fp is defined by

NFq/Fp(α) = α × αp × · · · × αpk−1
= α

q−1
p−1 .

Recently, the authors [14] determined the sign of d by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1, 9d ≡ c(2z
q−1

3 + 1)(mod p). (1.5)

In this paper, we give a more effective way to determine the sign of d for the cases of 2 or 3 being
non-cubic.

Using the author’s methods in [14] and Theorems 1.2 and 1.3, we immediately obtain the following
corollaries:

Corollary 1.5. Let Fq be a finite field of
q = pk

elements with the prime
p ≡ 1(mod3).

c is uniquely determined, and d is determined except for the sign by (1.3). If 2 ∤ d, then for any
non-cubic element z, one has

∞∑
n=1

An(z)xn =


x

1−qx −
x+ 1

2 (4+c−9d)x2+cx3

1−3qx2−qcx3 , if z ≡ 2(modH),

x
1−qx −

x+ 1
2 (4+c+9d)x2+cx3

1−3qx2−qcx3 , if z ≡ 4(modH),

and
∞∑

n=1

Bn(z)xn =


1

1−qx −
(q−1)x+ 1

2 (q−1)(c−9d)x2

1−3qx2−qcx3 , if z ≡ 2(modH),

1
1−qx −

(q−1)x+ 1
2 (q−1)(c+9d)x2

1−3qx2−qcx3 , if z ≡ 4(modH),

where d is uniquely determined by (1.3) and

d ≡ c(mod4).

Corollary 1.6. Let Fq be a finite field of
q = pk

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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elements with the prime
p ≡ 1(mod3).

c is uniquely determined, and d is determined except for the sign by (1.3). If 3 ∤ d, then for any
non-cubic element z, one has

∞∑
n=1

An(z)xn =


x

1−qx −
x+ 1

2 (4+c−9d)x2+cx3

1−3qx2−qcx3 , if z ≡ 3(modH),

x
1−qx −

x+ 1
2 (4+c+9d)x2+cx3

1−3qx2−qcx3 , if z ≡ 9(modH),

and
∞∑

n=1

Bn(z)xn =


1

1−qx −
(q−1)x+ 1

2 (q−1)(c−9d)x2

1−3qx2−qcx3 , if z ≡ 3(modH),
1

1−qx −
(q−1)x+ 1

2 (q−1)(c+9d)x2

1−3qx2−qcx3 , if z ≡ 9(modH),

where d is uniquely determined by (1.3) and

d ≡ −1(mod3).

2. Auxiliary lemmas

Lemma 2.1. [15] Let Fq be a finite field. Let ψ be a nontrivial additive character of Fq. Then, for any
a ∈ Fq, we have ∑

x∈Fq

ψ(ax) =

 q, if a = 0,
0, if a , 0.

For any a ∈ F∗q, we defined the Gauss sums

S a =
∑
x∈Fq

ψ(ax3).

Lemma 2.2. [13] Let Fq be the finite field of q = pk elements with the prime

p ≡ 1(mod3),

and z is non-cubic in F∗q. Then, S 1, S z, and S z2 are the roots of the cubic equation

x3 − 3qx − qc = 0,

where c is uniquely determined by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1. (2.1)

Lemma 2.3. With the conditions of Lemma 2.2, one has

An(z) = qn−1 +
1

3q
(S n

1S z + S n
z S z2 + S n

z2S 1 − S n
1 − S n

z − S n
z2).
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Proof. Since
p ≡ 1(mod3),

the nonzero cubic elements form a multiplicative subgroup H of order 1
3 (q − 1) and index 3, which

partitions F∗q into three cosets H, zH, and z2H. Then, for any a ∈ z jH, we have

S a = S z j and S az = S z j+1 .

For any b ∈ F∗q, we have

S b =
∑
x∈Fq

ψ(bx3)

= 1 +
∑
x∈F∗q

ψ(bx3)

= 1 + 3
∑
a∈H

ψ(ab).

Thus, we have ∑
a∈H

ψ(ab) =
1
3

(S b − 1).

Then, by Lemma 2.1, we have

An(z) =
1
q

∑
a∈Fq

∑
(x1,x2,··· ,xn)∈Fn

q

ψ(a(x3
1 + · · · + x3

n − z))

= qn−1 +
1
q

∑
a∈Fq

ψ(−az)S n
a

= qn−1 +
1
q

S n
1

∑
a∈H

ψ(−az) + S n
z

∑
a∈zH

ψ(−az) + S n
z2

∑
a∈z2H

ψ(−az)


= qn−1 +

1
q

S n
1

∑
a∈H

ψ(−az) + S n
z

∑
a∈H

ψ(−az2) + S n
z2

∑
a∈H

ψ(−az3)


= qn−1 +

1
3q

(
S n

1(S −z − 1) + S n
z (S −z2 − 1) + S n

z2(S −z3 − 1)
)

= qn−1 +
1

3q

(
S n

1(S 1 − 1) + S n
z (S z2 − 1) + S n

z2(S 1 − 1)
)

= qn−1 +
1

3q
(S n

1S z + S n
z S z2 + S n

z2S 1 − S n
1 − S n

z − S n
z2),

since −1 is cubic in F∗q. □

Lemma 2.4. With the conditions of Lemma 2.2, one has

A3(z) = q2 − 3q − c,

where c is uniquely determined by (2.1).
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Proof. By lemma 2.2, we have

S 1S z + S zS z2 + S z2S 1 = −3q, S 1 + S z + S z2 = 0

and

S z j = 3qS z j + qc, j = 0, 1, 2.

Then, by Lemma 2.3, we have

A3(z) = q2 +
1
3q

(S 3
1S z + S 3

z S z2 + S 3
z2S 1 − S 3

1 − S 3
z − S 3

z2)

= q2 +
1
3q

[
3q(S 1S z + S zS z2 + S z2S 1) + q(c − 3)(S 1 + S z + S z2) − 3qc

]
= q2 − 3q − c.

□

Lemma 2.5. With the conditions of Lemma 2.2, one has A2(z) as one of the values

q − 2 +
1
2

(±9d − c),

and A2(z2) is the other, where c is uniquely determined, and d is determined except for the sign by (2.1).

Proof. Similar to the proof of Lemma 2.4, we have

A2(z) = q − 2 +
1
3q

(S 2
1S z + S 2

z S z2 + S 2
z2S 1), (2.2)

A2(z2) = q − 2 +
1
3q

(S 2
1S z2 + S 2

z S 1 + S 2
z2S z). (2.3)

By Lemma 2.2, we have

S 2
1S z + S 2

z S z2 + S 2
z2S 1 + S 2

1S z2 + S 2
z S 1 + S 2

z2S z

= (S 1S z + S zS z2 + S z2S 1)(S 1 + S z + S z2) − 3S 1S zS z2

= −3qc (2.4)

and

[S 2
1S z + S 2

z S z2 + S 2
z2S 1 − (S 2

1S z2 + S 2
z S 1 + S 2

z2S z)]2

= (S 1 − S z)2(S z − S z2)2(S z2 − S 1)2

= −(4(−3q)3 + 27(−qc)2)
= 27q2(4q − c2)
= (27qd)2. (2.5)

Then Lemma 2.5 follows from (2.2)–(2.5).
□

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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Lemma 2.6. We have
B2(z) = (q − 1)A2(z) + 3q − 2.

Proof. By the definition of B2(z) and A2(z), we have

B2(z) =
∑

(x1,x2,x3)∈F3
q

x3
1+x3

2+zx3
3=0

1

=
∑
x3∈F

∗
q

∑
(x1,x2)∈F2

q

x3
1+x3

2+zx3
3=0

1 +
∑

(x1,x2)∈F2
q

x3
1+x3

2=0

1

=
∑
x3∈F

∗
q

∑
(x1,x2)∈F2

q

x3
1+x3

2=z

1 + 3q − 2

= (q − 1)A2(z) + 3q − 2.

□

Lemma 2.7. Let Fq be the finite field of
q = pk

elements with the prime
p ≡ 1(mod3).

c is uniquely determined, and d is determined except for the sign by (1.3). Then, 2 is a cube in F∗q if,
and only if, 2 | d; 3 is a cube in F∗q if, and only if, 3 | d.

Proof. Since F∗q is a cyclic group, 2 is cubic in F∗q if, and only if,

2
q−1

3 ≡ 1(mod p).

By the Euler theorem, we have
2p−1 ≡ 1(mod p).

Note that
q = pk and p ≡ 1(mod3),

then we have
2

q−1
3 ≡ 2

p−1
3 (1+p+p2+···+pk−1) ≡ 2

k(p−1)
3 (mod p).

By [16, Theorem 7.1.1], 2 is cubic in Fp if, and only if, 2 | d0, where c0 and d0 are determined by

4p = c2
0 + 27d2

0, c0 ≡ 1(mod3).

That is,
2

p−1
3 ≡ 1(mod p),

if, and only if, 2 | d0. Thus, we have that 2 is cubic in F∗q if, and only if, 2 | d0 or 3 | k.

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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Next, we will prove that 2 | d0 or 3 | k if, and only if, 2 | d. Since

4q = c2 + 27d2,

we have 2 | c if, and only if, 2 | d. As pointed out in [14, Lemma 2.8], in integeral ring OK of cubic
cyclotomic field

K = Q(ω), ω =
−1 +

√
3i

2
,

we have

c + 3
√

3di
2

= (−1)k−1

c0 + 3
√

3d0i
2

k

.

So, we have

c = (−1)k−1

c0 + 3
√

3d0i
2

k

+ (−1)k−1

c0 − 3
√

3d0i
2

k

= (−1)k−1
(
c0 + 3d0

2
+ 3d0ω

)k

+ (−1)k−1
(
c0 + 3d0

2
+ 3d0ω

)k

.

If 2 | d0, it is easy to see that 2 | c. If 2 ∤ d0, then 2 | c0+3d0
2 or 2 | c0−3d0

2 , since

4p = c2
0 + 27d2

0.

When 2 | c0+3d0
2 , we have

c ≡ (3d0)k(ωk + ωk) ≡ ωk + ωk(mod2).

When 2 | c0−3d0
2 , we have

c = (−1)k−1

c0 + 3
√

3d0i
2

k

+ (−1)k−1

c0 − 3
√

3d0i
2

k

= (−1)k−1
(
c0 − 3d0

2
− 3d0ω

)k

+ (−1)k−1
(
c0 − 3d0

2
− 3d0ω

)k

.

Thus we have
c ≡ (−3d0)k(ωk + ωk) ≡ ωk + ωk(mod2).

Hence, we have 2 is cubic in F∗q if, and only if, 2 | d0, or 3 | k if, and only if, 2 | c, or if and only if 2 | d.
Similarly, we can also prove that 3 is a cube in F∗q if, and only if, 3 | d. □

3. Proof of Theorem 1.2

Let Fq be a finite field of
q = pk

elements with
p ≡ 1(mod3).

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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Then the nonzero cubic elements form a multiplicative subgroup H of order 1
3 (q − 1). We let

M = {(a, b) ∈ H2|a + b = 2} and M = |M|.

Since for any a ∈ H, the equation x3 = a in Fq exactly has three different solutions, if 2 is non-cubic in
F∗q, then it is easy to see that

9M = A2(2). (3.1)

Lemma 3.1. If 2 and z are non-cubic in F∗q, then

A2(z) =
{

A2(2), if z ≡ 2(modH),
A2(4), if z ≡ 4(modH).

Proof. Since 2 and z are non-cubic in F∗q, z ∈ 2H ∪ 4H. If z ∈ 2H, i.e.,

z ≡ 2(modH),

there is a h ∈ F∗q and z = 2h3. Then, it is easy to see that

A2(z) =
∑

(x1,x2)∈F2
q

x3
1+x3

2=z

1 =
∑

(x1,x2)∈F2
q

x3
1+x3

2=2h3

1 =
∑

(x1,x2)∈F2
q

(x1h−1)3+(x2h−1)3=2

1 = A2(2).

Similarly, if
z ≡ 4(modH),

we have
A2(z) = A2(4).

□

Lemma 3.2. We have M ≡ 1(mod2).

Proof. Let
M1 = {(a, b) ∈ H2|a + b = 2, a , b} and M1 = |M1|.

Obviously, if (a, b) ∈ M1, then (b, a) ∈ M1. Thus, we have M1 is even. If (a, a) ∈ M, then a = 1.
Hence, M is odd. □

Proof of Theorem 1.2. If 2 | d, then 2 is a cube in Fq by Lemma 2.7, and one has

A2(2) = q − 2 + c and B2(2) = q2 + c(q − 1)

as pointed out in [11] (or [12]).
If 2 ∤ d, then 2 is non-cubic in F∗q by Lemma 2.7. Then, by Lemma 2.5, we can assume that

A2(2) = q − 2 +
1
2

(9d − c).

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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Next, we begin to determine the sign of d. By (3.1) and Lemma 3.2, we have

A2(2) = q − 2 +
1
2

(9d − c) = 9M ≡ 1(mod2).

Since
q = pk

and a prime
p ≡ 1(mod3),

we have
q ≡ 1(mod2).

So, we have

−1 +
1
2

(9d − c) ≡ 1(mod2),

and then
d ≡ c(mod4).

Thus, by Lemma 2.5, we have

A2(4) = q − 2 +
1
2

(−9d − c).

Finally, Theorem 1.2 immediately follows from Lemmas 2.6 and 3.1. □

4. Proof of Theorems 1.3 and an example

Let

N(z) = {(a1, a2, a3) ∈ H3|a1 + a2 + a3 = z} and N(z) = |N(z)|.

Then, if 3 is non-cubic, it is easy to see that

27N(z) = A3(z) − 3A2(z). (4.1)

Lemma 4.1. If 3 and z are non-cubic in F∗q, then

A2(z) =
{

A2(3), if z ≡ 3(modH),
A2(9), if z ≡ 9(modH).

Proof. This is similar to the proof of Lemma 3.1. □

Lemma 4.2. If 3 is non-cubic, we have

N(3) ≡ 1(mod3) and N(9) ≡ 0(mod3).

AIMS Mathematics Volume 9, Issue 8, 21656–21671.
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Proof. We divide the set N(z) into three disjoint subsets,

N(z) = N1(z) ∪ N2(z) ∪ N3(z),

where

N1(z) = {(a1, a2, a3) ∈ H3|a1 + a2 + a3 = z, ai , a j, 1 ≤ i < j ≤ 3},
N3(z) = {(a, a, a) ∈ H3|a + a + a = z, },

N2(z) = N(z) \ (N1(z) ∪ N3(z)) .

Let
Ni(z) = |Ni(z)|.

Then, it is easy to see that

N1(z) ≡ 0(mod3) and N2(z) ≡ 0(mod3).

Since
q = pk

and a prime
p ≡ 1(mod3),

we have
N3(3) = {(1, 1, 1)}.

Thus we have
N(3) ≡ 1(mod3).

Since 3 is non-cubic, then
N3(9) = ∅.

So, we have
N(9) ≡ 0(mod3).

□

Proof of Theorem 1.3. If 3 | d, then 3 is a cube in Fq by Lemma 2.7, and one has

A2(3) = q − 2 + c and B2(3) = q2 + c(q − 1)

as pointed out in [11] (or [12]).
If 3 ∤ d, then 3 is non-cubic in F∗q by Lemma 2.7. Then, by Lemma 2.5, we can assume that

A2(3) = q − 2 +
1
2

(9d − c),

then
A2(9) = q − 2 +

1
2

(−9d − c).

Next, we begin to determine the sign of d.
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By (4.1), we have

27N(3) = A3(3) − 3A2(3), 27N(9) = A3(9) − 3A2(9).

Then, by Lemma 2.4, we have

27(N(3) − N(9)) = A3(3) − 3A2(3) − (A3(9) − 3A2(9))
= 3A2(9) − 3A2(3)
= −27d,

and by Lemma 4.2, we have
d = N(9) − N(3) ≡ −1(mod3).

Thus, by Lemma 2.5, we have

A2(3) = q − 2 +
1
2

(9d − c)

with

d ≡ −1(mod3) and A2(9) = q − 2 +
1
2

(−9d − c).

Hence, Theorem 1.3 immediately follows from Lemmas 2.6 and 4.1. □

Example 4.3. We take
q = 312.

If the integers c and d satisfy that

4 · 312 = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1,

then
c = 46, d = ±8.

Thus, 2 is cubic and 3 is non-cubic. Then, it follows from Theorem 1.3 that the numbers A2(3) and
B2(3) of the cubic equations

x3
1 + x3

2 = 3 and x3
1 + x3

2 + 3x3
3 = 0

are given by

A2(3) = 312 − 2 +
1
2

(9 · 8 − 46) = 972

and

B2(3) = 314 +
1
2

(312 − 1)(9 · 8 − 46) = 936001,

respectively.
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5. Conclusions

In this paper, we study the number of solutions of equations:

x3
1 + x3

2 + zx3
3 = 0

and
x3

1 + x3
2 = z

in finite field Fq with
q = pk, p ≡ 1(mod3).

When
q = p ≡ 1(mod3),

for any z is non-cubic in Fp. In 1978, Chowla et al. determined the sign of d for the case of z = 2
being non-cubic in Fp. In Theorem 1.2, we extend the result of Chowla et al. to finite field Fq. In
Theorem 1.3, we establish a new method to determine the sign of d for the case of z = 3 being non-
cubic. Moreover, we think it is interesting to find a more effective way to determine the sign of d for
the case of z > 3.
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